第41讲 逻辑、推理与证明、复数、框图
第41讲逻辑推理与证明复数框图

第41讲逻辑推理与证明复数框图高三新数学第一轮复习教案〔讲座41—逻辑、推理与证明、复数、框图〕一.课标要求:1.常用逻辑用语〔1〕命题及其关系①了解命题的逆命题、否命题与逆否命题;②明白得必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系;〔2〕简单的逻辑联结词通过数学实例,了解"或"、"且"、"非"逻辑联结词的含义。
〔3〕全称量词与存在量词①通过生活和数学中的丰富实例,明白得全称量词与存在量词的意义;②能正确地对含有一个量词的命题进行否定。
2.推理与证明〔1〕合情推理与演绎推理①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发觉中的作用;②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,把握演绎推理的差不多模式,并能运用它们进行一些简单推理;③通过具体实例,了解合情推理和演绎推理之间的联系和差异。
〔2〕直截了当证明与间接证明①结合差不多学过的数学实例,了解直截了当证明的两种差不多方法:分析法和综合法;了解分析法和综合法的摸索过程、特点;②结合差不多学过的数学实例,了解间接证明的一种差不多方法--反证法;了解反证法的摸索过程、特点;〔3〕数学归纳法了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题;〔4〕数学文化①通过对实例的介绍〔如欧几里德«几何原本»、马克思«资本论»、杰弗逊«独立宣言»、牛顿三定律〕,体会公理化思想;②介绍运算机在自动推理领域和数学证明中的作用;3.数系的扩充与复数的引入〔1〕在咨询题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾〔数的运算规那么、方程理论〕在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系;〔2〕明白得复数的差不多概念以及复数相等的充要条件;〔3〕了解复数的代数表示法及其几何意义;〔4〕能进行复数代数形式的四那么运算,了解复数代数形式的加减运算的几何意义。
高考数学一轮复习第十二章推理与证明算法复数第四节算法与程序框图课件理.ppt

[典题 5] (人教 B)(1)根据下面程序,当输入 x 为 60 时, 输出 y 的值为( )
A.25 B.30 C.31
D.61
(2)下面程序最后输出的结果为( )
A.17
B.21
C.25
D.27
[听前试做] (1)该语句为分段函数 y=205.5+x,0.6x≤x-505,0,x>50, 当 x=60 时,y=25+0.6×(60-50)=31. (2)第 1 次循环:S=3×1=3; 第 2 次循环:S=3×2=6; …… 第 7 次循环:S=3×7=21.则最后输出的结果为 21.
i>50,n=n+2.
答案:(1)C (2)C
解决程序框图填充问题的思路 (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.
角度三:与统计的交汇问题
[典题 4] 某地区为了了解 70~80 岁老人的平均日睡眠
答案:x<2? y=log2x
[典题 1] (1)(2015·福建高考)阅读如图所示的程序框图,运 行相应的程序,若输入 x 的值为 1,则输出 y 的值为( )
A.2 C .8
B.7 D.128
(2)执行如图所示的程序框图,如果输入的 x,y∈R,那么 输出的 S 的最大值为( )
A.0
B.1
答案:(1)× (2)× (3)√ (4)×
2.阅读如图的程序框图,若输入 x=2,则输出的 y 值为 ________.
解析:∵2>0,∴y=2×2-3=1. 答案:1
3.如图所示,程序框图(算法流程图)的输出结果为________.
推理与证明复数框图介绍(简稿)

回忆遇到过的证明方法, ⑵ 回忆遇到过的证明方法,挖掘 出证明方法的思维过程和特点。 出证明方法的思维过程和特点。
证明过程:从要证的结论出发,反推回去, 证明过程:从要证的结论出发,反推回去, 寻求保证结论成立的条件, 寻求保证结论成立的条件,直到找到一个 明显成立的条件为止. 明显成立的条件为止.
普通高中课程标准实验教科书 数学 · 选修 推理与证明
简
介
人民教育出版社中学数学室
一、内容与要求
1.结合已学过的数学实例和生活实例,了解 1.结合已学过的数学实例和生活实例, 结合已学过的数学实例和生活实例 合情推理的含义, 合情推理的含义,能利用归纳和类比等进 行简单的推理, 行简单的推理,体会并认识合情推理在数 学发现中的作用。 学发现中的作用。 2.结合已学过的数学实例和生活实例, 2.结合已学过的数学实例和生活实例,体会 结合已学过的数学实例和生活实例 演绎推理的重要性, 演绎推理的重要性,掌握演绎推理的基本 方法,并能运用它们进行一些简单推理。 方法,并能运用它们进行一些简单推理。 3.通过具体实例, 3.通过具体实例,了解合情推理和演绎推理 通过具体实例 之间的联系与差别。 之间的联系与差别。
高考数学二轮复习精品资料 专题10推理证明 复数 算法框图(学生版)

高考数学二轮复习精品资料专题10推理证明复数算法框图(学生版)【考纲解读】1.理解复数的基本概念;理解复数相等的充要条件;了解复数的代数表示法及其几何意义.2.会进行复数代数形式的四则运算.②了解复数代数形式的加、减运算的几何意义.3.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.4.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.5.了解合情推理和演绎推理之间的联系和差异.6.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.7.了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.(理科)8.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.9.了解算法的含义,了解算法的思想;理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.10.理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.【考点预测】今年高考对本部分知识的命题主要有以下两个方面:1.复数与算法框图是历年高考的热点内容,考查方式主要在客观题中出现,一般只有一个选择或填空,考查复数的基础知识、算法框图以循环结构为主,难度较低。
2.推理证明也是高考的一个重点内容,考查方式多样,在客观题中主要考查合情推理中的归纳与类比,证明题目多以解答题的一个分支出现,常与数列、导数、不等式等知识结合,理科可能考查数学归纳法,难度较高,将继续强调考查逻辑推理、归纳等能力。
【要点梳理】1.合情推理与演绎推理:合情推理包括归纳与类比,明确演绎推理的三个模式(大前提、小前提、结论).2.直接证明与间接证明:直接证明包括分析法(执果索因)与综合法(执因索果);常用的间接证明方法是反证法,反证法主要用于证明唯一性与否定性命题,其主要步骤是否定结论、证明、得出矛盾、肯定结论.3.(理科)数学归纳法:用来证明与自然数有关的等式、不等式、整除及几何等问题。
高考数学一轮复习 第十章 推理与证明、复数 10.3 复数课件

(2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.
如图给出的平行四边形 OZ1ZZ2 可以直观地反映出复数加减法的几何意义, 即O→Z= O→Z1+O→Z2,Z→1Z2= O→Z2-O→Z1 .
答案
思考辨析
判断下面结论是否正确(请在括号中打“√”或“×”) (1)方程x2+x+1=0没有解.( × ) (2)复数z=a+bi(a,b∈R)中,虚部为bi.( × ) (3)复数中有相等复数的概念,因此复数可以比较大小.( × ) (4)原点是实轴与虚轴的交点.( √ ) (5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数 对应的向量的模.( √ )
答案
2
考点自测
1.(2015·安徽)设i是虚数单位,则复数(1-i)(1+2i)等于( C )
A.3+3i
B.-1+3i
C.3+i
D.-1+I
解析 (1-i)(1+2i)=1+2i-i-2i2=1+i+2=3+i,故选C.
12345
解析答案
2.(2015·课标全国Ⅰ)已知复数z满足(z-1)i=1+i,则z等于( C )
所以“m=1”是“z1=z2”的充分不必要条件.
解析答案
1.对本例(1)中的复数 z,若|z|= 10,求 a 的值. 解 若|z|= 10,则(a-3)2+1=10, ∴|a-3|=3,∴a=0或a=6. 2.在本例(2)中,若zz12为实数,则 a= -4 . 解析 若zz12为实数,则4+5 a=0. ∴a=-4.
第十章 推理与证明、复数
§10.3 复 数
内容 索引
基础知识 自主学习 题型分类 深度剖析 思想与方法系列 思想方法 感悟提高 练出高分
(通用版)2019版高考数学一轮复习 第十二章 推理与证明、算法、复数 第三节 算法与程序框图、复数实用课件

令 2(i-1)=100,解得 i=51,即需要 i=51 时输出.
故图中判断框内①处和执行框中的②处应填的语句分别是
i>50,n=n+2.
[答案] (1)B (2)C
[方法技巧]
解决程序框图填充问题的思路 (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、执行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.
第(2)题图
[解析] (1)第一次循环,24 能被 3 整除,N=234=8>3;
第二次循环,8 不能被 3 整除,N=8-1=7>3;
第三次循环,7 不能被 3 整除,N=7-1=6>3;
第四次循环,6 能被 3 整除,N=63=2<3,结束循环,
故输出 N 的值为 2.
(2)运行该程序,k=0,s=1,k<3;
3.三种基本逻辑结构
名3称.三种基本定逻义辑结构 由若干个依__次__执__行__
顺序 的步骤组成,这是 结构 任何一个算法都离
不开的_基__本__结__构__ 算法的流程根据 _条__件__是__否__成__立__有 条件 不同的流向,条件 结构 结构就是处理这种 过程的结构
程序框图
3.三种基本逻辑结构
序的一部分,则在横线上能填入的整数是________.
S=1 i=3 WHILE i<
S=S×i i=i+2 WEND PRINT S END
解析:填入的数字只要超过 13 且不超过 15 均可保证最后一次循
环时,得到的计算结果是 1×3×5×7×9×11×13,故能填入的
整数为 14 或 15. 答案:14 或 15
3.[考点二·考法一]我国古代数学典籍
趣味逻辑推理100题第41-50题及答案.讲义

趣味逻辑推理100题第41-50题答案某电子商场销售量最高的三款相机分别产自美国、中国和德国。
已知:B相机不是中国生产的;中国生产的相机在销售时赠送了一张大容量存储卡;C相机在销售中没有任何赠品,它与产自德国的那款相机同是金属外壳。
请问,这三款相机分别产自哪里?解:已知:1、B相机不是中国生产的;2、中国生产的相机在销售时赠送了一张大容量存储卡;3、C相机在销售中没有任何赠品,它与产自德国的那款相机同是金属外壳。
推理:一、根据已知条件1、2、3推出,中国生产的相机不是B和C,只能是A;二、根据已知条件3知道,C相机不是德国产的,从推理一也知道不是中国产的,推出是美国生产的;三、综上,余下的B相机是德国生产的。
结论:A相机产自中国B相机产自德国C相机产自美国里奥去旅行,在森林里迷了路。
他终于找到一座小木屋,门口有一个孩子在玩耍,“你知道今天是星期几吗?”里奥问孩子。
“哎呀,我可不知道,你可以去问问我的爸爸妈妈。
不过,我爸爸在星期一、二、三说谎话,妈妈在星期四、五、六说谎话,星期日他们倒都说真话。
”小孩回答。
里奥问小孩的父母询问今天是星期几,孩子爸说:“昨天是我说谎的日子。
”孩子妈也说:“昨天是我说谎话的日子。
”里奥想了一会儿同,终于正确地判断出了这一天是星期几。
解:已知:1、孩子爸爸在星期一、二、三说谎话,2、孩子妈妈在星期四、五、六说谎话,3、星期日他们倒都说真话。
4、孩子爸说:“昨天是我说谎的日子。
”5、孩子妈也说:“昨天是我说谎话的日子。
”推理一、根据已知条件1――3,如果这天是星期一,那么昨天是星期日,爸妈都说真话,根据已知条件5,孩子妈妈星期一、二、三说真话,她说昨天说谎,但是星期日她是说真话,与此有矛盾,不成立;二、如果这天是星期二,那么昨天是星期一,孩子的妈妈星期一、二、三说真话,她说昨天说谎,与此有矛盾,不成立;三、同理,星期三也不成立;四、如果这天是星期五,孩子的爸爸星期四、五、六说真话,他说昨天说谎,与此有矛盾,不成立;五、同理,星期六也不成立;六、如果这天是星期日,孩子的爸爸星期六和星期日都说真话,他说昨天说谎,与此有矛盾,不成立;七、只有星期四,孩子的爸爸星期三说谎,星期四说真话,他说昨天说谎是相符的;孩子的妈妈星期三说真话,星期四说谎话,他说昨天说谎,说谎的负判断就是真话,也相符,因此成立。
第41讲 逻辑、推理与证明、复数、框图

高三新数学第一轮复习第四十一讲逻辑、推理与证明、复数、框图一.知识整合:1.常用逻辑用语(1)命题命题:可以判断真假的语句叫命题;逻辑联结词:“或”“且”“非”这些词就叫做逻辑联结词;简单命题:不含逻辑联结词的命题。
复合命题:由简单命题与逻辑联结词构成的命题。
常用小写的拉丁字母p,q,r,s,……表示命题,故复合命题有三种形式:p或q;p且q;非p。
(2)复合命题的真值“非p”形式复合命题的真假可以用下表表示:“p且q“p且q注:1°像上面表示命题真假的表叫真值表;2°由真值表得:“非p”形式复合命题的真假与p的真假相反;“p且q”形式复合命题当p与q同为真时为真,其他情况为假;“p或q”形式复合命题当p与q同为假时为假,其他情况为真;3°真值表是根据简单命题的真假,判断由这些简单命题构成的复合命题的真假,而不涉及简单命题的具体内容。
(3)四种命题如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互为逆命题;如果一个命题的条件和结论分别是原命题的条件和结论的否定,那么这两个命题叫做互否命题,这个命题叫做原命题的否命题;如果一个命题的条件和结论分别是原命题的结论和条件的否定,那么这两个命题叫做互为逆否命题,这个命题叫做原命题的逆否命题。
两个互为逆否命题的真假是相同的,即两个互为逆否命题是等价命题.若判断一个命题的真假较困难时,可转化为判断其逆否命题的真假。
(4)条件一般地,如果已知p⇒q,那么就说:p是q的充分条件;q是p的必要条件。
可分为四类:(1)充分不必要条件,即p⇒q,而q⇒p;(2)必要不充分条件,即p⇒q,而q⇒p;(3)既充分又必要条件,即p⇒q,又有q⇒p;(4)既不充分也不必要条件,即p⇒q,又有q⇒p。
一般地,如果既有p⇒q,又有q⇒p,就记作:p⇔q.“⇔”叫做等价符号。
p⇔q表示p⇒q且q⇒p。
这时p既是q的充分条件,又是q的必要条件,则p是q的充分必要条件,简称充要条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)了解复数的代数表示法及其几何意义;
(4)能进行复数代数形式的四则运算,了解复数代数形式的加减运算的几何意义。
4.框图
(1)流程图
①通过具体实例,进一步认识程序框图;
②通过具体实例,了解工序流程图(即统筹图);
③能绘制简单实际问题的流程图,体会流程图在解决实际问题中的作用;
用分析法证明不等式的逻辑关系是:
分析法的思维特点是:执果索因;
分析法的书写格式:要证明命题B为真,只需要证明命题为真,
从而有……,这只需要证明命题为真,从而又有……
这只需要证明命题A为真,而已知A为真,故命题B必为真。
综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法,
普通高中课程标准实验教科书—数学[人教版]
高三新数学第一轮复习教案(讲座41—逻辑、推理与证明、复数、框图)
一.课标要求:
1.常用逻辑用语
(1)命题及其关系
①了解命题的逆命题、否命题与逆否命题;②理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系;
(2)简单的逻辑联结词
通过数学实例,了解"或"、"且"、"非"逻辑联结词的含义。
(3)p:实数的平方是正数,q:实数的平方是0.
解析:由简单命题构成复合命题,一定要检验是否符合“真值表”如果不符要作语言上的调整。
(1)p或q:9是144或225的约数;
p且q:9是144与225的公约数,(或写成:9是144的约数,且9是225的约数);
非p:9不是144的约数.
∵p真,q真,∴“p或q”为真,“p且q”为真,而“非p”为假.
(4)数学文化
①通过对实例的介绍(如欧几里德《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想;
②介绍计算机在自动推理领域和数学证明中的作用;
3.数系的扩充与复数的引入
(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系;
两个互为逆否命题的真假是相同的,即两个互为逆否命题是等价命题.若判断一个命题的真假较困难时,可转化为判断其逆否命题的真假。
(4)条件
一般地,如果已知pq,那么就说:p是q的充分条件;q是p的必要条件。
可分为四类:(1)充分不必要条件,即pq,而q p;(2)必要不充分条件,即p q,而qp;(3)既充分又必要条件,即pq,又有qp;(4)既不充分也不必要条件,即p q,又有q p。
一般地,如果既有pq,又有qp,就记作:p q.“ ”叫做等价符号。p q表示pq且qp。
这时p既是q的充分条件,又是q的必要条件,则p是q的充分必要条件,简称充要条件。
(5)全称命题与特称命题
这里,短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号 表示。含有全体量词的命题,叫做全称命题。
首先,你要对所画结构图的每一部分有一个深刻的理解和透彻的掌握,从头止尾抓住主要脉络进行分解,然后将每一步分解进行归纳与提炼,形成一个个知识点并将其逐一地写在矩形框内。最后,按其内在的逻辑顺序将它们排列起来并用线段相连,这样就画成了知识结构图。
认识结构图:由构成系统的若干要素和表达各要素之间关系的连线构成。
短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号 表示,含有存在量词的命题,叫做存在性命题。
2.推理与证明
(1)合情推理
根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理(简称归纳)。归纳是从特殊到一般的过程,它属于合情推理;
(3)全称量词与存在量词
①通过生活和数学中的丰富实例,理解全称量词与存在量词的意义;
②能正确地对含有一个量词的命题进行否定。
2.推理与证明
(1)合情推理与演绎推理
①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用;
②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;
根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另一类事物类似(或相同)的性质的推理,叫做类比推理(简称类比)。
类比推理的一般步骤:
(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3)一般地,事物之间的各个性质之间并不是孤立存在的,而是相互制约的。如果两个事物在某些性质上相同或类似,那么它们在另一些性质上也可能相同或类似,类比的结论可能是真的;(4)在一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题就越可靠。
第二步、画出程序框图表达算法;
第三步、写出计算机相应的程序并上机实现。
四.典例解析
题型1:判断命题的真值
例1.写出由下述各命题构成的“p或q”,“p且q”,“非p”形式的复合命题,并指出所构成的这些复合命题的真假。
(1)p:9是144的约数,q:9是225的约数。
(2)p:方程x2-1=0的解是x=1,q:方程x2-1=0的解是x=-1;
③通过具体实例,了解合情推理和演绎推理之间的联系和差异。
(2)直接证明与间接证明
①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;
②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点;
(3)数学归纳法
了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题;
(2)p或q:方程x2-1=0的解是x=1,或方程x2-1=0的解是x=-1(注意,不能写成“方程x2-1=0的解是x=±1”,这与真值表不符);
p且q:方程x2-1=0的解是x=1,且方程x2-1=0的解是x=-1;
非p:方程x2-1=0的解不都是x=1(注意,在命题p中的“是”应理解为“都是”的意思);
复数的加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i;复数的加法法则:(a+bi)-(c+di)=(a-c)+(b-d)i;复数的乘法法则:(a+bi)(c+di)=(ac-bd)+(ad+bc)i;复数的除法法则:(a+bi) (c+di)= = = = + ;
4.框图
(1)结构图
用综合法证明不等式的逻辑关系是:
综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。
3.数系的扩充与复数的引入
形如a+bi(a,b 的数,我们把它们叫做复数,全体复数所形成的集合叫做复数集,一般用字母C表示,其中a叫做复数的实部,b叫做复数的虚部。
鉴于用自然语言描述算法所出现的种种弊端,人们开始用流程图来表示算法,这种描述方法既避免了自然语言描述算法的拖沓冗长,又消除了起义性,且能清晰准确地表述该算法的每一步骤,因而深受欢迎。
设计算法解决问题的主要步骤:
第一步、用自然语言描述算法;
算法可以用自然语言来描述,但为了使算法的程序或步骤表达得更为直观,我们更经常地用图形方式来表示它。
∵p假,q假,∴“p或q”与,“p且q”均为假,而“非p”为真.
(3)p或q:实数的平方都是正数或实数的平方都是0;
p且q:实数的平方都是正数且实数的平方都是0;
非p:实数的平方不都是正数,(或:存在实数,其平方不是正数);
∵p假,q假,∴“p或q”与“p且q”均为假,而“非p”为真.
(2)演绎推理
分析上述推理过程,可以看出,推理的灭每一个步骤都是根据一般性命题(如“全等三角形”)推出特殊性命题的过程,这类根据一般性的真命题(或逻辑规则)导出特殊性命题为真的推理,叫做演绎推理。演绎推理的特征是:当前提为真时,结论必然为真。
(3)证明
反证法:要证明某一结论A是正确的,但不直接证明,而是先去证明A的反面(非A)是错误的,从而断定A是正确的即反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法。
p
q
p且q
真
真
真
真
假
假
假
真
假Hale Waihona Puke 假假假“p且q”形式复合命题的真假可以用下表表示:
p
q
P或q
真
真
真
真
假
真
假
真
真
假
假
假
注:1°像上面表示命题真假的表叫真值表;2°由真值表得:“非p”形式复合命题的真假与p的真假相反;“p且q”形式复合命题当p与q同为真时为真,其他情况为假;“p或q”形式复合命题当p与q同为假时为假,其他情况为真;3°真值表是根据简单命题的真假,判断由这些简单命题构成的复合命题的真假,而不涉及简单命题的具体内容。
反证法的步骤:1)假设命题的结论不成立,即假设结论的反面成立;2)从这个假设出发,通过推理论证,得出矛盾;3)由矛盾判定假设不正确,从而肯定命题的结论正确。
注意:可能出现矛盾四种情况:①与题设矛盾;②与反设矛盾;③与公理、定理矛盾④在证明过程中,推出自相矛盾的结论。
分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以断定原不等式成立,这种方法通常叫做分析法。