应用统计学 第一课 英文

合集下载

lecture 1应用统计学基础

lecture 1应用统计学基础
n1 具 有 某 种 标 志 的 成 数: 为p n n0 不具有某种标志的成为 数 :q n
n0 n1 n p q 1, p 1 q
总体平均数:
X Xf (X ): X ;X N f
( 2或 ) : 2
总体指标 总体方差: (标准差)
x 9401
x
i 1
9
i
n
n
723 80.3(分) , x 9402 9
2 2 ( x 80 . 3 ) i i 1 9
x
i 1
9
i
n
723 80.3(分) 9
s9401
( xi x )
i 1
n 1

9 1
2 ( x 80 . 3 ) i i 1 9
Q10 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 2 2
Q11 4 2 2 5 3 4 5 2 6 5 5 6 6 6 6 6 6 6 5 1
Q12 1 2 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 1
Q13 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2
总体 样本

参数

2 ( x x ) s n 1 2f ( x x ) s2 f 1 2
统计量 平均数

、 2
P
标准差、方差
成数/比例
X S、 S2
p
总体成数:具有某种标志的单位数占总体单位数的比 重,用P或 Q表示。 设:总体单位数为N,具有某种标志的单位数为N1,不 具有该种标志的单位数为N0,则总体的成数为:

统计学课程英文翻译

统计学课程英文翻译

descriptive statistics 描述统计学abortion statistics流产统计(学)accident statistics事故统计学accurate statistics精密统计actuarial statistics保险统计agricultural statistics 农业统计amplitude statistics 幅度统计ancillary statistics辅助统计量applied statistics应用统计banking statistics银行业务统计Bayesian statistics 贝氏统计(以主观估计为概率曲线的基础)benchmark statistics标志性统计数biological statistics生物统计学birth statistics出生统计Boltzmann statistics玻耳兹曼统计Bose-Einstein statistics 玻色-爱因斯坦统计(法) boundedly complete statistics有界完备统计量business statistics经济情况统计, 业务统计capital construction statistics基本建设统计car statistics车辆统计classical statistics经典统计(法)classification statistics 分类统计commercial statistics商业统计commodity statistics商品统计comprehensive table statistics综合统计表configurational statistics 构形统计学conversational statistics 对话统计学cost statistics成本统计counting statistics计数统计critical statistics临界统计customs clearance statistics结关[报关]统计demographic statistics 人口统计derived statistics整理后统计数字descriptive statistics 描述统计(学)dynamic statistics动态统计学economic statistics经济统计educational statistics 教育统计学elementary statistics 基础统计学empirical statistics经验统计employment statistics 就业率统计enumerative statistics枚举统计学family budget statistics家庭开支统计Fermi-Dirac statistics费米-狄拉克统计financial statistics金融统计, 财政统计, 财务统计foreign trade statistics外贸统计forest statistics森林统计学freight traffic statistics货物运输统计government statistics政府统计graphic statistics统计图表harvest statistics收成统计health statistics卫生统计学historical statistics 历史统计inductive statistics归纳统计学industrial statistics工业统计insurance statistics保险统计intensity statistics强度统计inventory statistics库存统计表labour statistics劳动统计linguistic statistics语言统计学loan statistics借书统计, 出借资料册次统计locomotive repair statistics机车检修统计manufacturing statistics 制造业统计mathematic(al) statistics 数理统计学Maxwell-Boltzmann statistics麦克斯韦-玻耳兹曼统计medical statistics医用统计学minimal sufficient statistics最小充分统计量mortality statistics死亡率统计national statistics全国性统计national income statistics 国民收入统计national wealth statistics 国富统计nonparametric statistics 非参数统计official statistics官方统计operating statistics业务统计, 行车统计output statistics产量[产品]统计parameter-free statistics 非参数统计parametric statistics参数统计(学)passenger traffic statistics 旅客运输统计photo-counting statistics 光子计数统计学plant statistics厂内统计population statistics人口统计primary statistics原始统计probability statistics概率统计quantum statistics量子统计rank statistics秩统计量registration statistics人口登记统计short time statistics短时统计特性social statistics社会统计static statistics静态统计status statistics有关居民阶级构成的统计资料sufficient statistics充分统计test statistics检验统计量trade statistics商业统计train operating statistics 行车统计transport statistics运输统计unbias(s)ed statistics无偏统计vital statistics(出生、结婚、死亡等)人口动态统计; [美]妇女的三围尺寸(胸围、腰围、臀围)wage statistics工资统计statistics of attributes质的统计, 属性统计statistics of circulation书刊发行(量)统计; 图书馆资料流通统计statistics of classification frequency分类频率统计statistics of extremes极值统计statistics of fixed assets固定资产统计statistics of grouping the same item同项归并统计statistics of income 进款统计statistics of random processes随机过程统计学statistics of rupture 断裂统计学。

应用统计学 第一课 英文

应用统计学 第一课  英文

2
Keep in Touch
If you have a question, you are STRONGLY encouraged to ASK IT IN CLASS. You are probably not the only one that needs the question answered, and other students may benefit from your questions, too. Check our course website regularly. Announcements, assignments, and solutions etc will be posted online regularly. Drop by during office hours or book another time to see me in my office.
x P(x)
0.00 0.05 0.12 0.30 0.52
E ( X ) xi P( xi )
i 1
8
= 4.71 rooms
5
6 7 Total
0.20
0.15 0.26 1.00
1.00
0.90 1.82 = 4.71
14
Example: Bed and Breakfast
Business Data Analysis
73-102 Lecture 01
1
Agenda
Go through Course Outline (on CLEW) Brief Introduction to Statistics Review of Random Variable Review of Normal Distribution

统计学课程英文翻译

统计学课程英文翻译

统计学课程英文翻译descriptive statistics 描述统计学abortion statistics流产统计(学)accident statistics事故统计学accurate statistics精密统计actuarial statistics保险统计agricultural statistics 农业统计amplitude statistics 幅度统计ancillary statistics辅助统计量applied statistics应用统计banking statistics银行业务统计Bayesian statistics 贝氏统计(以主观估计为概率曲线的基础)benchmark statistics标志性统计数biological statistics生物统计学birth statistics出生统计Boltzmann statistics玻耳兹曼统计Bose-Einstein statistics 玻色-爱因斯坦统计(法) boundedly complete statistics有界完备统计量business statistics经济情况统计, 业务统计capital construction statistics基本建设统计car statistics车辆统计classical statistics经典统计(法)classification statistics 分类统计commercial statistics商业统计commodity statistics商品统计comprehensive table statistics综合统计表configurational statistics 构形统计学conversational statistics 对话统计学cost statistics成本统计counting statistics计数统计critical statistics临界统计customs clearance statistics结关[报关]统计demographic statistics 人口统计derived statistics整理后统计数字descriptive statistics 描述统计(学)dynamic statistics动态统计学economic statistics经济统计educational statistics 教育统计学elementary statistics 基础统计学empirical statistics经验统计employment statistics 就业率统计enumerative statistics 枚举统计学family budget statistics 家庭开支统计Fermi-Dirac statistics费米-狄拉克统计financial statistics金融统计, 财政统计, 财务统计foreign trade statistics外贸统计forest statistics森林统计学freight traffic statistics货物运输统计government statistics政府统计graphic statistics统计图表harvest statistics收成统计health statistics卫生统计学historical statistics 历史统计inductive statistics归纳统计学industrial statistics工业统计insurance statistics保险统计强度统计inventory statistics库存统计表labour statistics劳动统计linguistic statistics语言统计学loan statistics借书统计, 出借资料册次统计locomotive repair statistics 机车检修统计manufacturing statistics 制造业统计mathematic(al) statistics 数理统计学Maxwell-Boltzmann statistics麦克斯韦-玻耳兹曼统计medical statistics医用统计学minimal sufficient statistics最小充分统计量mortality statistics死亡率统计national statistics全国性统计national income statistics 国民收入统计national wealth statistics 国富统计nonparametric statistics 非参数统计official statistics官方统计operating statistics业务统计, 行车统计output statistics产量[产品]统计parameter-free statistics 非参数统计参数统计(学)passenger traffic statistics 旅客运输统计photo-counting statistics 光子计数统计学plant statistics厂内统计population statistics人口统计primary statistics原始统计probability statistics概率统计quantum statistics量子统计rank statistics秩统计量registration statistics人口登记统计short time statistics短时统计特性social statistics社会统计static statistics静态统计status statistics有关居民阶级构成的统计资料sufficient statistics 充分统计test statistics检验统计量trade statistics商业统计train operating statistics 行车统计transport statistics运输统计unbias(s)ed statistics无偏统计vital statistics(出生、结婚、死亡等)人口动态统计; [美]妇女的三围尺寸(胸围、腰围、臀围)wage statistics工资统计statistics of attributes质的统计, 属性统计statistics of circulation书刊发行(量)统计; 图书馆资料流通统计statistics of classification frequency分类频率统计statistics of extremes极值统计statistics of fixed assets固定资产统计statistics of grouping the same item同项归并统计statistics of income 进款统计statistics of random processes随机过程统计学statistics of rupture 断裂统计学。

应用统计学英文课件 Business Statistics Ch03 Numerical Descriptive Measures

应用统计学英文课件 Business Statistics Ch03 Numerical Descriptive Measures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Mode = 9
Business Statistics: A First Course, 5e © 2009 Prentice-Hall, Inc.
0123456
No Mode
Chap 3-11
Measures of Central Tendency: The Mode
Chap 3-5
Measures of Central Tendency: The Mean
Example volume of Coke
Listed below are the volumes (in ounces) of the Coke in five different cans. Find the mean for this sample.
Business Statistics: A First Course
Fifth Edition
Chapter 3
Numerical Descriptive Measures
Business Statistics: A First Course, 5e © 2009 Prentice-Hall, Inc.
Chap 3-4
Measures of Central Tendency: The Mean
The arithmetic mean (often just called “mean”) is the most common measure of central tendency
Pronounced x-bar
7 8 9 10 11 12 Range = 12 - 7 = 5
7 8 9 10 11 12 Range = 12 - 7 = 5

应用统计学英文课件 Business Statistics Ch03 Numerical Descriptive Measures.

应用统计学英文课件 Business Statistics Ch03 Numerical Descriptive Measures.

Chap 3-5
Measures of Central Tendency: The Mean
Example volume of Coke
Listed below are the volumes (in ounces) of the Coke in five different cans. Find the mean for this sample.
Mean = sum of values divided by the number of values
Affected by extreme values (outliers)
0 1 2 3 4 5 6 7 8 9 10
Mean = 3
1 2 3 4 5 15 3
5
5
The location of the median when the values are in numerical order (smallest to largest):
Median position n 1 positionin the ordereddata 2
If the number of values is odd, the median is the middle number
Business Statistics: A First Course
Fifth Edition
Chapter 3
Numerical Descriptive Measures
Business Statistics: A First Course, 5e © 2009 Prentice-Hall, Inc.
Note that n 1 is not the value of the median, 2

应用统计学课程教学大纲课程名称中文应用统计学英文Applied

应用统计学课程教学大纲
课程名称
中文:应用统计学
英文:AppliedStatistics
课程编号
24070699
学分/学时
3学分/48学时
所属教研室
应用数学教研室
前后课程
先修课程:概率论与数理统计
课程类型
专业选修课
考核方式
考查
授课对象
信息与计算科学专业
教学目的
通过教与学,使学生初步掌握运用统计方法解决实际问题的能力和运用SPSS统计软件处理数据的能力。要求学生理论联系实际,提高运用现代技术手段进行统计分析的能力。初步掌握运用SPSS解决统计问题的相关技能。
教学重点、难点:
重点:
SPSS数据文件的建立和编辑方法,数据的预加工处理;统计图表的绘制和基本描述统计量的计算;总体参数的估计和假设检验,特别是比例p的假设检验;二维列联表的独立性检验;相关分析方法,回归分析中自变量是定量变量的线性回归分析,自变量中含有定性变量的回归以及Logistic回归;主成分分析和因子分析;聚类分析;判别分析。
1、掌握统计的基本概念;
《统计学:从数据到结论》(第三版),中国统计出版社,吴喜之,2009年9月。
参考书:
[1]《基于SPSS的数据分析》(第三版),中国人民大学出版社,薛薇,2014年7月。[2]《应用多元分析》(第三版),上海财经大学出版社,王学民,2009年8月。
教学内容
学时
基本要求
第一章 一些基本概念
2
基本要求:
难点:对于比例p的假设检验, Nhomakorabea维列联表的独立性检验,自变量中含有定性变量的回归、Logistic回归、Poisson对数线性模型的思想和应用,主成分分析、因子分析,判别分析的基本原理和应用。 对这些方法的SPSS操作以及对输出结果的解释,还有这些方法在实际问题中的灵活运用。

统计学CH01 英文教材

Cengage Learning
1.6
Example 2.6 Stats Anxiety
Are most of the marks clustered around the mean or are they more spread out? Range = Maximum – minimum = 92-53 = 39 Variance Standard deviation
Copyright © 2009 Cengage Learning
1.7
Example 2.6 Stats Anxiety
Are there many marks below 60 or above 80?
What proportion are A, B, C, D grades?
A graphical technique –histogram can provide us with this and other information
Chapter 2 introduces several graphical methods.
Copyright © 2009 Cengage Learning
1.10
Descriptive Statistics
Another form of descriptive statistics uses numerical techniques to summarize data. The mean and median are popular numerical techniques to describe the location of the data. The range, variance, and standard deviation measure the variability of the data Chapter 4 introduces several numerical statistical measures that describe different features of the data.

应用统计学英文课件BusinessStatisticsCh08ConfidenceIntervalEstima


Chapter Problem
Saxon Home Improvement
Saxon Home Improvement
Learning Objectives
In this chapter, you learn:
To construct and interpret confidence interval estimates for the mean and the proportion
Point Estimates
We can estimate a Population Parameter …
Mean
μ
Proportion
π
with a Sample Statistic
(a Point Estimate)
X
p
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc..
Point and Interval Estimates
A point estimate is a single number a confidence interval provides additional
information about the variability of the estimate
Business Statistics: A First Course
5th Edition
Chapter 8
Confidence Interval Estimation
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc.
Chap 8-1
Chap 8-7

应用统计学


Avoidable risks connected with daring people = 10-3 per year Avoidable risk connected with careful people = 10-4 per year Unavoidable risk : Structural collapse = 10-5 per year
γ Q ≤ φ Rn
Where : γ = load factor φ = reduction factor Q = load Rn = nominal strength of material
機率模式
安全係數及載重因子是為了考量在設計過程中所存在的不定性及 變化性。結構設計乃包含了二個隨機變數Q及R的關係,若R<Q時, 則極限狀態成立。 一種合適的結構設計是允許存在極小機率的極限狀態發生。然而, Q及R的實際機率分佈並不確知,只有其中平均值Qm及Rm,與標 準偏差δQ及δR是可得知的。
統計學之應用
統計學並非一種專門的科學,而是一種科學的 方法,不僅可應用在高科技的科學領域,更可 應用在日前生活中。
統計學在土木工程之應用
Working Stress Design / Allowable Stress Design - ASD
Ultimate Strength Design / Load & Resistance Factor Design - LRFD
Load effect, Q
Q1 Q2
1 2
R1 R2
Ln (R / Q) β= √ (VR2 + VQ2)
β Pf = 460 e-4.3β
Resistance, R
Frequency βσy
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
What is Statistics?

In this course, we focus on inferential statistics Statistics is about a complete set of data (population) and wanting to know the unknown truth (a numerical measure of that population (parameter) or the pattern of the population’s data). Statistics is about obtaining a subset (sample) of these data and using information contained in the sample (a numerical measure of that sample (statistic) or the pattern of the sample’s data) to make inferences about this unknown truth.
x 0 1 2 3
P(x) 0.05 0.05 0.06 0.10
x P(x) 0.00 0.05 0.12 0.30
[x]2 22.1841 13.7641 7.3441 2.9241
[x]2 P(x) 1.109205 0.688205 0.440646 0.292410
4 5
6 7 Total
2
s s V (X )
12
Example: Bed and Breakfast
The Bay Street Inn is a 7-room bed-and-breakfast in Santa Theresa, Ca.
x 0
1 2 3 4 5 6 7 Total
P(x) 0.05
0.05 0.06 0.10 0.13 0.20 0.15 0.26 1.00

16
Continuous Probability Density Function (PDF)



Denoted f(x) Must be nonnegative Total area under the curve = 1 Mean, variance and shape depend on the PDF parameters Reveals the shape of the distribution

2
Keep in Touch
If you have a question, you are STRONGLY encouraged to ASK IT IN CLASS. You are probably not the only one that needs the question answered, and other students may benefit from your questions, too. Check our course website regularly. Announcements, assignments, and solutions etc will be posted online regularly. Drop by during office hours or book another time to see me in my office.
Business Data Analysis
73-102 Lecture 01
1
Agenda
Go through Course Outline (on CLEW) Brief Introduction to Statistics Review of Random Variable Review of Normal Distribution

E ( X ) xi P( xi )
i 1

n
For the aforementioned example of coin flips, what is E(X) ?
11
Variance and Standard Deviation

If there are n distinct values of X, then the variance of a discrete random variable is:
Normal or Gaussian dthematician Karl Gauss (1777 – 1855). Defined by two parameters, and s Denoted N(, s) Domain is – < X < + Almost all area under the normal curve is included in the range – 3s < X < + 3s

Discrete Variable – each value of X has its own probability P(X). Continuous Variable – events are intervals and probabilities are areas underneath smooth curves. A single point has no probability.
x P(x)
0.00 0.05 0.12 0.30 0.52
E ( X ) xi P( xi )
i 1
8
= 4.71 rooms
5
6 7 Total
0.20
0.15 0.26 1.00
1.00
0.90 1.82 = 4.71
14
Example: Bed and Breakfast
5
What is Statistics?


No matter what truth statistics is seeking and no matter what data are collected, the truth we are seeking and the sample information we obtain must be expressed quantitatively and how they are expressed depends on the type of data that is available and/or required. In summary, statistics is the science of collecting, organizing, analyzing, interpreting and presenting data in a useful manner.
9
Example: Coin Flips
If X is the number of heads, then X is a random variable whose probability distribution is as follows:
Possible Events
TTT
x
0
P(x)
1/8
The E(X) is then used to find the variance:
= 4.2259 rooms2 The standard deviation is: s = 4.2259 = 2.0577 rooms
V ( X ) s2 [ xi ]2 P( xi )
i 1
8
V ( X ) s2 [ xi ]2 P( xi )
i 1 n


The variance is a weighted average of the dispersion about the mean and is denoted either as s2 or V(X). The standard deviation is the square root of the variance and is denoted s.
HTT, THT, TTH
HHT, HTH, THH
1
2
3/8
3/8
HHH
Total
3
1/8
1
10
Expected Value

The expected value E(X) of a discrete random variable is the sum of all X-values weighted by their respective probabilities. If there are n distinct values of X,
The probability distribution of room rentals during February is:
13
Example: Bed and Breakfast
First find the expected value
x
0 1 2 3 4
P(x)
0.05 0.05 0.06 0.10 0.13
0.13 0.20
0.15 0.26
0.52 1.00
0.90 1.82
0.5041 0.0841
1.6641 5.2441
0.065533 0.016820
0.249615 1.363466 s2 = 4.225900
15
1.00 = 4.71
Continuous Random Variable
4

What is Statistics?

To make those inferences, we need to know the relationship between the statistic (of a sample) and the parameter (of a population) or we need to know the relationship between the sample’s pattern and the population’s pattern and how to manipulate these relationships.
相关文档
最新文档