半导体导论翻译(精)
半导体专业术语英语教材

1. acceptance testing (WAT: wafer acceptance testing)2. acceptor: 受主,如B,掺入Si中需要接受电子3. ACCESS:一个EDA(Engineering Data Analysis)系统4. Acid:酸5. Active device:有源器件,如MOS FET(非线性,可以对信号放大)6. Align mark(key):对位标记7. Alloy:合金8. Aluminum:铝9. Ammonia:氨水10. Ammonium fluoride:NH4F11. Ammonium hydroxide:NH4OH12. Amorphous silicon:α-Si,非晶硅(不是多晶硅)13. Analog:模拟的14. Angstrom:A(1E-10m)埃15. Anisotropic:各向异性(如POLY ETCH)16. AQL(Acceptance Quality Level):接受质量标准,在一定采样下,可以95%置信度通过质量标准(不同于可靠性,可靠性要求一定时间后的失效率)17. ARC(Antireflective coating):抗反射层(用于METAL等层的光刻)18. Antimony(Sb)锑19. Argon(Ar)氩20. Arsenic(As)砷21. Arsenic trioxide(As2O3)三氧化二砷22. Arsine(AsH3)23. Asher:去胶机24. Aspect ration:形貌比(ETCH中的深度、宽度比)25. Autodoping:自搀杂(外延时SUB的浓度高,导致有杂质蒸发到环境中后,又回掺到外延层)26. Back end:后段(CONTACT以后、PCM测试前)27. Baseline:标准流程28. Benchmark:基准29. Bipolar:双极30. Boat:扩散用(石英)舟31. CD:(Critical Dimension)临界(关键)尺寸。
半导体词汇(英汉对照)

半导体词汇(英汉对照)1. 半导体:semiconductor2. 晶体管:transistor3. 二极管:diode4. 集成电路:integrated circuit5. 电容:capacitor8. 金属氧化物场效应管:Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)9. 数字信号处理器:Digital Signal Processor (DSP)10. 有机发光二极管:Organic Light-Emitting Diode (OLED)11. 光纤放大器:Optical Fiber Amplifier (OFA)12. 直流-直流变换器:DC-DC Converter13. 脉冲编码调制:Pulse Code Modulation (PCM)14. 光耦合器:Optocoupler15. 调制解调器:Modem16. 电池管理系统:Battery Management System (BMS)17. 片上系统:System-on-a-Chip (SoC)18. 功率电子器件:Power Electronics Device20. 纳米技术:Nanotechnology21. 生物芯片:Biochip23. 激光器:Laser24. 双极型发射极晶体管:Bipolar Junction Transistor (BJT)28. 传感器:Sensor29. 能量收集器:Energy Harvester30. 固态驱动器:Solid State Drive (SSD)31. 磁性存储设备:Magnetic Storage Device32. 屏幕显示器:Display33. 快速门:Fast Gate35. 超高速芯片:Ultra-High-Speed Chip38. 量子计算机:Quantum Computer40. 机器人学:Robotics41. 表面声波器件:Surface Acoustic Wave (SAW) Device45. 长寿命电池:Long-Life Battery46. 红外光电探测器:Infrared Photodetector47. 树莓派:Raspberry Pi48. 可充电电池:Rechargeable Battery49. 无线充电器:Wireless Charger51. 控制电路:Control Circuit53. 逆变器:Inverter55. 拓扑优化器:Topology Optimizer57. 智能家居:Smart Home58. 传输线理论:Transmission Line Theory60. 片上调制器:On-Chip Modulator61. 内存芯片:Memory Chip63. 线性电源:Linear Power Supply64. 电机驱动器:Motor Driver66. 相变存储器:Phase-Change Memory (PCM)68. 氮化镓:Gallium Nitride (GaN)69. 自动驾驶:Autonomous Driving72. 机器学习:Machine Learning77. 差分信号:Differential Signal78. 相位锁定环:Phase Locked Loop (PLL)80. 峰值检测器:Peak Detector84. 相移器:Phase Shifter88. 滤波器:Filter91. 直流伏安表:Digital Multimeter (DMM)92. 频率计:Frequency Counter93. 降噪耳机:Noise-Canceling Headphones94. 耳返系统:In-Ear Monitoring (IEM) System95. 电学模型:Electrical Model97. 声音芯片:Audio Chip98. 跟踪器:Tracker。
半导体中英对照

倒序浏览|•Acceptor - An element, such as boron, indium, and gallium used to create a free hole in a semiconductor. The acceptor atoms are required to have one less valence electron than the semiconductor.•受主- 一种用来在半导体中形成空穴的元素,比如硼、铟和镓。
受主原子必须比半导体元素少一价电子•Alignment Precision - Displacement of patterns that occurs during the photolithography process. . u! F. W' }! b# j4 q•套准精度- 在光刻工艺中转移图形的精度。
2 v I; S4 U, T* r' d9 H3 b! c•Anisotropic - A process of etching that has very little or no undercutting , i( N: Z7 u; {3 z •各向异性- 在蚀刻过程中,只做少量或不做侧向凹刻。
: `3 v& P1 s1 }3 z. `; ?•Area Contamination - Any foreign particles or material that are found on the surface of a wafer. This is viewed as discolored or smudged, and it is the result of stains, fingerprints, water spots, etc. + {7 c* p' x H3 B0 m; r•沾污区域- 任何在晶圆片表面的外来粒子或物质。
半导体制造技术导论萧宏台译本

半导体制造技术导论萧宏台译本摘要:一、半导体制造技术的概述二、半导体制造技术的发展历程三、半导体制造技术的重要性四、半导体制造技术的应用领域五、半导体制造技术的未来发展趋势正文:一、半导体制造技术的概述半导体制造技术是指通过一系列复杂的工艺步骤,将半导体材料制成具有特定功能和性能的集成电路和器件的过程。
半导体制造技术作为现代电子信息技术的基础,广泛应用于计算机、通信、家电等领域,对于推动科技发展和提高人类生活水平具有重要意义。
二、半导体制造技术的发展历程半导体制造技术的发展经历了几个阶段。
早期,人们主要通过手工操作和简单的设备进行半导体材料的加工。
随着科学技术的进步,半导体制造技术逐渐实现了自动化、智能化,制造工艺也日趋精密。
从20 世纪中叶开始,半导体制造技术进入了快速发展阶段,集成电路的集成度不断提高,尺寸不断缩小,性能不断提升。
三、半导体制造技术的重要性半导体制造技术对于现代科技和社会经济发展具有举足轻重的地位。
首先,半导体制造技术是信息技术产业发展的基础。
计算机、通信设备等电子产品的核心部件都是由半导体材料制成的。
其次,半导体制造技术对提高人民生活水平具有重要意义。
半导体技术在医疗、教育、交通等领域的应用,极大地改善了人们的生活质量。
最后,半导体制造技术是国家科技实力的重要体现。
一个国家在半导体制造技术领域的地位,往往能反映出这个国家在国际竞争中的实力。
四、半导体制造技术的应用领域半导体制造技术的应用领域非常广泛,主要包括以下几个方面:1.计算机:计算机处理器、内存等关键部件都是由半导体材料制成的。
2.通信:手机、无线通信基站等通信设备中,半导体器件占有重要地位。
3.家电:半导体技术在家电产品中的应用,如电视机、冰箱、空调等,使得这些产品更加智能化、节能化。
4.工业控制:半导体技术在工业控制领域的应用,提高了生产效率和产品质量。
5.医疗:半导体技术在医疗设备中的应用,如超声波、心电图等,提高了疾病诊断和治疗的水平。
半导体导论翻译(精)

半导体导论 P124-125CHAPTER 3 The Semiconductor in Equilibrium(d) T = 400 K, N d = 0, N a = 1014 cm-3(e) T = 500 K, N d = 1014 cm-3, Na = 03.37 Repeat problem 3.36 for GaAs.3.38 Assume that silicon, germanium, and gallium arsenide each have dopant concentrations of Nd = 1X1013 cm-3 and Na = 2.5 x 1014 cm-3 at T=300K.For each of the three materials(a) Is this material n type or p type?(b) Calculate n0 and p0.3.39 A sample of silicon at T =450K is doped with boron at a concentration 0f 1.5x1015 cm-3and with arsenic at a concentration of 8 X 1014 cm-3 .(a) Is the material n type or p type? (b) Determine the electron and hole concentrations .(c) Calculate the total ionized impurity concentration.3.40 The thermal equilibrium hole concentration in silicon at T = 300 K is p0=2x1015cm-3.Determine the thermal-equilibrium electron concentration .Is the material n type or p type?3.41 In a sample of GaAs at T = 200 K, we have experimentally determined that n0 = 5 p0 and that Na = 0. Calculate n0, p0, and N d.3.42 Consider a sample of silicon doped at N d = 1014 cm-3 and Na = 0 Calcu1ate the majority-carrier concentration at (a) T = 300 K, (b) T = 350 K,(C ) T = 400 K (d) T = 450 K, and (e) T = 500 K.3.43 Consider a sample of silicon doped at N d= 0 and Na = 1014cm-3 .Plot the majority-carrier concentration versus temperature over the range 200≤T≤500K.3.44 The temperature of a sample of silicon is T = 300 K and the acceptor doping concentration is Na = 0. Plot the minority-carrier concentration (on a log-log plot) versus Nd over the range 1015≤N d≤1018 cm-3.3.45 Repeat problem 3.44 for GaAs.3.46 A particular semiconductor material is doped at N d = 2 x 1013 cm-3, Na = 0, and the intrinsic carrier concentration is ni = 2 x 1013 cm-3. Assume complete ionization. Determine the thermal-equilibrium majority-and minority-carrier concentrations.3.47 (a) Silicon at T = 300 K is uniformly doped with arsenic atoms at a concentration of 2 x 1016 cm-3 and boron atoms at a concentration of 1 x1013 cm-3. Determine the thermal-equilibrium concentrations of majority and minority carriers.(b) Repeat part (a) if the impurity concentrations are 2 x1015 cm-3 phosphorus atoms and 3 x 1016 cm-3 boron atoms.3.48 In silicon at T = 300 K, we have experimentally found that n0=4.5 x 104 cm-3and N d=5x1015cm-3. (a) Is the material n type or p type? (b) Determine the majority and minority-carrier concentrations. (c) What types and concentrations of impurity atoms exist in the material?Section 3.6 Position of Fermi Energy Level3.49 Consider germanium with an acceptor concentration of Na = 1015 cm-3 and a donor concentration of N d = 0. Consider temperatures of T = 200, 400,and 600 K. Calculate the position of the Fermi energy with respect to the intrinsic Ferrni level at these temperatures.3.50 Consider germanium at T = 300 K with donor concentrations of N d= 104,1016and1018 cm-3 .Let Na = 0. Calculate the position of the Fermi energy level with respect to the intrinsic Fermi level for these doping concentrations.3.51 A GaAs device is doped with a donor concentration of 3X1015cm-3 .For the device to operate properly ,the intrinsic carrier concentration must remain less than 5 percent of the total electron concentration .What is the maximum temperature that the device may operate?3.52 Consider germanium with an concentration of Na=1015cm-3and a donor concentration of N d=0.Plot the position of the Fermi energy with respect to the intrinsic Fermi level as a function of temperature over the range 200 ≤T ≤600 K. 3,53 Consider silicon at T =300K with Na=0. Plot the position of the Fermi energy with respect to the intrinsic Fermi level as a function of the donor doping concentration over the range 1014≤N d≤1018cm-3.3.54 For a particular semiconductor,Eg=1.50eV,m*p=10m*n,T=300K,and ni=105cm-3. (a)Determine the position of the intrinsic Fermi energy level with respect to the center of the bandgap. (b)Impurity atoms are added so that the Fermi energy level is 0.45eV below the center of the bandgap .(i)Are acceptor or donor atoms added? (ii)What is the concentration if impurity atoms added?3.55 Silicon at T = 300 K contains acceptor atoms at a concentration of Na = 5 x1015cm-3 . Donor atoms are add forming an n-type compensated semiconductor such that the Fermi level is 0.215 eV below the conduction band edge .What concentration of donor atoms are added?3.56 Silicon at T = 300 K is doped with acceptor atoms at a concentration of Na = 7 x1015cm-3. (a) Determine E f-E v. (b) Calculate the concentration of additional acceptor atoms that must be added to move the Fermi level a distance kT closer to the valence-band edge.3.57 (a) Determine the position of the Fermi level with respect to the intrinsic Fermi level in silicon at T = 300 K that is doped with phosphorus atoms at a concentration of 1015cm-3. (b) Repeat part (a) if the silicon is doped with boron atoms at a concentration of 1015cm-3. (c) Calculate the electron concentration in the silicon for parts (a) and (b).3.58 Gallium arsenide at T = 300 K contains acceptor impurity atoms at a density of 1015cm-3. Additional impurity atoms are to be added so that the Fermi level is 0.45 eV below the intrinsic level. Determine the concentration and type (donor or acceptor) of impurity atoms to be added.3.59 Determine the Fermi energy level with respect to the intrinsic Fermi level for each condition given in Problem 3.36.3.60 Find the Fermi energy level with respect to the valence band energy for the conditions given in Problem 3.37.3.61 Calculate the position of the Fermi energy level with respect to the intrinsic Fermi for the conditions given in Problem 3.48.Summary and Review3.62 A special semiconductor material is to be “designed. ” The semiconductor is tobe n type and doped with 1 x 1015 cm -3donor atoms . Assume complete ionization and assume N a=0. The effective density of states functions are givenby N c=N v=1.5x1019cm-3 and ate independent of temperature .A particular semiconductor device fabricated with this material requires the electron concentration to be no greater than 1.01x1019cm-3 at T=400K. What is the minimum value of the bandgap energy ?译文第三章半导体的平衡(d) T = 400 K, N d = 0, N a = 1014 cm-3(e) T = 500 K, N d = 1014 cm-3, Na = 03.37重复3.36砷化镓的问题3.38假设硅,锗,镓砷化物各有厘米的Nd = 1X1013 cm-3掺杂浓度和Na = 2.5 ×1014 cm-3在T = 300K. 对于每三种材料(一)这是N型还是P型材料?(二)计算N0和P0。
半导体英文词汇

半导体英文词汇SemiconductorA semiconductor is a material that has electrical conductivity between that of a conductor and that of an insulator. This means that it can conduct some electricity under certain conditions, but not as much as a conductor. Semiconductors are essential components of electronic devices, such as diodes, transistors, and integrated circuits.半导体半导体是一种在导体和绝缘体之间具有电导性的材料。
这意味着在某些条件下它可以导电,但不像导体那样能够导电。
半导体是电子器件的基本组成部分,如二极管、晶体管和集成电路。
DiodeA diode is a semiconductor device that allows current to flow in only one direction. It has two terminals, an anode and a cathode. When a positive voltage is applied to the anode and a negative voltage to the cathode, the diode conducts electricity. However, if the polarity of theapplied voltage is reversed, the diode blocks the flow of current.二极管二极管是一种只允许电流在一个方向中流动的半导体器件。
半导体导论重要术语解释

第一章(1)晶态:固体材料中的原子有规律的周期性排列,或称为长程有序。
(2)非晶态:固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序(3)准晶态:介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。
(4)单晶:原子呈周期性排列的晶体(5)多晶:由许多取向不同的单晶体颗粒无规则堆积而成的固体材料。
(6)理想晶体(完整晶体):内在结构完全规则的固体,由全同的结构单元在空间无限重复排列而构成。
(7)空间点阵(布拉菲点阵):晶体的内部结构可以概括为是由一些相同的点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空间点阵。
(8)晶格常数:晶胞的棱边的长度。
(9)晶胞:能复制整个晶体的一小部分晶体。
晶胞不是唯一的。
最小的晶胞称为原胞(10)晶面指数(密勒指数):描写布拉菲点阵中晶面方位的一组互质整数。
(11)原子的电负性:原子得失价电子能力的度量。
电负性一常数(电离能+亲和能)。
(12)倒格子及其与正格子的关系:由正格子的基矢(a1,a2,a3)定义的三个矢量(b1,b2,b3)。
(13)布里渊区:在倒格子中,以某一点为坐标原点,作所有倒格矢的垂直平分面,倒格子空间被这些平面分成许多区域,这些区域就称为布里渊区(14)价电子:最外层的电子因构成化学价键而被叫做价电子。
(15)原子价键:主要的原子价键有共价键、离子键、π键和金属键。
(16)共价键与非极性共价键:共价键是相邻原子间通过共用自旋方向相反的电子对(电子云重叠)与原子核间的静电作用形成的,成键的条件是成键原子得失电子的能力相当或是差别较小,或者是成键原子一方有孤对电子(配位体),另一方有空轨道(中心离子)。
如果相邻原子吸引电子的能力是一样的,则共用电子对不会发生偏移,这样的共价键就是非极性共价键。
共价键的数目遵从8-N原则。
(17)共价键的特点:具有方向性和饱和性。
(18)空穴:光激发或热激发等激发因素会使原子键断裂而释放出电子,在断键处少掉了一个电子,等效于留下一个带(+q)电量的正电荷在键电子原来所在的位置,这就是空穴。
半导体制造技术导论萧宏台译本

半导体制造技术导论萧宏台译本
《半导体制造技术导论》是由台湾作家萧宏台所翻译的一本介绍半导体制造技术的入门教材。
该书以通俗易懂的语言,系统地介绍了半导体的基本知识和制造工艺。
《半导体制造技术导论》主要包括以下内容:半导体材料的基本概念、基本物理性质和组成成分;半导体材料的制备及材料的性质分析;半导体器件的基本原理和工艺流程;半导体制造中的控制和测试技术;以及半导体制造中的设备和设备的相关知识。
该书在内容上详细而全面地介绍了半导体制造技术的各个方面,包括半导体材料的选择和制备、器件的设计和制造工艺、制造过程中的设备和设备的选择等。
同时,书中还包含了大量的实际案例和操作流程,帮助读者更好地理解和掌握半导体制造技术。
总之,《半导体制造技术导论》是一本适合初学者学习的半导体制造技术教材,无论是在内容上还是在语言上都非常易懂。
通过阅读该书,读者可以对半导体制造技术有一个全面的了解,并且能够初步掌握半导体制造的基本原理和技术。
该书也适合作为相关专业学生和从事半导体制造工作的技术人员的参考书籍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体导论翻译(精)半导体导论 P124-125CHAPTER 3 The Semiconductor in Equilibrium(d) T = 400 K, N d = 0, N a = 1014 cm-3(e) T = 500 K, N d = 1014 cm-3, Na = 03.37 Repeat problem 3.36 for GaAs.3.38 Assume that silicon, germanium, and gallium arsenide each have dopant concentrations of Nd = 1X1013 cm-3 and Na = 2.5 x 1014 cm-3 at T=300K.For each of the three materials(a) Is this material n type or p type?(b) Calculate n0 and p0.3.39 A sample of silicon at T =450K is doped with boron at a concentration 0f 1.5x1015cm-3and with arsenic at a concentration of 8 X 1014cm-3 .(a) Is the material n type or p type? (b) Determine the electron and hole concentrations .(c) Calculate the total ionized impurity concentration.3.40 The thermal equilibrium hole concentration in silicon at T = 300 K is p0=2x1015 cm-3 .Determine the thermal-equilibrium electron concentration .Is the material n type or p type?3.41 In a sample of GaAs at T = 200 K, we have experimentally determined that n0 = 5 p0 and that Na = 0. Calculate n0, p0, and N d.3.42 Consider a sample of silicon doped at N d = 1014 cm-3 and Na = 0 Calcu1ate the majority-carrier concentration at (a) T = 300 K, (b) T = 350 K,(C ) T = 400 K(d) T = 450 K, and (e) T = 500 K.3.43 Consider a sample of silicon doped at N d = 0 and Na = 1014 cm-3 .Plot the majority-carrier concentration versus temperature over the range 200≤T≤500K.3.44 The temperature of a sample of silicon is T = 300 K and the acceptor doping concentration is Na = 0. Plot the minority-carrier concentration (on a log-log plot) versus Nd over the range 1015≤N d≤1018 cm-3.3.45 Repeat problem 3.44 for GaAs.3.46 A particular semiconductor material is doped at N d = 2 x 1013 cm-3, Na = 0, and the intrinsic carrier concentration is ni = 2 x 1013cm-3. Assume complete ionization. Determine the thermal-equilibrium majority-and minority-carrier concentrations.3.47 (a) Silicon at T = 300 K is uniformly doped with arsenic atoms at a concentration of 2 x 1016cm-3and boron atoms at a concentration of 1 x1013 cm-3. Determine the thermal-equilibrium concentrations of majority andx1015cm-3 . Donor atoms are add forming an n-type compensated semiconductor such that the Fermi level is 0.215 eV below the conduction band edge .What concentration of donor atoms are added?3.56 Silicon at T = 300 K is doped with acceptor atoms at a concentration of Na = 7 x1015cm-3. (a) Determine E f-E v. (b) Calculate the concentration of additional acceptor atoms that must be added to move the Fermi level a distance kT closer to the valence-band edge.3.57 (a) Determine the position of the Fermi level with respect to the intrinsic Fermi level in silicon at T = 300 K that is doped with phosphorus atoms at a concentration of 1015cm-3. (b) Repeat part (a) if the silicon is doped with boron atoms at a concentration of 1015cm-3. (c) Calculate the electron concentration in the silicon for parts (a) and (b).3.58 Gallium arsenide at T = 300 K contains acceptor impurity atoms at a density of 1015cm-3. Additional impurity atoms are to be added so that the Fermi level is 0.45 eV below the intrinsic level. Determine the concentration and type (donor or acceptor) of impurity atoms to be added.3.59 Determine the Fermi energy level with respect to the intrinsic Fermi level for each condition given in Problem 3.36.3.60 Find the Fermi energy level with respect to the valence band energy for the conditions given in Problem 3.37.3.61 Calculate the position of the Fermi energy level with respect to the intrinsic Fermi for the conditions given in Problem 3.48.Summary and Review3.62 A special semiconductor material is to be “designed. ” The semiconductoris to be n type and doped with 1 x 1015 cm -3donor atoms . Assume complete ionization and assume N a=0. The effective density of states functions are given by N c=N v=1.5x1019cm-3 and ate independent of temperature .A particular semiconductor device fabricated with thismaterial requires the electron concentration to be no greater than1.01x1019cm-3at T=400K. What is the minimum value of the bandgapenergy ?译文第三章半导体的平衡(d) T = 400 K, N d = 0, N a = 1014 cm-3(e) T = 500 K, N d = 1014 cm-3, Na = 03.37重复3.36砷化镓的问题3.38假设硅,锗,镓砷化物各有厘米的Nd = 1X1013cm-3掺杂浓度和Na = 2.5 ×1014 cm-3在T = 300K.对于每三种材料(一)这是N型还是P型材料?(二)计算N0和P0。
3.39甲硅样品在T = 450K与硼掺杂浓度1.5x1015cm-3和砷浓度在8 ×1.5x1014cm-3。
(a)是n型或p物质类型?(二)确定的电子和空穴浓度。
(c)计算的总电离杂质浓度。
3.40在硅中的热平衡孔在T = 300 K的浓度为P0= 2x1015 cm-3。
确定热平衡电子浓度。