第2课时 正数与负数

合集下载

七年级数学上册正数和负数(第二课时)练习题及答案

七年级数学上册正数和负数(第二课时)练习题及答案

七年级数学上册正数和负数(第二课时)练习题及答案 一、1.如果向南走5米,记作+5米,那么向北走8米应记作___________.2.零下15℃,表示为_____,比O℃低4℃的温度是_____.3.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.4.“甲比乙大-3岁”表示的意义是________________.5.在-7,0,-3,34,+9100,-0.27中,负数有( ) A .0个 B .1个 C .2个D .3个 二、1.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分90分和80分应分别记作__________.2.如果把+210元表示收入210元,那么-60元表示______________.3.粮食产量增产11%,记作+11%,则减产6%应记作______________.4.如果把公元2008年记作+2008年,那么-205年表示______________.5.如果向西走12米记作+12米,则向东走-120米表示的意义是__________________.6.甲、乙两人同时从A 地出发,如果甲向南走50m 记为+50m ,则乙向北走30m 记为 ;这时甲、乙两人相距 米。

7.一种零件的内径尺寸在图纸上是30±0.05(单位:毫米),表示这种零件的标准尺寸是30毫米,加工要求最大不超过标准尺寸______毫米,最小不低于标准尺寸______毫米. 8.测量一座公路桥的长度,各次测得的数据是:255米,270米,265米,267米,258米.(1)求这五次测量的平均值是;(2)如以求出的平均值为基准数,用正、负数表示出各次测量的数值与平均值的差分别是多少?。

2024年秋初中数学七年级上册(苏科版)教学课件 2.1 正数与负数

2024年秋初中数学七年级上册(苏科版)教学课件 2.1 正数与负数
号(正号通常省略不写).
2.负数就是在正数的前面加上“一”号.
感悟新知
知1一练
例 1 把下列各数填入相应的大括号内:—3,+8848,0,
非正数:{
};
非负数:{
}.
知识储备
非正数表示0和负数,非负数表示0和正数;
感悟新知
知 1一练
解题秘方:先识别正数和负数,再结合零,识别非正数和 非负数.
解:非正数:{—3,0, , —8.9,—155};
知3 一 练
②—1.6=
-5 ,③ 一 0 . 375 =
解题秘方:小数化分数,有几位小数就在1的后面添几 个0作分母,把原来的小数去掉小数点作分子,能约分 的要约分.
解:①
9
9
感悟新知
知3一练
例 4 [期末 ·泰州泰兴市]在下列各数中,分数有( C)
—6, 0.1234,
,0.3,0,
15
,
A.2 个
B.3 个
C.4 个
解题秘方:紧扣分数的定义判断即可.
D.5 个
解:分数有0.1234, ,0.3, 9 共4个.
感悟新知
知3一练
特别提醒 (1)0是整数,但不是正数,也不是负数;
(2)0.123
0.3是分数。
,0.
所以0.1234,
9
感悟新知
知识点<4 有理数的定义与分类
知4一讲
1.有理数的定义整数和分数统称为有理数.
感悟新知
知2一练
例 2 若将气温零上2℃记作+2℃,则气温零下3℃记作
( A)
A.—3℃
B.—1℃
C.+1℃
D. 十 5 ℃
解题秘方:先判断正、负表示的实际意义,然后用

1.1 正数和负数课时2七年级上册数学人教版

1.1 正数和负数课时2七年级上册数学人教版
解:(1) 这个月李明体重增长1.2 kg,张华体重增长-0.5 kg,刘 伟体重增长0 kg.
新知探究 知识点2 用正数和负数表示相对基准量 例1 (2)四种品牌的手机今年的销售量与去年相比,变化率如下: A品牌减少2%,B品牌增长4%,C品牌增长1%,D品牌减少3% 写出今年这些品牌的手机销售量的增长率. (2)四种品牌的手机今年销售量的增长率是: A品牌-2%,B品牌4%,C品牌1%,D品牌-3%.
第一章 有理数
1.1 正数和负数
课时2 七上数学 RJ
学习目标
1.理解数“0 ”表示的量的意义.
2.借助生活中的实例,感受引入负数的必要性,认 识到数的产生和发展离不开生活和生产的需要.
课堂导入 上一节课我们学习了哪些概念?
在数学中,像3,50,7.8%这样大于0的数叫作正数, 像-3,-10,-0.7% 这样在正数前加上符号“−”的数叫作 负数.
增长-2%,是什么意思?什么情况下增长率是0? 增长-2%就是减少2%. 不增长也不减少时,增长率为0.
新知探究 知识点2 用正数和负数表示相对基准量 跟踪训练 从山脚测山高为300 m,山脚高出海平面50 m.若以海 平面为基准,山脚的高度记作+50 m,则山高记作_+_3_5_0__m_;若以 山脚为基准,山高记作+300 m,则海平面的高度记作__-5_0__m__.
也正是因为如此,我们对用正数和负数来表示相反意义的量有 了新的解读.
新知探究 知识点2 用正数和负数表示相对基准量 思考 如图是地理中的等高线图,你能说出其中的正数和负数的 意义分别是什么? 正数和负数的意义分别是: A地的海拔高出海平面4 600米; B地的海拔低于海平面100米.
新知探究 知识点2 用正数和负数表示相对基准量 思考 如图是手机中的部分收支款账单,你能说出其中的正数和 负数的意义分别是什么? 正数和负数的意义分别是: 收入1.00元; 支出0.10元; 支出39.90元; 收入40.00元.

精选《正数和负数教案》三篇

精选《正数和负数教案》三篇

精选《正数和负数教案》三篇《正数和负数教案》篇1学习目标 1、了解负数是从实际需要中产生的;2、能判断一个数是正数还是负数,理解数0表示的量的意义;3、会用正负数表示实际问题中具有相反意义的量.重点难点重点:正、负数的概念,具有相反意义的量难点:理解负数的概念和数0表示的量的意义教学流程师生活动时间复备标注一、导入新课我先向同学们做个自我介绍,我姓,大家可以叫我老师,身高米,体重千克,今年岁,教龄是年龄的,我将和同学们一起度过三年的初中学习生活.老师刚才的介绍中出现了一些数,它们是些什么数呢?[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……等整数;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数. 所以,数产生于人们实际生产和生活的需要.在生活中,仅有整数和分数够用了吗?二、新授1、自学章前图、第2 页,回答下列问题数-3,3,2,-2,0,1.8%, -2.7%,这些数中,哪些数与以前学习的数不同?什么是正数,什么是负数?归纳小结:像3、2、2.7%这样大于零的数叫做正数,像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数.根据需要,有时在正数前面也加上“+”(正)号,例如,+2、+0.5、+ 1/3,…,就是2、0.5、1/3,….这样,一个数就由两部分组成,数前面的“+”、“-”号叫做它的符号,后面的部分叫做这个数的绝对值.如数-3.2的符号是“一”号,绝对值是3.2,数5的符号是“+”号,绝对值是5.2、自学第2—3页,回答下列问题大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么 0是什么数呢?0有什么意义?归纳小结:数0既不是正数,也不是负数,它是正数和负数的'分界.0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量.3、用正负数表示具有相反意义的量:自学课本3—4页有哪些相反意义的量?请举出你所知道的相反意义的量?“相反意义的量”有什么特征?归纳小结:一是意义相反,二是有数量,而且是同类量.完成3页练习4、例题自学例题,完成归纳。

2023年《正数和负数教案》

2023年《正数和负数教案》

2023年《正数和负数教案》2023年《正数和负数教案》篇1教学内容:人教版七年级上册第一章有理数 1.1 正数和负数教学目标:在熟悉的生活情景中,能用正数和负数表示生活中具有相反意义的量、知道负数的写法和读法,会用负数表示一些日常生活中的量。

使学生经历数学化,符号化的过程,体会负数产生的必要性。

感受正、负数和生活的密切联系,享受创造性学习的乐趣.教学重点:体会负数的意义,学会用正、负数表示日常生活中具有相反意义的量。

教学难点:体会负数的意义,通过描述性定义认识正数、负数和“0”。

教学过程:一、感受相反方向的数量,经历负数产生的过程。

1、回忆小学学过那些数:自然数,分数出示信息:看数的产生过程,现实中负数学习的必要。

2、引入负数的概念3、总结正负数(1)这些数很特别,都带上了符号,它们是一种“新数”。

-9、-4.5等都叫负数; +7、+988等都叫正数。

你会读吗?请你读给大家听。

注意“-”叫负号,“+”叫正号。

(2)读给你的同伴听。

(3)把你新认识的负数再写两个,读一读。

下面让我们走进正数和负数的世界,进一步了解它们。

(板书课题)二、借助实际生活情境的直观,丰富对正负数的认识。

1、负数有什么用?用正数或负数表示下列数量。

(1向东走200米,用+200米表示;那么向西走200米元用表示。

2.说说实际问题中负数的确定(1.)表示海拔高度(2.)解释温度中正负数的含义(3)做练习三3、怎样理解具有相反意义的量三、理解01、0既不是正数也不是负数。

0是正负数的分界。

2、0只表示没有吗?1).空罐中的金币数量;2).温度中的0℃;3).海平面的高度;4).标准水位;5).身高比较的基准;6.)正数和负数的界点;3、总结0既不是正数,也不是负数;0是正数负数的分界。

0是整数,0是偶数,0是最小的自然数。

四、探究活动(出示课件):1.探究活动一:东、西为两个相反方向,如果- 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?若将28计为0,则可将27计为-1,试猜想若将27计为0,28应计为。

浙教版七年级数学上册课本教案

浙教版七年级数学上册课本教案

浙教版七年级数学上册课本教案浙教版七年级数学上册课本教案第一章有理数1.1正数和负数第1课时正数和负数教学目标:1.了解正数与负数是实际生活的需要.2.会判断一个数是正数还是负数.3.会用正负数表示互为相反意义的量.教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.教学难点:负数的引入.教与学互动设计:(一)创设情境,导入新课课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数.总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.(三)应用迁移,巩固提高例1举出几对具有相反意义的量,并分别用正、负数表示.提示具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.例2在某次乒乓球检测中,一只乒乓球超过标准质量0.02g,记作+0.02g,那么-0.03g表示什么?例3某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()A.3B.-3C.-2.5D.-7.45点拨读懂题意是解决本题的关键.7:45与10:00相差135分钟.(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数.1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):星期日一二三四五六(元)+16+5.0-1.2-2.1-0.9+10-2.6(1)本周小张一共用掉了多少钱?存进了多少钱?(2)储蓄罐中的钱与原来相比是多了还是少了?(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏.(五)课堂跟踪反馈夯实基础1.填空题:(1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.(2)如果4年后记作+4年,那么8年前记作年.(3)如果运出货物7吨记作-7吨,那么+100吨表示.(4)一年内,小亮体重增加了3kg,记作+3kg;小阳体重减少了2kg,则小阳增加了.2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少?提升能力3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.(六)课时小结1.与以前相比,0的意义又多了哪些内容?2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)第2课时正数和负数的应用教学目标:1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.教学重点:深化对正负数概念的理解.教学难点:正确理解和表示向指定方向变化的量.教与学互动设计:(一)知识回顾和理解通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.[问题1]:“零”为什么既不是正数也不是负数呢?学生思考讨论,借助举例说明.参考例子:用正数、负数和零表示零上温度、零下温度和零度.思考“0”在实际问题中有什么意义?归纳“0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.如:水位不升不降时的水位变化,记作:0m.[问题2]:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?(二)深化理解,解决问题[问题3]:(课本P3例题)例1(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;例2(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.巩固练习1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.2.让学生再举出一些常见的具有相反意义的量.3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:中国减少866,印度增长72,韩国减少130,新西兰增长434,泰国减少3247,孟加拉减少88.(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;(2)如何表示森林面积减少量,所得结果与增长量有什么关系?(3)哪个国家森林面积减少最多?(4)通过对这些数据的分析,你想到了什么?阅读与思考(课本P6)用正数和负数表示加工允许误差.问题:1.直径为30.032mm和直径为29.97mm的零件是否合格?2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.(三)应用迁移,巩固提高1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是.2.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:星期一二三四增减-5+7-3+4根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?类比例题,要求学生注意书写格式,体会正负数的应用.(四)课时小结(师生共同完成)1.2有理数第1课时有理数教学目标:1.理解有理数的意义.2.能把给出的有理数按要求分类.3.了解0在有理数分类中的作用.教学重点:会把所给的各数填入它所在的数集图里.教学难点:掌握有理数的两种分类.教与学互动设计:(一)创设情境,导入新课讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究3,5.7,-7,-9,-10,0,,,-3,-7.4,5.2…议一议你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.说明我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗?有理数做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.有理数数的集合把所有正数组成的集合,叫做正数集合.试一试试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高例1把下列各数填入相应的集合内:,3.1416,0,2004,-,-0.23456,10%,10.1,0.67,-89例2以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?有理数有理数(四)总结反思,拓展升华提问:今天你获得了哪些知识?由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?(五)课堂跟踪反馈夯实基础1.把下列各数填入相应的大括号内:-7,0.125,,-3,3,0,50%,-0.3(1)整数集合{};(2)分数集合{};(3)负分数集合{};(4)非负数集合{};(5)有理数集合{}.2.下列说法中正确的是()A.整数就是自然数B.0不是自然数C.正数和负数统称为有理数D.0是整数,而不是正数提升能力3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?第2课时数轴教学目标:1.掌握数轴三要素,能正确画出数轴.2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.教学重点:数轴的概念.教学难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计:(一)创设情境,导入新课课件展示课本P7的“问题”(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.点拨(1)引导学生学会画数轴.第一步:画直线,定原点.第二步:规定从原点向右的方向为正(左边为负方向).第三步:选择适当的长度为单位长度(据情况而定).第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴:规定了原点、正方向和单位长度的直线叫数轴.做一做学生自己练习画出数轴.试一试你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?小结整数在数轴上都能找到点表示吗?分数呢?可见,所有的都可以用数轴上的点表示;都在原点的左边,都在原点的右边.(三)应用迁移,巩固提高例1下列所画数轴对不对?如果不对,指出错在哪里?例2试一试:用你画的数轴上的点表示4,1.5,-3,-,0.例3下列语句:①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有()A.1个B.2个C.3个D.4个例4在数轴上表示-2和1,并根据数轴指出所有大于-2而小于1的整数.例5数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为2000cm的线段AB,则线段AB盖住的整点有()A.1998个或1999个B.1999个或2000个C.2000个或2001个D.2001个或2002个(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.(五)课堂跟踪反馈夯实基础1.规定了、、的直线叫做数轴,所有的有理数都可从用上的点来表示.2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P 点所表示的数是.3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是()A.7B.-3C.7或-3D.不能确定4.在数轴上,原点及原点左边的点所表示的数是()A.正数B.负数C.不是负数D.不是正数5.数轴上表示5和-5的点离开原点的距离是,但它们分别表示.提升能力6.与原点距离为3.5个单位长度的点有2个,它们分别是和.7.画出一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,3.开放探究8.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点.9.下列四个数中,在-2到0之间的数是()A.-1B.1C.-3D.3第3课时相反数教学目标:1.借助数轴了解相反数的概念,知道互为相反数的位置关系.2.给一个数,能求出它的相反数.教学重点:理解相反数的意义.教学难点:理解和掌握双重符号简化的规律.教与学互动设计:(一)创设情境,导入新课活动请一个学生到讲台前面对大家,向前走5步,向后走5步.交流如果向前走为正,那向前走5步与向后走5步分别记作什么?(二)合作交流,解读探究1.观察下列数:6和-6,2和-2,7和-7,和-,并把它们在数轴上标出.想一想(1)上述各对数有什么特点?(2)表示这四对数的点在数轴上有什么特点?(3)你能够写出具有上述特点的n组数吗?观察像这样只有符号不同的两个数叫相反数.互为相反数的两个数在数轴上的对应点(0除外)是在原点两旁,并且与原点距离相等的两个点.即:我们把a的相反数记为-a,并且规定0的相反数就是零.总结在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数.2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-(+5)=-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0的相反数是0.(三)应用迁移,巩固提高例1填空(1)-5.8是的相反数,的相反数是-(+3),a的相反数是;a-b的相反数是,0的相反数是.(2)正数的相反数是,负数的相反数是,的相反数是它本身.例2下列判断不正确的有()①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个例3化简下列各符号:(1)-[-(-2)];(2)+{-[-(+5)]};(3)-{-{-…-(-6)}…}(共n个负号).归纳化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负.例4数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A的距离为2,则点B和点C各对应什么数?(四)总结反思,拓展升华归纳(1)相反数的概念及表示方法.(2)相反数的代数意义和几何意义.(3)符号的化简.(五)课堂跟踪反馈夯实基础1.判断题(1)-3是相反数.()(2)-7和7是相反数.()(3)-a的相反数是a,它们互为相反数.()(4)符号不同的两个数互为相反数.()2.分别写出下列各数的相反数,并把它们在数轴上表示出来.1,-2,0,4.5,-2.5,33.若一个数的相反数不是正数,则这个数一定是()A.正数B.正数或0C.负数D.负数或04.一个数比它的相反数小,这个数是()A.正数B.负数C.非负数D.非正数5.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是.提升能力6.若a与a-2互为相反数,则a的相反数是.7.已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n的相反数在数轴上表示出来,并将这6个数用“<”连接起来.。

正数与负数(共2课时)


第 1 , 2 , 4题 .
第一章
有理数
1.1
正数和负数(2)
上节课,我们引入了负数,把0以外的数分为 正数和负数,它们表示具有相反意义的量.
1.下列结论中正确的是( ). (A)0既是正数,又是负数 (B)0是最小的正数 (C)0是最大的负数 (D)0既不是正数,也不是负数 2.读出下列各数,指出其中哪些是正数,哪些是负数? 4 2 1, 2.5, , 0, 3.14, 120, 1.732, . 3 7 3.如果80m表示向东走80m,那么-60m表示?
0 3.下降5.5m记作+5.5m,则不升不降记作 m. 4.如果向银行存入50元记为+50元,那么-30.50元表 从银行支出30.50元 示___________________.
5.仪表上指针顺时针方向旋转45º,记作-45º, +50º 那么逆时针方向旋转50º记作_________. 6.下列说法,正确的是( C ). A.0是表示没有意义的数,因此温度0℃表示没 有温度; B.某地高度被标记为海拔0米,表示的意思是 这个地方没有高度; C.0既不是正数,也不是负数; D.大于0的数叫做正数,不大于0的数叫做负数.
正、负数表示的基准通常为“0”,但并不是所有的 基准都必须为“ 0” ,比如上例中就是以 250 为基准量, 高于它的部分记为正,低于它的部分记为负.
2.某年,一些国家的服务出口额比上年的增长率如 下:
美国 -3.4% 德国 -0.9% 英国 -5.3% 中国 2.8% 日本 -7.3% 意大利 7.0%
这是该存折中记录的支出、存入信息,试着说说 其中“支出或存入”那一栏中数字的含义是什么?
0的实际意义:
1.计数时,0表示没有. 2.0还可以用来表示基准. 如:海平面记为0米; 0℃不代表没有温度,而是实际温度为冰点 时的计量结果. 3.0是正数和负数的分界. 0比任何正数小,比任何负数大.

正数和负数教案(通用10篇)

正数和负数教案(通用10篇)一、教案的作用教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。

教案包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等。

二、正数和负数教案(通用10篇)作为一无名无私奉献的教育工作者,有必要进行细致的教案准备工作,借助教案可以有效提升自己的教学能力。

写教案需要注意哪些格式呢?下面是小编收集整理的正数和负数教案(通用10篇),欢迎阅读,希望大家能够喜欢。

正数和负数教案1教学目标1、通过对零的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示相反意义的量;2、进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力;3、体验数学发展的一个重要原因是生活实际的需要;激发学生学习数学的兴趣。

重点深化对正负数概念的理解。

难点正确理解和表示指定方向变化的量,表示相反意义的量。

教学过程一、创设情景通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们。

温度计上的-2,0,3分别表示是么意义?二、自主探究(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。

(2)2001年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家2001年商品进出口总额的增长率。

正数和负数教案2〔教学目标〕1、了解负数的产生是生活、生产的需要;2、掌握正、负数的概念和表示方法,理解数0表示的量的意义;3、理解具有相反意义的量的含义;4、熟练地运用正、负数描述现实世界具有相反意义的量;5、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力。

认识负数、正数和整数

第二课时认识负数、正数和整数教学内容:冀教版小学数学六年级下册 3-5 页。

教学重难点:初步了解负数的意义,知道正数,会读、写负数。

知道整数包括正整数、零和负整数能用直线上的点表示整数会比较简单整数的大小。

教学目标:1.结合生活中熟悉的事例,初步了解负数的意义,知道正数,会读、写负数。

2.经历用直线上的点表示温度计上的数,观察直线上的数等认识整数的过程。

3、积极参加观察、交流数学活动,感受借助直观模型理解数学的作用。

简要整体教学思路:知识点一,教材呈现了4个显示不同摄氏温度的温度计。

在学生读温度计、交流温度计上的温度表示的实际意义的基础上,通过-10℃和-5℃都是比0摄氏度低的温度,介绍负数、负号及负数的读法。

知识点二,首先把学生熟悉的温度计横放,让学生观察温度计上的刻度是怎样排列的,并用直线上的点表示出来。

然后观察直线上的数,了解数的排列特点。

同时介绍直线上的这些都是整数。

教学内容:一、导入1.同学们好。

上一节课我们了解了天气预报中数和符号的实际意义,能正确比较温度的高低。

这节课我们来进一步体会它与数学的密切联系。

天气预报中确切的温度通过什么知道的呢?(温度计。

)温度计的种类很多,这是我们日常生活中经常见到的温度计(课件出示一个温度计)2.学会使用温度计读数据,了解温度计的有关知识。

简单介绍基本构造和工作原理。

详细介绍:我们平时用的温度计一般都有两排数字,分别用C和F表示。

字母C的这一排表示测出的温度是我们常见的“摄氏温度”。

摄氏温度规定:在一个大气压下,把水刚刚结冰时的温度定为0度,水沸腾时的温度为100度。

它们之间分成100等份,每一份是1℃。

温度计上F表示测出的温度的数值是“华氏温度”,在美国比较常用,它规定:在一个大气压下,水刚刚结冰时的温度为32度,水沸腾时的温度为212度。

它们之间分成180等份,每一份是1℉。

这两种温度的表示方法是可以互相转换的。

我们来看一格链接(兔博士网站)10℃换算成华氏度是多少呢?32+1.8×10=50我国和很多国家使用是“摄氏温度”。

正数和负数说课稿6篇

正数和负数说课稿6篇正数和负数说课稿1今天我讲的课是《正数和负数》,关于学生以前所学数的知识前面的李x老师已经作了很好的梳理,我现在只就本节课所涉及的相关内容进行说课。

一、我对课标要求的理解《数学课程标准》安排在小学的第二学段初步认识负数,这是小学阶段数学教学新增加的内容。

很久以来,负数的教学一直安排在中学教学的起始阶段,现在考虑到负数在生活中的广泛应用,学生在日常生活中已经接触了一些负数,有了初步认识负数的生活基础。

因此《标准》将这一内容提前到小学阶段教学。

认识负数,对于小学生来说是数概念的一次拓展。

他们以往认识的整数、分数和小数都是算术范围内的数,建立负数的概念则使学生认数的范围从算术的数拓展到有理数,从而丰富了小学生对数概念的认识。

这样,有利于中小学数学的衔接,为第三学段进一步理解有理数的意义和运算打下良好的基础。

具体目标是:在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题。

根据这一目标,北京义务教育课程改革试验教材四年级第八册出现了这崭新的一课《正数和负数》。

从《课标》中可以发现,本课的学习,意在让学生在熟悉的生活情境中初步认识负数,感受学习的内容就在我们的身边,拓展对数概念的认识。

并没有复杂的概念与计算,知识层次比较浅。

我认为,如何充分地展现负数的产生以及负数的魅力,激起学生学习负数的兴趣,是教师在设计本课时值得关注的问题。

二、研读教材的结果1、以前认识的数教材在1、2册安排完成对10以内、20以内和百以内数的认识以后在第4册安排了万以内数的认识;在第二学段四年级上册完成多位数的认识,至此,完成了对正整数的认识。

在第6册和第8册教材中分两次安排了分数与小数的初步认识2、以后将要认识的数以后逐步又在第8册和第10册分别又对小数和分数进一步认识,在11册一次完成对百分数的认识。

3、今天要学习的内容以上的这些数在第二学段即四年级第二学期第8册中出现了负数的认识,负数在数轴上显示都是"0"左边的数,这对于小学生来说,是数概念的一次拓展,使学生认数的范围从算术的数拓展的有理数,这是小学生学习有理数的开始。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档