初中数学向量的线性运算图文答案

合集下载

初中数学向量的线性运算知识点训练及答案

初中数学向量的线性运算知识点训练及答案

初中数学向量的线性运算知识点训练及答案一、选择题1.已知a r 、b r为非零向量,下列判断错误的是( )A .如果a r =3b r ,那么a r ∥b rB .||a r=||b r ,那么a r =b r 或a r =-b u u rC .0r的方向不确定,大小为0D .如果e r 为单位向量且a r =﹣2e r ,那么||a r=2【答案】B 【解析】 【分析】根据平面向量的性质解答即可. 【详解】解:A 、如果a r =3b r ,那么两向量是共线向量,则a r ∥b r,故A 选项不符合题意.B 、如果||a r=||b r ,只能判定两个向量的模相等,无法判定方向,故B 选项符合题意.C 、0r的方向不确定,大小为0,故C 选项不符合题意.D 、根据向量模的定义知,||a r=2|e r |=2,故D 选项不符合题意.故选:B . 【点睛】此题考查的是平面向量,掌握平面向量的性质是解决此题的关键.2.在四边形ABCD 中,,,,其中与不共线,则四边形ABCD 是( ) A .平行四边形 B .矩形C .梯形D .菱形【答案】C 【解析】 【分析】利用向量的运算法则求出,利用向量共线的充要条件判断出,得到边AD ∥BC ,AD=2BC ,据梯形的定义得到选项.【详解】 解:∵,∴,∴AD ∥BC ,AD=2BC. ∴四边形ABCD 为梯形. 【点睛】本题考查向量的运算法则向量共线的充要条件、利用向量共线得到直线的关系、梯形的定义.3.若非零向量、满足|-|=||,则( )A.|2|>|-2|B.|2|<|-2|C.|2|>|2-|D.|2|<|2-|【答案】A【解析】【分析】对非零向量、共线与否分类讨论,当两向量共线,则有,即可确定A、C满足;当两向量不共线,构造三角形,从而排除C,进而解答本题.【详解】解:若两向量共线,则由于是非零向量,且,则必有;代入可知只有A、C满足;若两向量不共线,注意到向量模的几何意义,故可以构造三角形,使其满足OB=AB=BC;令,,则,∴且;又BA+BC>AC ∴∴.故选A.【点睛】本题考查了非零向量的模,针对向量是否共线和构造三角形是解答本题的关键.4.已知向量,且则一定共线的三点是( ) A.A、B、D B. A、B、C C.B、C、D D.A、C、D【答案】A【解析】【分析】证明三点共线,借助向量共线证明即可,故解题目标是验证由三点组成的两个向量共线即可得到共线的三点【详解】解:由向量的加法原理知所以A、B、D三点共线.【点睛】本题考点平面向量共线的坐标表示,考查利用向量的共线来证明三点共线的,属于向量知识的应用题,也是一个考查基础知识的基本题型.5.下列命题中,真命题的个数为( )①方向相同②方向相反③有相等的模④方向相同A .0B .1C .2D .3【答案】C 【解析】 【分析】直接利用向量共线的基本性质逐一核对四个命题得答案. 【详解】 解:对于①,若,则方向相同,①正确; 对于②,若,则方向相反,②正确; 对于③,若,则方向相反,但的模不一定,③错误; 对于④,若,则能推出的方向相同,但的方向相同,得到④错误. 所以正确命题的个数是2个,故选:C. 【点睛】本题考查命题的真假判断与应用,考查了向量共线的基本性质,是基础题.6.下列各式中错误的是( )A .()0a a r r+-=B .|AB BA |0+=u u u r u u u rC .()-=+-r r r ra b a bD .()()++=++r r r r r ra b c a b c【答案】A 【解析】 【分析】根据向量的运算法则和运算律判断即可. 【详解】解:A. ()0a a vv v +-=,故本选项错误,B ,C ,D ,均正确,故选:A. 【点睛】本题考查了向量的运算,熟练掌握运算法则和运算律是解题关键.7.下列判断正确的是( ) A .0a a -=r rB .如果a b =r r ,那么a b =r rC .若向量a r 与b 均为单位向量,那么a b =r rD .对于非零向量b r,如果()0a k b k =⋅≠r r ,那么//a b r r【答案】D 【解析】 【分析】根据向量的概念、性质以及向量的运算即可得出答案.【详解】A. -r ra a 等于0向量,而不是等于0,所以A 错误;B. 如果a b =r r,说明两个向量长度相等,但是方向不一定相同,所以B 错误;C. 若向量a r 与b r均为单位向量,说明两个向量长度相等,但方向不一定相同,所以C 错误;D. 对于非零向量b r,如果()0a k b k =⋅≠r r ,即可得到两个向量是共线向量,可得到//a b r r,故D 正确. 故答案为D. 【点睛】本题考查向量的性质以及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量.8.如图,ABCD Y 中,E 是BC 的中点,设AB a,AD b ==u u u r r u u u r r ,那么向量AE u u u r 用向量a br r 、表示为( )A .12a b +r rB .12a b -r rC .12a b -+rrD .12a b --r r【答案】A 【解析】 【分析】根据AE AB BE =+u u u r u u u r u u u r ,只要求出BE u u u r即可解决问题. 【详解】解:Q 四边形ABCD 是平行四边形,AD BC AD BC ∴∥,=, BC AD b ∴==u u u r u u u r r , BE CE Q =, 1BE b 2∴=u u u r r ,AE AB BE,AB a =+=u u u r u u u r u u u r u u u r r Q ,1AE a b 2∴=+u u u r r r ,故选:A. 【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.9.□ABCD 中, -+等于( ) A .B .C .D .【答案】A 【解析】 【分析】在平行四边形中,两对对边平行且相等,以一对对边所在的线段构成向量,得到的向量要么相等,要么是相反向量,根据本题所给的两个向量来看,它们是一对相反向量,和为零向量,得到结果. 【详解】∵在平行四边形ABCD 中, 与 是一对相反向量,∴ = -∴-+=-+=,故选A . 【点睛】此题考查向量加减混合运算及其几何意义,解题关键在于得出与是一对相反向量.10.已知a r、b r和c r都是非零向量,在下列选项中,不能判定//a b rr 的是( ) A .2a b =r rB .//a c r r,//b c r rC .||||a b =r rD .12a c =r r ,2bc =r r【答案】C 【解析】 【分析】由方向相同或相反的非零向量叫做平行向量,对各选项分析判断. 【详解】A 选项:由2a b =rr,可以推出//a b rr.本选项不符合题意;B 选项:由//a c r r ,//b c r r ,可以推出//a b rr .本选项不符合题意;C 选项:由||||a b =r r ,不可以推出//a b r r.本选项符合题意;D 选项:由12a c =r r ,2bc =r r,可以推出//a b r r .本选项不符合题意;故选:C . 【点睛】考查了平面向量,解题关键是熟记平行向量的定义.11.若a v =2e v,向量b v和向量a v方向相反,且|b v|=2|a v|,则下列结论中不正确的是( )A .|a v |=2B .|b v|=4 C .b v =4e vD .a v=12b v -【答案】C 【解析】 【分析】 根据已知条件可以得到:b v=﹣4e v,由此对选项进行判断.【详解】A 、由a v =2e v 推知|a v |=2,故本选项不符合题意.B 、由b v =-4e v推知|b v |=4,故本选项不符合题意.C 、依题意得:b v =﹣4e v,故本选项符合题意.D 、依题意得:a v=-12b v,故本选项不符合题意. 故选C . 【点睛】考查了平面向量,注意:平面向量既有大小,又有方向.12.若点O 为平行四边形的中心,14AB m =u u u r r ,26BC m =u u u r r,则2132m m -r r 等于( ).A .AO u u u rB .BO uuu rC .CO uuu rD .DO u u u r 【答案】B 【解析】 【分析】根据向量加法的平行四边形法则和平行四边形的性质逐一判断即可. 【详解】解:∵在平行四边形ABCD 中, 14AB m =u u u r r ,26BC m =u u u r r, ∴1246B m C AC AB m =+=+u u u r u u u r u u u r u u r u u r ,1246BD BA BC AC m m =+==-+u u u r u u u r u u u r u u u r u u r u u r,M 分别为AC 、BD 的中点,∴122312AO AC m m =+=u u u r u u u u u r r u u r,故A 不符合题意;211322BO BD m m ==-u u u r u u u r u u r u u r,故B 符合题意;122312CO AC m m ==---u u u r u u uu u r r u u r ,故C 不符合题意;121232DO BD m m =-=-u u u r u u ur u u r u u r ,故D 不符合题意.故选B.此题考查的是平行四边形的性质及向量的加、减法,掌握平行四边形的对角线互相平分和向量加法的平行四边形法则是解决此题的关键.13.已知m 、n 是实数,则在下列命题中正确命题的个数是( ). ①0m <,0a ≠rr时,ma r 与a r的方向一定相反; ②0m ≠,0a ≠rr时,ma r 与a r是平行向量; ③0mn >,0a ≠rr时,ma r 与na r的方向一定相同; ④0mn <,0a ≠rr时,ma r 与na r的方向一定相反. A .1个 B .2个C .3个D .4个【答案】D 【解析】 【分析】根据向量关系的条件逐一判断即可. 【详解】解:①因为0m <,1>0,0a ≠rr,所以ma r 与a r的方向一定相反,故①正确; ②因为0m ≠,1≠0,0a ≠rr,所以ma r 与a r是平行向量,故②正确;③因为0mn >,0a ≠r r ,所以m 和n 同号,所以ma r 与na r 的方向一定相同,故③正确; ④因为0mn <,0a ≠r r ,所以m 和n 异号,所以ma r 与na r 的方向一定相反,故④正确.故选D. 【点睛】此题考查的是共线向量,掌握共线向量定理是解决此题的关键.14.已知非零向量a r 、b r 、c r ,在下列条件中,不能判定a r //b r的是( )A .a r //c r ,b r //c rB .2a c =r r ,3b c =r rC .5a b =-r rD .||2||a b =r r【答案】D 【解析】分析:根据平面向量的性质即可判断. 详解:A .∵a r ∥c b r r ,∥c r,∴a b P u u r r ,故本选项,不符合题意;B .∵a r =2c b r r ,=3c r,∴a b P u u r r ,故本选项,不符合题意;C .∵a r=﹣5b r ,∴a b P u u r r ,故本选项,不符合题意;D .∵|a r|=2|b r |,不能判断a b P u u r r ,故本选项,符合题意.点睛:本题考查了平面向量,熟练掌握平面向量的基本性质的解题的关键.15.下列关于向量的运算中,正确的是 A .a b b a -=-r r r r; B .2()22a b a b --=-+r r r r; C .()0a a +-=r r; D .0a a +=r r.【答案】B 【解析】 【分析】根据向量的运算法则进行计算. 【详解】A. (),a b b a A ---vv v v =所以错误;B. ()222a b a b B ---v vv v =+,所以正确; C. ()0a a -rv v +=,C 所以错误;D.向量与数字不能相加,所以D 错误. 故选B. 【点睛】本题考查的是向量,熟练掌握向量是解题的关键.16.如果向量a r 与单位向量e r 的方向相反,且长度为3,那么用向量e r 表示向量a r为( )A .3a e =v vB .3a e =-v vC .3e a =v vD .3e a =-v v【答案】B 【解析】 【分析】根据平面向量的定义解答即可. 【详解】解:∵向量e r为单位向量,向量a r与向量e r方向相反, ∴3a e r r=-. 故选:B . 【点睛】本题考查平面向量的性质,解题的关键是灵活运用所学知识解决问题.17.已知a r ,b r 为非零向量,如果b r =﹣5a r ,那么向量a r 与b r的方向关系是( ) A .a r∥b r,并且a r 和b r方向一致 B .a r ∥b r ,并且a r 和b r方向相反 C .a r 和b r方向互相垂直D .a r 和b r之间夹角的正切值为5【解析】 【分析】根据平行向量的性质解决问题即可. 【详解】∵已知a r ,b r 为非零向量,如果b r =﹣5a r, ∴a r ∥b r ,a r 与b r的方向相反, 故选:B . 【点睛】本题考查了平面向量,熟记向量的长度和方向是解题关键.18.已知a r =3,b r =5,且b r 与a r 的方向相反,用a r表示b r 向量为( ) A .35b a =r r B .53b a =r r C .35b a =-r r D .53b a =-r r【答案】D 【解析】 【分析】根据a r =3,b r =5,且b r 与a r 的方向相反,即可用a r 表示b r 向量.【详解】a r=3,b r =5,b r =53a r ,b r 与a r的方向相反, ∴5.3b a =-r r故选:D. 【点睛】考查了平面向量的知识,注意平面向量的正负表示的是方向.19.已知e r 是一个单位向量,a r 、b r是非零向量,那么下列等式正确的是( )A .a e a v v v =B .e b b =v v vC .1a e a=v v vD .11a b a b=v v v v 【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a 的方向不是单位向量,故错误;D. 左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误. 故答案选B. 【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.20.如图,在△ABC 中,中线AD 、CE 交于点O ,设AB a,BC k ==u u u r r u u u r r ,那么向量AO uuu r用向量a b r r 表示为( )A .12a b +r rB .2133a b +r rC .2233a b +r rD .1124a b +r r【答案】B 【解析】 【分析】利用三角形的重心性质得到: 23AO AD =;结合平面向量的三角形法则解答即可. 【详解】∵在△ABC 中,AD 是中线, BC b =u u u r r, ∴11BD BC b 22==u u u r u u u r r .∴1b 2AD AB BD a =+=+u u u r u u u r u u u r r r又∵点O 是△ABC 的重心,∴23AO AD =,∴221AO AD a b 333==+u u u r u u u r r r .故选:B .【点睛】此题主要考查了平面向量与重心有关知识,根据重心知识得出23AO AD=是解题的关键.。

第1课时向量的概念及线性运算习题和答案详解

第1课时向量的概念及线性运算习题和答案详解

1.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件答案 A解析 若a +b =0,则a =-b ,所以a ∥b ;若a ∥b ,则a =λb ,a +b =0不一定成立,故前者是后者的充分不必要条件.2.设a 是任一向量,e 是单位向量,且a ∥e ,则下列表示形式中正确的是( ) A .e =a |a |B .a =|a |eC .a =-|a |eD .a =±|a |e 答案 D解析 对于A ,当a =0时,a|a |没有意义,错误;对于B ,C ,D 当a =0时,选项B ,C ,D 都对; 当a ≠0时,由a ∥e 可知,a 与e 同向或反向,选D.3.(2014·课标全国Ⅰ,文)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( ) A.AD → B.12AD → C.BC → D.12BC → 答案 A解析 EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →,故选A.4.如图所示的方格纸中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=( )A.OH →B.OG →C.EO →D.FO →答案 D解析 在方格纸上作出OP →+OQ →,如图所示,则容易看出OP →+OQ →=FO →,故选D.5.(2019·山东师大附中月考)如图,在梯形ABCD 中,AB ∥CD ,且AB =2CD ,对角线AC ,DB 相交于点O.若AD →=a ,AB →=b ,则OC →=( )A .-a 3-b 3B.a 3+b 6C.2a 3+b 3D.2a 3-b 3答案 B解析 ∵AB ∥CD ,AB =2CD ,∴△DOC ∽△BOA 且AO =2OC ,则AO →=2OC →=23AC →,OC→=13AC →,而AC →=AD →+DC →=AD →+12AB →=a +12b ,∴OC →=13AC →=13(a +12b )=13a +16b . 6.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,则四边形ABCD 的形状是( ) A .矩形 B .平行四边形 C .梯形 D .以上都不对 答案 C解析 由已知AD →=AB →+BC →+CD →=-8a -2b =2(-4a -b )=2BC →. ∴AD →∥BC →.又AB →与CD →不平行,∴四边形ABCD 是梯形.7.(2019·江西赣吉抚七校监测)在正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点(靠近点B),那么EF →=( ) A.12AB →-13AD → B.14AB →+12AD →C.13AB →+12AD →D.12AB →-23AD → 答案 D解析 在△CEF 中,EF →=EC →+CF →.因为点E 为DC 的中点,所以EC →=12DC →.因为点F 为BC的一个三等分点(靠近点B),所以CF →=23CB →.所以EF →=EC →+CF →=12DC →+23CB →=12AB →-23AD →.故选D.8.(2019·衡水中学调研)在△ABC 中,AN →=14NC →,P 是直线BN 上的一点.若AP →=mAB →+25AC →,则实数m 的值为( ) A .-4 B .-1 C .1 D .4答案 B解析 方法一:因为AP →=AB →+BP →=AB →+kBN →=AB →+k(AN →-AB →)=(1-k)AB →+k 5AC →,且AP→=mAB →+25AC →,所以1-k =m ,k 5=25,解得k =2,m =-1.故选B.方法二:由AN →=14NC →,得AC →=5AN →,∴AP →=mAB →+25AC →=mAB →+2AN →,∴m +2=1,得m =-1.9.(2019·沧州七校联考)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=( )A .a -12bB.12a -b C .a +12bD.12a +b 答案 D解析 连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a .10.(2019·四川成都七中一诊)已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且2OP →=2OA →+BA →,则( ) A .点P 在线段AB 上 B .点P 在线段AB 的反向延长线上 C .点P 在线段AB 的延长线上 D .点P 不在直线AB 上 答案 B解析 ∵2OP →=2OA →+BA →,∴2OP →-2OA →=BA →,即2AP →=BA →,∴点P 在线段AB 的反向延长线上.故选B.11.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP →=13(12OA →+12OB →+2OC →),则P 一定为△ABC 的( ) A .AB 边中线的三等分点(非重心) B .AB 边的中点 C .AB 边中线的中点 D .重心答案 A解析 如图所示,设AB 的中点是E ,则OP →=13(12OA →+12OB →+2OC →)=13(OE →+2OC →).∵O 是△ABC 的重心,∴2EO →=OC →,∴OP →=13(OE →+4EO →)=EO →,∴点P 在AB 边的中线上,是中线的三等分点,不是重心,故选A.12.(2019·北京东城)在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →,则μ的取值范围是( ) A .[0,1] B .[0,3] C .[0,12]D .[12,2]答案 C解析 如图所示,过点C 作CF ⊥AB ,垂足为F.在Rt △BCF 中,∠B =30°,BC =2,∴CF =1,BF = 3.∵AB =23,∴AF = 3.由四边形AFCD 是平行四边形,可得CD =AF =3=12AB.∵AE →=AD →+DE →=AD →+μAB →,∴DE →=μAB →.∵DE →∥DC →,DC →=12AB →,∴0≤μ≤12.故选C.13.已知向量e 1,e 2是两个不共线的向量,若a =2e 1-e 2与b =e 1+λe 2共线,则λ=________. 答案 -12解析 因为a 与b 共线,所以a =x b ,⎩⎪⎨⎪⎧x =2,λx =-1,故λ=-12.14.如图,在平行四边形ABCD 中,E 为DC 边的中点,且AB →=a ,AD →=b ,则BE →=________.答案 b -12a解析 BE →=BA →+AD →+12DC →=-a +b +12a =b -12a .15.如图所示,下列结论不正确的是________.①PQ →=32a +32b ;②PT →=-32a -32b ;③PS →=32a -12b ;④PR →=32a +b .答案 ②④解析 由a +b =23PQ →,知PQ →=32a +32b ,①正确;由PT →=32a -32b ,从而②错误;PS →=PT →+b ,故PS →=32a -12b ,③正确;PR →=PT →+2b =32a +12b ,④错误.故错误的为②④.16.设a 和b 是两个不共线的向量,若AB →=2a +k b ,CB →=a +b ,CD →=2a -b ,且A ,B ,D 三点共线,则实数k 的值等于________. 答案 -4解析 ∵A ,B ,D 三点共线,∴AB →∥BD →.∵AB →=2a +k b ,BD →=BC →+CD →=a -2b ,∴k =-4.故填-4.17.如图所示,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为________.答案 2解析 AO →=12(AB →+AC →)=m 2AM →+n 2AN →.∵M ,O ,N 三点共线,∴m 2+n2=1.∴m +n =2,故填2.。

人教版初中数学向量的线性运算图文解析

人教版初中数学向量的线性运算图文解析

A. a 与 a 大小、方向都相同,∴ a a 2a ,故本选项正确;
B. a 与 a 大小相同,方向相反,∴ a a 0 ,故本选项正确; C.根据实数对于向量的分配律,可知 a b a b ,故本选项正确;
D.根据向量的交换律,可知 a b b a ,故本选项错误.
解:∵ e 是单位向量,且 a 2e , b 4e ,
∴ a / /b , a 2, b 4 , a 1 b , 2
故 C 选项错误,
故选 C.
17.已知非零向量 a 、 b 和 c ,下列条件中,不能判定 a b 的是( )
A. a 2b
B. a c , b 3c
C. a 2b c , a b c
【解析】
【分析】
根据已知条件求得
a
5 2
c

b
1 2
c
,由此确定
a

b
位置和数量关系.
【详解】
解:由
a
b
2c

a
b
3c
,而且
c
≠0,得到:
a
5 2
c

b
1 2
c

所以 a 与 b 方向相反,且| a |=5| b |.
观察选项,只有选项 B 符合题意.
故选:B.
【点睛】
本题考查了平面向量的知识,属于基础题,注意对平面向量这一基础概念的熟练掌握.
【详解】
解:∵在平行四边形 ABCD 中, AB a , AD b ,
∴ AC AB AD a b , BD AD AB b a ,M 分别为 AC、BD 的中点,
∴ MA 1 AC 1 a b 1 a 1 b ,故 A 不符合题意;

24.6_24.7九年级数学资料向量的线性运算(很好_很全_很详细)

24.6_24.7九年级数学资料向量的线性运算(很好_很全_很详细)

24.6-24.7 平面向量的线性运算【学习目标】1.理解实数与向量相乘的意义.2.知道实数与向量相乘的运算律.3.在从数的运算到向量的运算的认识过程中体会类比的思想.4.对于给定的一个非零实数和一个非零向量,能画出它们相乘所得的向量.5.知道平行向量,会用向量关系式表示两个向量的平行关系.6.在实数与向量相乘和平行向量定理的学习与应用中体会代数与几何的联系.【主要概念】1、向量的加法法则:一般的,几个向量相加,可把这几个向量顺次首尾相接,那么它们的和向量是以第一个向量为起点,最后一个向量的终点为终点的向量。

这就是向量加法的多边形法则.2、实数与向量相乘的运算:设n 为正整数,为向量,我们用a n表示n 个相加;用a n 表示n 个 相加.又当m 为正整数时,a m n 表示与同向且长度为a m n的向量.3、a k 与a 的关系:k>0时,a k 与a 的方向相同,且大小是︱a ︱的 k 倍,K<0时,a k 与a 的方向相反,且大小是︱a ︱的︱ k ︱倍,K=0时a k =0 . a k //a4、实数与向量相乘的运算律:设m ,n 为实数,a r 、b r是向量,则(1)a mn a n m )()( ;(2)a m a m a n m )(; (3)b n a m b a m)(.【典型例题】【例1】已知非零向量a ,求作 ,3,3,25a a a并指出他们的长度和方向.解:在平面内任取一点O ,作A O =a 。

在射线OA 上,取OB= 25OA,则B O=25a在射线OA 的反向延长线上,取OC=OA 3.则CO=-3a 。

【例2】已知平行四边形ABCD 中,E 、F 、G 、H 、分别是各边的中点EG 与FH 相交于点O.设b BA a AD ,请用向量a r 或b r 表示向量OF OE ,,并写出图中与向量相等的量.【例3】已知点D 、E 分别在ABC 的边AB 与AC 上DE ∥BC ,3AD=4DB ,试用向量表示向量DE 。

初中数学向量的线性运算知识点训练及答案(1)

初中数学向量的线性运算知识点训练及答案(1)

初中数学向量的线性运算知识点训练及答案(1)一、选择题1.已知5AB a b =+u u u r r r ,28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ,则( ).A .A 、B 、D 三点共线 B .A 、B 、C 三点共线 C .B 、C 、D 三点共线 D .A 、C 、D 三点共线【答案】A 【解析】 【分析】根据共线向量定理逐一判断即可. 【详解】解:∵28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ,5AB a b =+u u u r r r∴()2835BD BC CD a b a b a b =+=-++-=+u u u r u u u r u u u r r r r r r r, ∴AB u u u r 、BD u u u r是共线向量∴A 、B 、D 三点共线,故A 正确;∵5AB a b =+u u u r r r ,28BC a b =-+u u u r r r∴不存在实数λ,使AB BC λ=u u u r u u u r ,即AB u u u r 、BC uuur 不是共线向量∴A 、B 、C 三点共线,故B 错误;∵28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ∴不存在实数λ,使BC CD λ=u u u r u u u r ,即BC uuu r 、CD uuur 不是共线向量∴B 、C 、D 三点共线,故C 错误;∵5AB a b =+u u u r r r ,28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ,∴()52813AC AB BC a b a b a b =+=++-+=-+u u u r u u u r u u u r r r r r r r∴不存在实数λ,使AC CD λ=u u u r u u u r ,即AC u u u r 、CD uuur 不是共线向量∴A 、C 、D 三点共线,故D 错误; 故选A. 【点睛】此题考查的是共线向量的判定,掌握共线向量的定理是解决此题的关键.2.等腰梯形ABCD 中,对角线AC 与BD 相交于点P ,点E 、F 分别在两腰AD 、BC 上,EF 过点P 且EF ∥AB ,则下列等式正确的是 ( ) A .B .C .D .【答案】D 【解析】 【分析】根据相等向量的定义,依次分析选项,依据图示,大小相等,方向相同的向量即可得到答案.【详解】根据相等向量的定义,分析可得,A. 方向不同,错误,B. 方向不同,错误,C. 方向相反,错误,D. 方向相同,且大小都等于线段EF长度的一半,正确;故选D.【点睛】此题考查相等向量与相反向量,解题关键在于掌握其定义.3.已知平行四边形ABCD,O为平面上任意一点.设=,=,=,=,则()A.+++=B.-+-=C.+--=D.--+=【答案】B【解析】【分析】根据向量加法的平行四边形法则,向量减法的几何意义,以及相反向量的概念即可找出正确选项.【详解】根据向量加法的平行四边形法则及向量减法的几何意义,即可判断A,C,D错误;;而;∴B正确.故选B.【点睛】此题考查向量加减混合运算及其几何意义,解题关键在于掌握运算法则.4.已知向量,若与共线,则( ) A.B.C.D.或【答案】D【解析】【分析】要使与,则有=,即可得知要么为0,要么,即可完成解答.【详解】解:非零向量与共线的充要条件是当且仅当有唯一一个非零实数,使=,即;与任一向量共线.故答案为D.本题考查了向量的共线,即=是解答本题的关键.5.下列等式正确的是( )A .AB u u u r +BC uuur =CB u u u r +BA u u u rB .AB u u u r﹣BC uuu r =AC u u u rC .AB u u u r +BC uuur +CD uuu r =DA u u u r D .AB u u u r +BC uuur ﹣AC u u u r =0r【答案】D 【解析】 【分析】根据三角形法则即可判断. 【详解】∵AB BC AC +=u u u r u u u r u u u r,∴0AB BC AC AC AC +-=-=u u u u r u u u r u u u r u u u r u u u r r ,故选D . 【点睛】本题考查平面向量的三角形法则,解题的关键是熟练掌握三角形法则.6.已知233m a b =-r r r ,1124n b a =+r r r ,那么4m n -r r等于( )A .823a b -r rB .443a b r r -C .423a b -r rD .843a b -r r【答案】A 【解析】根据向量的混合运算法则求解即可求得答案,注意解题需细心.解:∵233m a b =-r r r ,1124n b a =+r r r,∴4m n -r r =2112834()32232433a b b a a b b a a b --+=---=-rr r r r r r r r r .故选A .7.如图,在△ABC 中,中线AD 、CE 交于点O ,设AB a,BC k ==u u u r r u u u r r,那么向量AO uuu r用向量a b⋅r r 表示为( )A .12a b +rrB .2133a b +r rC .2233a b +r rD .1124a b +r r【解析】 【分析】利用三角形的重心性质得到: 23AO AD =;结合平面向量的三角形法则解答即可. 【详解】∵在△ABC 中,AD 是中线, BC b =u u u r r, ∴11BD BC b 22==u u u r u u u r r .∴1b 2AD AB BD a =+=+u u u r u u u r u u u r r r又∵点O 是△ABC 的重心,∴23AO AD =,∴221AO AD a b 333==+u u u r u u u r r r .故选:B .【点睛】此题主要考查了平面向量与重心有关知识,根据重心知识得出23AO AD =是解题的关键.8.下列命题:①若a b r r =,b c =r r ,则c a =r r ; ②若a r ∥b r ,b r ∥c r ,则a r ∥c r ;③若|a r |=2|b r |,则2a b =r r 或a r =﹣2b r ; ④若a r 与b r 是互为相反向量,则a r +b r=0. 其中真命题的个数是( )A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】根据向量的定义,互为相反向量的定义对各小题分析判断即可得解. 【详解】①若a b =r r,b c =rr,则c a =r r,正确; ②若a r∥b r ,b r∥c r ,则a r ∥c r,正确;③若|a r|=2|b r|,则2a b =rr或a r=﹣2b r,错误,因为两个向量的方向不一定相同或相反;④若a r与b r是互为相反向量,则a r +b r=0,正确. 综上所述,真命题的个数是3个. 故选C .9.D 、E 、F 分别是△ABC 三边AB 、BC 、CA 的中点,则下列等式不成立的是( ) A .+ =B .++=0C .+=D .+=【答案】C 【解析】 【分析】由加法的三角形法则化简求解即可. 【详解】由加法的三角形法则可得, + =, ++= , +=,+=故选:B. 【点睛】此题考查向量的加法及其几何意义,解题关键在于掌握平面向量的加法法则.10.以下等式正确的是( ). A .0a a -=r rB .00a ⋅=rC .()a b b a -=--rr r rD .km k m =r r【答案】C 【解析】 【分析】根据平面向量的运算法则进行判断.【详解】解:A. 0a a -=rr r,故本选项错误; B. 00a ⋅=rr,故本选项错误;C. ()a b b a -=--rr r r ,故本选项正确;D. km k m =⋅r r,故本选项错误.故选:C. 【点睛】考查了平面向量的有关运算,掌握平面向量的性质和相关运算法则是关键.11.已知a r 、b r 和c r 都是非零向量,在下列选项中,不能判定a r ∥b r的是( )A .=a b r rB .a r ∥c r ,b r ∥c rC .a +b r =0D .a r +b r =2c r ,a r ﹣b r =3c r【答案】A 【解析】 【分析】根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解. 【详解】解:A 、该等式只能表示两a r 、b r的模相等,但不一定平行,故本选项符合题意; B 、由a r ∥c r ,b r ∥c r 可以判定a r ∥b r,故本选项不符合题意;C 、由a r +b r =0可以判定a r 、b r 的方向相反,可以判定a r ∥b r,故本选项不符合题意;D 、由a r +b r =2c r ,a r ﹣b r =3c r ,得到a r =52c r ,b r =﹣12c r,则a r 、b r 的方向相反,可以判定a r ∥b r,故本选项不符合题意;故选:A . 【点睛】本题主要考查了平行向量,掌握平行向量是解题的关键.12.如果向量a r 与单位向量e r 的方向相反,且长度为3,那么用向量e r 表示向量a r为( )A .3a e =v vB .3a e =-v vC .3e a =v vD .3e a =-v v【答案】B 【解析】 【分析】根据平面向量的定义解答即可. 【详解】解:∵向量e r为单位向量,向量a r与向量e r方向相反, ∴3a e r r=-. 故选:B . 【点睛】本题考查平面向量的性质,解题的关键是灵活运用所学知识解决问题.13.如果||=2,=-,那么下列说法正确的是( )A .||=2||B .是与方向相同的单位向量C .2-=D .∥【答案】D 【解析】 【分析】根据平面向量的模和向量平行的定义解答. 【详解】 A 、由=-得到||=||=1,故本选项说法错误. B 、由=-得到是与的方向相反,故本选项说法错误. C 、由=-得到2+=,故本选项说法错误. D 、由=-得到∥,故本选项说法正确.故选D . 【点睛】考查了平面向量,需要掌握平面向量的模的定义,向量的方向与大小以及向量平行的定义等知识点,难度不大.14.如图,在平行四边形ABCD 中,如果AB a =u u u r r ,AD b =u u u r r ,那么a b +rr 等于( )A .BD u u u rB .AC u u u rC .DB u u u rD .CA u u u r【答案】B 【解析】 【分析】由四边形ABCD 是平行四边形,可得AD=BC ,AD ∥BC ,则可得BC b =u u u r r,然后由三角形法则,即可求得答案. 【详解】解:∵四边形ABCD 是平行四边形, ∴AD=BC ,AD ∥BC , ∵AD b =u u u r r ,∴BC b =u u u r r , ∵AB a =u u u r r ,∴a b +r r =AB u u ur +BC uuu r =AC u u u r .故选B .15.下列说法正确的是( )A .()0a a +-=r rB .如果a r 和b r 都是单位向量,那么a b =r rC .如果||||a b =r r ,那么a b =r rD .12a b =-r r (b r为非零向量),那么//a b r r【答案】D 【解析】 【分析】根据向量,单位向量,平行向量的概念,性质及向量的运算逐个进行判断即可得出答案. 【详解】解:A 、()a a +-r r等于0向量,而不是0,故A 选项错误;B 、如果a r 和b r都是单位向量,说明两个向量长度相等,但是方向不一定相同,故B 选项错误;C 、如果||||a b =r r,说明两个向量长度相等,但是方向不一定相同,故C 选项错误;D 、如果12a b =-r r (b r为非零向量),可得到两个向量是共线向量,可得到//a b r r ,故D选项正确. 故选:D. 【点睛】本题考查向量的性质及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量.16.在下列关于向量的等式中,正确的是( ) A .AB BC CA =+u u u r u u u r u u u rB .AB BC AC =-u u u r u u u r u u u r C .AB CA BC =-u u u r u u u r u u u rD .0AB BC CA ++=u u u r u u u r u u u r r【答案】D 【解析】 【分析】根据平面向量的线性运算逐项判断即可.【详解】AB AC CB =+u u u r u u u r u u u r,故A 选项错误; AB AC BC =-u u u r u u u r u u u r,故B 、C 选项错误; 0AB BC CA ++=u u u r u u u r u u u r r,故D 选正确.故选:D. 【点睛】本题考查向量的线性运算,熟练掌握运算法则是关键.17.如图,向量OA u u u r 与OB uuu r 均为单位向量,且OA ⊥OB ,令n r =OA u u u r +OB uuu r,则||n v=( )A .1B 2C 3D .2【答案】B 【解析】根据向量的运算法则可得: n v()222OA OB +=u u u v u u u v 故选B.18.如果a b c +=r r r ,3a b c -=r r r,且0c ≠r r ,下列结论正确的是A .=a b r rB .20a b +=r rC .a r 与b r方向相同D .a r 与b r方向相反【答案】D 【解析】 【分析】根据向量的性质进行计算判断即可. 【详解】解:将a b c +=r r r 代入3a b c -=r r r , 计算得:-2a b =r r(方向相反).故选:D 【点睛】本题考查了向量的性质,熟悉向量的性质是解题的关键.19.规定:在平面直角坐标系xOy 中,如果点P 的坐标为(,)m n ,向量OP uuu r可以用点P 的坐标表示为:(,)OP m n u u u v=.已知11(,OA x y =u u u v ),22(,)OB x y =u u u r ,如果12120x x y y +=,那么OA u u u r 与OB uuu r互相垂直.下列四组向量中,互相垂直的是( ) A .(4,3)OC =-u u u r ;(3,4)OD =-u u u rB .(2,3)OE =-u u u r ; (3,2)OF =-u u u rC .OG =u u u r ;(OH =u u u rD .4)OM =u u u u r ;(2)ON =-u u u r【答案】D 【解析】 【分析】将各选项坐标代入12120x x y y +=进行验证即可. 【详解】解:A. 12121202124x x y y =--=-≠+,故不符合题意; B. 121266102x x y y =--=-≠+,故不符合题意; C. 12123012x x y y =-+=-≠+,故不符合题意; D. 1212880x x y y =-+=+,故符合题意; 故选D. 【点睛】本题考查新定义与实数运算,正确理解新定义的运算方法是解题关键.20.下列说法正确的是( ). A .一个向量与零相乘,乘积为零 B .向量不能与无理数相乘C .非零向量乘以一个负数所得向量比原向量短D .非零向量乘以一个负数所得向量与原向量方向相反 【答案】D 【解析】 【分析】根据平面向量的定义和性质进行判断. 【详解】解:A. 一个向量与零相乘,乘积为零向量.故本选项错误; B. 向量可以与任何实数相乘.故本选项错误;C. 非零向量乘以一个负数所得向量的方向与原向量相反,但不一定更短.故本选项错误;D. 非零向量乘以一个负数所得向量与原向量方向相反.故本选项正确. 故答案是:D. 【点睛】考查了平面向量的知识,属于基础题,掌握平面向量的性质和相关运算法则即可解题.。

初中数学向量的线性运算全集汇编含答案解析(1)

初中数学向量的线性运算全集汇编含答案解析(1)

初中数学向量的线性运算全集汇编含答案解析(1)一、选择题1.如果向量a r 与单位向量e r 的方向相反,且长度为3,那么用向量e r表示向量a r 为( ) A .3a e =v vB .3a e =-v vC .3e a =v vD .3e a =-v v【答案】B 【解析】 【分析】根据平面向量的定义解答即可. 【详解】解:∵向量e r为单位向量,向量a r与向量e r方向相反, ∴3a e r r=-. 故选:B . 【点睛】本题考查平面向量的性质,解题的关键是灵活运用所学知识解决问题.2.在四边形ABCD 中,,,,其中与不共线,则四边形ABCD 是( ) A .平行四边形 B .矩形C .梯形D .菱形【答案】C 【解析】 【分析】利用向量的运算法则求出,利用向量共线的充要条件判断出,得到边AD ∥BC ,AD=2BC ,据梯形的定义得到选项.【详解】 解:∵,∴,∴AD ∥BC ,AD=2BC. ∴四边形ABCD 为梯形. 【点睛】本题考查向量的运算法则向量共线的充要条件、利用向量共线得到直线的关系、梯形的定义.3.已知向量,若与共线,则( )A .B .C .D .或【答案】D 【解析】【分析】 要使与,则有=,即可得知要么为0,要么,即可完成解答.【详解】解:非零向量与共线的充要条件是当且仅当有唯一一个非零实数,使=,即;与任一向量共线.故答案为D. 【点睛】本题考查了向量的共线,即=是解答本题的关键.4.下列命题中,真命题的个数为( ) ①方向相同 ②方向相反 ③有相等的模 ④方向相同 A .0 B .1C .2D .3【答案】C 【解析】 【分析】直接利用向量共线的基本性质逐一核对四个命题得答案. 【详解】 解:对于①,若,则方向相同,①正确; 对于②,若,则方向相反,②正确; 对于③,若,则方向相反,但的模不一定,③错误; 对于④,若,则能推出的方向相同,但的方向相同,得到④错误. 所以正确命题的个数是2个,故选:C. 【点睛】本题考查命题的真假判断与应用,考查了向量共线的基本性质,是基础题.5.下列等式正确的是( )A .AB u u u r +BC uuur =CB u u u r +BA u u u rB .AB u u u r﹣BC uuu r =AC u u u rC .AB u u u r +BC uuur +CD uuu r =DA u u u r D .AB u u u r +BC uuur ﹣AC u u u r =0r【答案】D 【解析】 【分析】根据三角形法则即可判断. 【详解】∵AB BC AC +=u u u r u u u r u u u r,∴0AB BC AC AC AC +-=-=u u u u r u u u ru u u r u u u r u u u r r, 故选D . 【点睛】本题考查平面向量的三角形法则,解题的关键是熟练掌握三角形法则.6.如图,ABCD Y 中,E 是BC 的中点,设AB a,AD b ==u u u r r u u u r r ,那么向量AE u u u r 用向量a br r 、表示为( )A .12a b +r rB .12a b -r rC .12a b -+rr D .12a b --r r 【答案】A 【解析】 【分析】根据AE AB BE =+u u u r u u u r u u u r ,只要求出BE u u u r即可解决问题. 【详解】解:Q 四边形ABCD 是平行四边形,AD BC AD BC ∴∥,=, BC AD b ∴==u u u r u u u r r ,BE CE Q =, 1BE b 2∴=u u u r r ,AE AB BE,AB a =+=u u u r u u u r u u u r u u u r r Q ,1AE a b 2∴=+u u u r r r ,故选:A. 【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.7.已知a r、b r和c r都是非零向量,在下列选项中,不能判定//a b rr 的是( ) A .2a b =r rB .//a c r r,//b c r rC .||||a b =r rD .12a c =r r ,2bc =r r【答案】C 【解析】 【分析】由方向相同或相反的非零向量叫做平行向量,对各选项分析判断. 【详解】A 选项:由2a b =r r ,可以推出//a b rr .本选项不符合题意;B 选项:由//a c r r ,//b c r r ,可以推出//a b rr .本选项不符合题意;C 选项:由||||a b =r r ,不可以推出//a b r r.本选项符合题意;D 选项:由12a c =r r ,2bc =r r,可以推出//a b r r .本选项不符合题意;故选:C . 【点睛】考查了平面向量,解题关键是熟记平行向量的定义.8.已知矩形的对角线AC 、BD 相交于点O ,若BC a =u u u r r ,DC b =u u u r r,则( )A .()12BO a b =+u u u r r r ; B .()12BO a b =-u u u r rr ; C .()12BO b a =-+u u u r r r; D .()12BO b a =-u u u r r r . 【答案】D 【解析】1,.21(b-a)2BCD BO BD BD DC CB CB BCBO D∆==+=-=u u u r u u u r u u u r u u u r u u u r u u u r u u u ru u u r r r在中,所以故选9.已知平行四边形ABCD ,O 为平面上任意一点.设=,=,=,=,则( ) A .+++= B .-+-= C .+--= D .--+=【答案】B 【解析】 【分析】根据向量加法的平行四边形法则,向量减法的几何意义,以及相反向量的概念即可找出正确选项. 【详解】根据向量加法的平行四边形法则及向量减法的几何意义,即可判断A,C,D 错误;;而 ;∴B 正确. 故选B. 【点睛】此题考查向量加减混合运算及其几何意义,解题关键在于掌握运算法则.10.下列各式正确的是( ).A .()22a b c a b c ++=++r r r r r rB .()()330a b b a ++-=rr r rC .2AB BA AB +=u u u r u u u r u u u rD .3544a b a b a b ++-=-r r r r r r【答案】D 【解析】 【分析】根据平面向量计算法则依次判断即可. 【详解】A 、()222a b c a b c ++=++r r r r rr ,故A 选项错误;B 、()()3333+33=6a b b a a b b a b ++-=+-r r r r rr r r r ,故B 选项错误;C 、0AB BA +=uu u r uu r r,故C 选项错误;D 、3544a b a b a b ++-=-r r r r r r ,故D 选项正确;故选D. 【点睛】本题是对平面向量计算法则的考查,熟练掌握平面向量计算法则是解决本题的关键.11.已知a r 、b r 、c r 都是非零向量,如果2a c =r r ,2b c =-r r,那么下列说法中,错误的是( )A .//a b r rB .a b =r rC .72BD =D .a r 与b r方向相反【答案】C 【解析】 【分析】利用相等向量与相反向量的定义逐项判断即可完成解答. 【详解】解:已知2a c v v =,2b c -v v =,故a b v v ,是长度相同,方向相反的相反向量,故A ,B ,D 正确,向量之和是向量,C 错误, 故选C. 【点睛】本题主要考查的相等向量与相反向量,熟练掌握定义是解题的关键;就本题而言,就是正确运用相等向量与相反向量的定义判断A 、B 、D 三项结论正确.12.规定:在平面直角坐标系中,如果点P 的坐标为(),m n ,向量OP u r可以用点P 的坐标表示为:(),OP m n =u r .已知()11,OA x y =u r ,()22,OB x y =u r,如果12120x x y y ⋅+⋅=,那么OA u r 与OB u r互相垂直.在下列四组向量中,互相垂直的是( )A .()()013,2019,3,1OC OD -==-u r u rB.))1,1,1,1OEOF =u ru rC.(()21,,82OG OH ⎛⎫= ⎪⎝⎭u r u rD.,OM+⎭u r 【答案】A 【解析】 【分析】根据题意中向量垂直的性质对各项进行求解即可. 【详解】 A.()133201910-⨯-+⨯=,正确;B.))11112⨯+⨯=,错误;C.(21842+⨯=,错误;D.))2222⨯+=,错误; 故答案为:A . 【点睛】本题考查了向量垂直的问题,掌握向量互相垂直的性质以及判定是解题的关键.13.下列命题正确的是( ) A .如果|a r |=|b r |,那么a r =b rB .如果a r 、b r 都是单位向量,那么a r =b rC .如果a r =k b r (k ≠0),那么a r ∥b rD .如果m =0或a r =0r ,那么m a r=0 【答案】C 【解析】 【分析】根据向量的定义和要素即可进行判断. 【详解】解:A .向量是既有大小又有方向,|a r |=|b r |表示有向线段的长度,a r =b r表示长度相等,方向相同,所以A 选项不正确;B .长度等于1的向量是单位向量,所以B 选项不正确;C . a r =k b r (k ≠0)⇔a r ∥b r,所以C 选项正确; D .如果m =0或a r =0r ,那么m a r =0r,不正确. 故选:C . 【点睛】本题主要考查向量的定义和要素,准备理解相关概念是关键.14.下列条件中,不能判定a ∥b 的是( ).A . //a c r r ,//b c r rB .||3||a b =r rC . 5a b =-r rD .2a b =r r【答案】B 【解析】 【分析】根据平面向量的性质进行逐一判定即可. 【详解】解:A 、由//a c r r ,//b c r r 推知非零向量a r 、b r 、c r 的方向相同,则//a b r r,故本选项不符合题意.B 、由||3||a b =rr只能判定向量a r 、b r 的模之间的关系,不能判定向量a r 、b r的方向是否相同,故本选项符合题意.C 、由5a b =-r r 可以判定向量a r 、b r 的方向相反,则//a b r r,故本选项不符合题意. D 、由2a b =r r 可以判定向量a r 、b r 的方向相同,则//a b r r,故本选项不符合题意. 故选:B . 【点睛】本题考查的是向量中平行向量的定义,即方向相同或相反的非零向量a r 、b r叫做平行向量.15.如图,在平行四边形ABCD 中,如果AB a =u u u r r ,AD b =u u u r r ,那么a b +rr 等于( )A .BD u u u rB .AC u u u rC .DB u u u rD .CA u u u r【答案】B 【解析】 【分析】由四边形ABCD 是平行四边形,可得AD=BC ,AD ∥BC ,则可得BC b =u u u r r,然后由三角形法则,即可求得答案. 【详解】解:∵四边形ABCD 是平行四边形, ∴AD=BC ,AD ∥BC ,∵AD b =u u u r r , ∴BC b =u u u r r,∵AB a =u u u rr,∴a b +r r =AB u u ur +BC uuu r =AC u u u r .故选B .16.下列判断错误的是( ) A .0•=0a vvB .如果a r +b r =2c r ,a r -b r =3c r ,其中0c ≠r r ,那么a r ∥b rC .设e r 为单位向量,那么|e r |=1D .如果|a r |=2|b r |,那么a r =2b r 或a r =-2b r【答案】D 【解析】 【分析】根据平面向量的定义、向量的模以及平行向量的定义解答. 【详解】A 、0•=0a vv ,故本选项不符合题意. B 、由a v +b v=2c v,a v -b v=3c v 得到:a v=52c v ,b v =﹣12c v ,故两向量方向相反,a v ∥b v ,故本选项不符合题意.C 、e v 为单位向量,那么|e v|=1,故本选项不符合题意.D 、由|a v|=2|b v|只能得到两向量模间的数量关系,不能判断其方向,判断错误,故本选项符合题意. 故选D . 【点睛】考查了平面向量,需要掌握平面向量的定义,向量的模以及共线向量的定义,难度不大.17.如图,向量OA u u u r 与OB uuu r 均为单位向量,且OA ⊥OB ,令n r =OA u u u r +OB uuu r ,则||n v=( )A .1B 2C 3D .2【答案】B 【解析】根据向量的运算法则可得: n v ()222OA OB +=u u u v u u u v 故选B.18.已知a r ,b r 和c r 都是非零向量,下列结论中不能判定a r ∥b r的是( )A .a r //c r ,b r //c rB .1,22a cbc ==r r r rC .2a b =r rD .a b =r r【答案】D 【解析】 【分析】根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解. 【详解】解:A.∵a r //c r ,b r //c r ,∴a r ∥b r,故本选项错误;B.∵1,22a c b c ==r r r r ∴a r ∥b r,故本选项错误.C.∵2a b =r r ,∴a r ∥b r,故本选项错误;D.∵a b =r r ,∴a r 与b r 的模相等,但不一定平行,故本选项正确;故选:D . 【点睛】本题考查了平面向量,是基础题,熟记平行向量的定义是解题的关键.19.已知非零向量a r 、b r 和c r ,下列条件中,不能判定a b r rP 的是( )A .2a b =-r rB .a c =r r ,3b c =r rC .2a b c +=r r r ,a b c -=-r rrD .2a b =r r【答案】D 【解析】 【分析】根据平行向量的定义,符号相同或相反的向量叫做平行向量对各选项分析判断利用排除法求【详解】A 、2a b =-r r,两个向量方向相反,互相平行,故本选项错误;B 、a c =r r ,3b c =r r ,则a r ∥b r ∥c r,故本选项错误;C 、由已知条件知2a b =-r r,3a c -=r r ,则a r ∥b r ∥c r ,故本选项错误;D 、2a b =r r 只知道两向量模的数量关系,但是方向不一定相同或相反,a r 与b r不一定平行,故本选项正确. 故选:D . 【点睛】本题考查了平面向量,主要是对平行向量的考查,熟记概念是解题的关键.20.以下等式正确的是( ). A .0a a -=r rB .00a ⋅=rC .()a b b a -=--rr r rD .km k m =r r【答案】C 【解析】 【分析】根据平面向量的运算法则进行判断. 【详解】解:A. 0a a -=rr r,故本选项错误; B. 00a ⋅=rr,故本选项错误;C. ()a b b a -=--rr r r ,故本选项正确;D. km k m =⋅r r,故本选项错误.故选:C. 【点睛】考查了平面向量的有关运算,掌握平面向量的性质和相关运算法则是关键.。

向量的线性运算图文答案

向量的线性运算图文答案

向量的线性运算图文答案一、选择题1.已知c r 为非零向量, 3a c =r r , 2b c =-r r,那么下列结论中错误的是( )A .//a b r rB .3||||2a b =r r C .a r 与b r 方向相同 D .a r 与b r 方向相反【答案】C 【解析】 【分析】根据平面向量的性质一一判断即可. 【详解】 ∵ 3a c =r r , 2b c =-r r∴3a b 2=-r r ,∴a r ∥b r ,32a b =-r ra r 与b r方向相反,∴A ,B ,D 正确,C 错误; 故选:C . 【点睛】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.2.若非零向量、满足|-|=||,则( ) A .|2|>|-2| B .|2|<|-2| C .|2|>|2-| D .|2|<|2-|【答案】A 【解析】 【分析】对非零向量、共线与否分类讨论,当两向量共线,则有,即可确定A 、C 满足;当两向量不共线,构造三角形,从而排除C ,进而解答本题. 【详解】解:若两向量共线,则由于是非零向量,且,则必有;代入可知只有A 、C 满足;若两向量不共线,注意到向量模的几何意义, 故可以构造三角形,使其满足OB=AB=BC ; 令,,则,∴且;又BA+BC>AC ∴∴.故选A. 【点睛】本题考查了非零向量的模,针对向量是否共线和构造三角形是解答本题的关键.3.如图,已知△ABC 中,两条中线AE 、CF 交于点G ,设,,则向量关于、的分解式表示正确的为( )A .B .C .D .【答案】B 【解析】 【分析】由△ABC 中,两条中线AE 、CF 交于点G 可知,,求出的值即可解答.【详解】 ∵ ∴ ∵∴故本题答案选B. 【点睛】本题考查向量的减法运算及其几何意义,是基础题.解题时要认真审题,注意数形结合思想的灵活运用.4.如图,ABCD Y 中,E 是BC 的中点,设AB a,AD b ==u u u r r u u u r r,那么向量AE u u u r用向量a brr、表示为( )A .12a b +rrB .12a b -r rC .12a b -+r rD .12a b --r r【答案】A 【解析】【分析】根据AE AB BE =+u u u r u u u r u u u r ,只要求出BE u u u r即可解决问题. 【详解】解:Q 四边形ABCD 是平行四边形,AD BC AD BC ∴∥,=, BC AD b ∴==u u u r u u u r r , BE CE Q =, 1BE b 2∴=u u u r r ,AE AB BE,AB a =+=u u u r u u u r u u u r u u u r r Q ,1AE a b 2∴=+u u u r r r ,故选:A. 【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.5.若0a r、0b r 都是单位向量,则有( ).A .00a b =r rB .00a b =-r rC .00a b =r rD .00a b =±r r【答案】C 【解析】 【分析】由0a r 、0b r 都是单位向量,可得00a b =r r.注意排除法在解选择题中的应用.【详解】解:∵0a r 、0b r 都是单位向量 ∴00a b =r r故选C. 【点睛】本题考查了平面向量的知识.注意掌握单位向量的定义.6.已知5AB a b =+u u u r r r ,28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ,则( ). A .A 、B 、D 三点共线 B .A 、B 、C 三点共线 C .B 、C 、D 三点共线 D .A 、C 、D 三点共线【答案】A 【解析】 【分析】根据共线向量定理逐一判断即可. 【详解】解:∵28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ,5AB a b =+u u u r r r∴()2835BD BC CD a b a b a b =+=-++-=+u u u r u u u r u u u r r r r r r r, ∴AB u u u r 、BD u u u r是共线向量∴A 、B 、D 三点共线,故A 正确; ∵5AB a b =+u u u r r r ,28BC a b =-+u u u r r r∴不存在实数λ,使AB BC λ=u u u r u u u r ,即AB u u u r 、BC uuur 不是共线向量∴A 、B 、C 三点共线,故B 错误;∵28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ∴不存在实数λ,使BC CD λ=u u u r u u u r ,即BC uuu r 、CD uuur 不是共线向量∴B 、C 、D 三点共线,故C 错误;∵5AB a b =+u u u r r r ,28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ,∴()52813AC AB BC a b a b a b =+=++-+=-+u u u r u u u r u u u r r r r r r r∴不存在实数λ,使AC CD λ=u u u r u u u r ,即AC u u u r 、CD uuur 不是共线向量∴A 、C 、D 三点共线,故D 错误; 故选A. 【点睛】此题考查的是共线向量的判定,掌握共线向量的定理是解决此题的关键.7.下列式子中错误的是( ).A .2a a a +=r r rB .()0a a +-=r r rC .()a b a b -+=--r r r rD .a b b a -=-r r r r【答案】D 【解析】 【分析】根据向量的定义是既有大小又有方向的量,及向量的运算法则即可分析求解. 【详解】A. a r 与a r 大小、方向都相同,∴2a a a +=r r r,故本选项正确;B. a r与a -r 大小相同,方向相反,∴()0a a +-=r r r ,故本选项正确;C.根据实数对于向量的分配律,可知()a b a b -+=--r r r r,故本选项正确;D.根据向量的交换律,可知a b b a -=-+r r r r,故本选项错误.故选D.【点睛】本题考查向量的运算,掌握运算法则及运算律是解题的关键.8.下列各式不正确的是( ).A .0a a -=r r rB .a b b a +=+r r r rC .如果()0a k b k =⋅≠r r ,那么b r 与a r 平行D .如果a b =r r ,那么a b =r r【答案】D 【解析】 【分析】根据向量的定义是规定了方向和大小的量,向量的运算法则及实数与向量乘积的意义判断各选项即可. 【详解】A.任意向量与它的相反向量的和都等于零向量,所以选项A 正确;B.向量的加法符合交换律,即a b b a +=+r r r r,所以选项B 正确;C.如果()0a k b k =≠r r g ,根据实数与向量乘积的意义可知:a r ∥b r ,所以选项C 正确;D.两个向量相等必须满足两个条件:长度相等且方向相同,如果a b =r r ,但a r 与b r方向不同,则a b ≠r r,所以D 选项错误.故选D. 【点睛】本题考查了向量的定义、运算及运算法则、实数与向量乘积的意义,明确定义及法则是解题的关键.9.已知一点O 到平行四边形ABCD 的3个顶点A 、B 、C 的向量分别为、、,则向量等于 ( ) A .++ B .-+C .+-D .--【答案】B 【解析】 【分析】利用向量的线性运算,结合平行四边形的性质,即可求得结论. 【详解】 如图,,则-+故选B . 【点睛】此题考查平面向量的基本定理及其意义,解题关键在于画出图形.10.下列说法不正确的是( ) A .设e r为单位向量,那么||1e =rB .已知a r、b r、c r 都是非零向量,如果2a c =r r,4b c =-rr ,那么//a b rrC .四边形ABCD 中, 如果满足//AB CD ,||||AD BC =u u u r u u u r,那么这个四边形一定是平行四边形D .平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解 【答案】C 【解析】 【分析】根据单位向量的定义、平行向量的定义以及平行四边形的判定进行解答即可. 【详解】解:A. 设e r为单位向量,那么||1e =r,此选项说法正确;B. 已知a r 、b r 、c r 都是非零向量,如果2a c =r r ,4b c =-r r ,那么//a b r r ,此选项说法正确;C. 四边形ABCD 中, 如果满足//AB CD ,||||AD BC =u u u r u u u r,即AD=BC ,不能判定这个四边形一定是平行四边形,此选项说法不正确;D. 平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解,此选项说法正确. 故选:C . 【点睛】本题考查的知识点是平面向量,掌握单位向量的定义、平行向量的定义以及平行四边形的判定方法是解此题的关键.11.已知a r、b r、c r都是非零向量,下列条件中,不能判断//a b rr的是( )A .a b =r rB .3a b =rrC .//a c r r,//b c r rD .2,2a c b c ==-rrr r【答案】A 【解析】 【分析】根据平行向量的定义(两个向量方向相同或相反,即为平行向量)分析求解即可求得答案. 【详解】解:A 、||||a b =r r只能说明a r 与b r 的模相等,不能判定a r ∥b r ,故本选项符合题意;B 、3a b =r r 说明a r 与b r 的方向相同,能判定a r ∥b r ,故本选项不符合题意;C 、a r ∥c r ,b r ∥c r ,能判定a r ∥b r,故本选项不符合题意;D 、2a c =r r ,2b c =-r r 说明a r 与b r 的方向相反,能判定a r ∥b r ,故本选项不符合题意.故选:A . 【点睛】此题考查了平面向量的知识.此题难度不大,注意掌握平行向量与向量的模的定义是解此题的关键.12.已知点C 在线段AB 上,3AC BC =,如果AC a =u u u r r ,那么BA u u u r 用a r表示正确的是( )A .34a rB .34a -rC .43a rD .43a -r【答案】D 【解析】 【分析】根据平面向量的线性运算法则,即可得到答案. 【详解】∵点C 在线段AB 上,3AC BC =,AC a =u u u r r,∴BA=43AC , ∵BA u u u r 与AC u u ur 方向相反, ∴BA u u u r =43a -r ,故选D. 【点睛】本题主要考查平面向量的运算,掌握平面向量的运算法则,是解题的关键.13.已知a r ,b r 为非零向量,如果b r =﹣5a r ,那么向量a r 与b r的方向关系是( )A .a r ∥b r ,并且a r 和b r 方向一致B .a r ∥b r ,并且a r 和b r 方向相反C .a r 和b r 方向互相垂直D .a r 和b r 之间夹角的正切值为5【答案】B 【解析】 【分析】根据平行向量的性质解决问题即可. 【详解】∵已知a r ,b r 为非零向量,如果b r =﹣5a r, ∴a r ∥b r ,a r 与b r的方向相反, 故选:B . 【点睛】本题考查了平面向量,熟记向量的长度和方向是解题关键.14.如图,向量OA u u u r 与OB uuu r 均为单位向量,且OA ⊥OB ,令n r =OA u u u r +OB uuu r ,则||n v=( )A .1B 2C 3D .2【答案】B 【解析】根据向量的运算法则可得: n v ()222OA OB +=u u u v u u u v 故选B.15.设e r为单位向量,2a =r ,则下列各式中正确的是( )A .2a e =r rB .a e a=rr r C .2a e =r r D .112a =±r【答案】C 【解析】 【分析】根据e r为单位向量,可知1e =r ,逐项进行比较即可解题.【详解】解:∵e r为单位向量, ∴1e =r,A 中忽视了向量的方向性,错误B 中忽视了向量的方向性,错误C 中,∵2a =r ,1e =r, ∴2a e =r r,正确,D 中忽视了向量的方向性,错误 故选C. 【点睛】本题考查了向量的应用,属于简单题,熟悉向量的概念是解题关键.16.如果2a b =r r (a r ,b r均为非零向量),那么下列结论错误的是( )A .a r //b rB .a r -2b r =0C .b r =12a rD .2a b =r r【答案】B 【解析】试题解析:向量最后的差应该还是向量.20.a b v vv-= 故错误. 故选B.17.如图,在△ABC 中,点D 是在边BC 上,且BD =2CD ,=,=,那么等于( )A .=+B .=+C .=-D .=+【答案】D 【解析】 【分析】利用平面向量的加法即可解答. 【详解】 解:根据题意得=,+ .故选D. 【点睛】本题考查平面向量的加法及其几何意义,涉及向量的数乘,属基础题.18.规定:在平面直角坐标系中,如果点P 的坐标为(m ,n ),向量OP uuu r可以用点P 的坐标表示为:OP uuu r =(m ,n ).已知OA u u u r =(x 1,y 1),OB uuu r=(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA u u u r 与OB uuu r互相垂直,在下列四组向量中,互相垂直的是( ) A .OC u u u r =(3,20190),OD uuu r=(﹣3﹣1,1)B .OE uuu r ﹣1,1),OF uuu r,1)C .OG u u u r 12),OH u u u r )2,8)D .OM u u u u r ),ON u u u r 2,2)【答案】A 【解析】 【分析】根据向量互相垂直的定义作答. 【详解】A 、由于3×(﹣3﹣1)+20190×1=﹣1+1=0,则OC u u u r 与OD uuu r互相垂直,故本选项符合题意.B ﹣1+1)+1×1=2﹣1+1=2≠0,则OE uuu r 与OF uuu r不垂直,故本选项不符合题意.C )2+12×8=4+4=8≠0,则OG u u u r 与OH u u u r 不垂直,故本选项不符合题意.D 2)×2=5﹣4+1=2≠0,则OM u u u u r 与ON u u u r 不垂直,故本选项不符合题意. 故选:A . 【点睛】本题考查了平面向量,解题的关键是掌握向量垂直的定义.19.已知e r 是一个单位向量,a r 、b r是非零向量,那么下列等式正确的是( )A .a e a v v v =B .e b b =v v vC .1a e a=v v vD .11a b a b=v v v v 【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a 的方向不是单位向量,故错误;D. 左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误. 故答案选B.【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.20.若2a b c +=r r,3a b c -=r r ,而且c r ≠0,a r 与r b 是( )A .a r 与rb 是相等向量 B .a r 与r b 是平行向量 C .a r 与r b 方向相同,长度不等D .a r 与r b 方向相反,长度相等【答案】B【解析】【分析】 根据已知条件求得52a c =r r ,1b 2c =-r r ,由此确定a r 与b r 位置和数量关系. 【详解】解:由2a b c +=r r ,3a b c -=r r ,而且c r ≠0,得到:52a c =r r ,1b 2c =-r r , 所以a r 与b r 方向相反,且|a r |=5|b r |.观察选项,只有选项B 符合题意.故选:B .【点睛】本题考查了平面向量的知识,属于基础题,注意对平面向量这一基础概念的熟练掌握.。

平面向量的线性运算(解析版)

平面向量的线性运算(解析版)

专题一 平面向量的线性运算1.向量的线性运算首尾相接 指向终点起点重合 指向对顶点起点重合 指向被减向量2.多边形法则一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →,特别地,一个封闭图形,首尾连接而成的向量和为零向量.3.平面向量基本定理定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,存在唯一的一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中,不共线的向量e 1,e 2叫作表示这一平面内所有向量的一组基底,记为{e 1,e 2}.4.“爪”子定理形式1:在△ABC 中,D 是BC 上的点,如果|BD |=m ,|DC |=n ,则AD →=m m +n AC →+n m +n AB →,其中AD →,AB →,AC →知二可求一.特别地,若D 为线段BC 的中点,则AD →=12(AC →+AB →).形式2:在△ABC 中,D 是BC 上的点,且BD →=λBC →,则AD →=λAC →+(1-λ)AB →,其中AD →,AB →,AC →知二可求一.特别地,若D 为线段BC 的中点,则AD →=12(AC →+AB →).形式1与形式2中AC →与AB →的系数的记忆可总结为:对面的女孩看过来(歌名,原唱任贤齐) 考点一 向量的线性运算C 形式1C形式2【方法总结】利用平面向量的线性运算把一个向量表示为两个基向量的一般方法向量AD →=f (AB →,AC →)的确定方法(1)在几何图形中通过三点共线即可考虑使用“爪”子定理完成向量AD →用AB →,AC →的表示.(2)若所给图形比较特殊(正方形、矩形、直角梯形、等边三角形、等腰三角形或直角三角形等),则可通过建系将向量坐标化,从而得到AD →=f (AB →,AC →)与AD →=g (AB →,AC →)的方程组,再进行求解.【例题选讲】[例1](1)(2015·全国Ⅰ)设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A .AD →=-13AB →+43AC → B .AD →=13AB →-43AC →C .AD →=43AB →+13AC → D .AD →=43AB →-13AC →答案 A 解析 AD →=AC →+CD →=AC →+13BC →=AC →+13(AC →-AB →)=43AC →-13AB →=-13AB →+43AC →,故选A .(2) (2014·全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( ) A .AD → B .12AD → C .BC →D .12BC →答案 A 解析 EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →,故选A .(3) (2018·全国Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( ) A .34AB →-14AC → B .14AB →-34AC → C .34AB →+14AC → D .14AB →+34AC →答案 A 解析 ∵E 是AD 的中点,∴EA →=-12AD →,∴EB →=EA →+AB →=-12AD →+AB →,又知D 是BC 的中点,∴AD →=12(AB →+AC →),因此EB →=-14(AB →+AC →)+AB →=34AB →-14AC →.(4)如图,在△ABC 中,点D 在BC 边上,且CD =2DB ,点E 在AD 边上,且AD =3AE ,则用向量AB →,AC →表示CE →为( )A .29AB →+89AC → B .29AB →-89AC → C .29AB →+79AC →D .29AB →-79AC →答案 B 解析 由平面向量的三角形法则及向量共线的性质可得CE →=AE →-AC →=13AD →-AC →=13(AB →+13BC →)-AC →=13⎣⎡⎦⎤AB →+13(AC →-AB →)-AC →=29AB →-89AC →. (5)如图所示,下列结论正确的是( )①PQ →=32a +32b ;②PT →=32a -b ;③PS →=32a -12b ;④PR →=32a +b .A .①②B .③④C .①③D .②④答案 C 解析 ①根据向量的加法法则,得PQ →=32a +32b ,故①正确;②根据向量的减法法则,得PT→=32a -32b ,故②错误;③PS →=PQ →+QS →=32a +32b -2b =32a -12b ,故③正确;④PR →=PQ →+QR →=32a +32b -b =32a +12b ,故④错误,故选C . (6)如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于M ,设OA →=a ,OB →=b .则用a和b 表示向量OM →=___________.答案 OM =17a +37b 解析 设OM =m a +n b ,则AM =OM -OA =m a +n b -a =(m -1)a +n b .AD =OD -OA =12OB -OA =-a +12b .又∵A 、M 、D 三点共线,∴AM 与AD 共线.∴存在实数t ,使得AM =t AD ,即(m -1)a +n b =t ⎝⎛⎭⎫-a +12b .∴(m -1)a +n b =-t a +12t b .∴⎩⎪⎨⎪⎧m -1=-t ,n =t 2,消去t得,m -1=-2n ,即m +2n =1.①.又∵CM =OM -OC =m a +n b -14a =⎝⎛⎭⎫m -14a +n b ,CB =OB -OC =b -14a =-14a +b .又∵C 、M 、B 三点共线,∴CM 与CB 共线.∴存在实数t 1,使得CM =t 1CB ,∴⎝⎛⎭⎫m -14a +n b =t 1⎝⎛⎭⎫-14a +b ,∴⎩⎪⎨⎪⎧m -14=-14t 1,n =t 1.消去t 1得,4m +n =1,②.由①②得m =17,n =37,∴OM =17a +37b . 另解 因为A ,M ,D 三点共线,所以OM →=λ1OD →+(1-λ1)OA →=12λ1b +(1-λ1)a ,①,因为C ,M ,B三点共线,所以OM →=λ2OB →+(1-λ2)OC →=λ2b +(1-λ24)a ,②,由①②可得⎩⎨⎧12λ1=λ2,1-λ1=1-λ24,解得⎩⎨⎧λ1=67,λ2=37.故OM →=17a +37b .(7)在平行四边形ABCD 中,AC 与BD 相交于点O ,点E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC →=a ,BD →=b ,则AF →=( )A .14a +12bB .23a +13bC .12a +14bD .13a +23b答案 B 解析 如图,根据题意,得AB →=12AC →+12DB →=12(a -b ),AD →=12AC →+12BD →=12(a +b ).令AF →=tAE →,则AF →=t (AB →+BE →)=t ⎝⎛⎭⎫AB →+34 BE → =t 2a +t 4b .由AF →=AD →+DF →,令DF →=sDC →,又AD →=12(a +b ),DF →=s2a -s 2b ,所以AF →=s +12a +1-s2b ,所以⎩⎨⎧t 2=s +12,t 4=1-s2,解方程组得⎩⎨⎧s =13,t =43,把s 代入即可得到AF →=23a +13b ,故选B .另解 如图,AF →=AD →+DF →,由题意知,DE ∶BE =1∶3=DF ∶AB ,故DF →=13AB →,则AF →=12a +12b +13 (12a -12b )=23a +13b .(8)在平行四边形ABCD 中,E ,F 分别是BC ,CD 的中点,D E 交AF 于H ,记AB →,BC →分别为a ,b ,则AH →=( )A .25a -45bB .25a +45bC .-25a +45bD .-25a -45b答案 B 解析 如图,过点F 作BC 的平行线交DE 于G ,则G 是DE 的中点,且GF →=12EC →=14BC →,∴GF →=14AD →,易知△AHD ∽△FHG ,从而HF →=14AH →,∴AH →=45AF →,AF →=AD →+DF →=b +12a ,∴AH →=45⎝⎛⎭⎫b +12a =25a +45b ,故选B .(9)如图,在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC 边上一点,BC →=3EC →,F 为AE 的中点,则BF →=( )A .23AB →-13AD → B .13AB →-23AD →C .-23AB →+13AD → D .-13AB →+23AD →答案 C 解析 BF →=BA →+AF →=BA →+12AE →=-AB →+12(AD →+12AB →+CE →)=-AB →+12(AD →+12AB →+13CB →)=-AB →+12AD →+14AB →+16(CD →+DA →+AB →)=-23AB →+13AD →.(10)如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB =a ,AC =b ,则AD 等于( )A .a -12bB .12a -bC .a +12bD .12a +b答案 D 解析 连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a .【对点训练】1.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,则OC →等于( ) A .2OA →-OB → B .-OA →+2OB →C .23OA →-13OB →D .-13OA →+23OB →1.答案 A 解析 由2AC →+CB →=0得2OC →-2OA →+OB →-OC →=0,故OC →=2OA →-OB →. 2.如图,在△ABC 中,点D 是BC 边上靠近B 的三等分点,则AD →等于( )A .23AB →-13AC → B .13AB →+23AC → C .23AB →+13AC →D .13AB →-23AC →2.答案 C 解析 由平面向量的三角形法则,得AD →=AB →+BD →.又因为点D 是BC 边上靠近B 的三等分 点,所以AD →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →.3.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,若将b 与c 作为基底,则AD →等于( ) A .23b +13c B .35c -23b C .23b -13c D .13b +23c3.答案 A 解析 ∵BD →=2DC →,∴AD →-AB →=2(AC →-AD →),∴AD →-c =2(b -AD →),∴AD →=13c +23b .4.如图所示,在△ABC 中,若BC →=3DC →,则AD →=( )A .23AB →+13AC → B .23AB →-13AC → C .13AB →+23AC →D .13AB →-23AC →4.答案 C 解析 AD →=CD →-CA →=13CB →-CA →=13(AB →-AC →)+AC →=13AB →+23AC →.故选C .5.设D ,E ,F 分别为△ABC 三边BC ,CA ,AB 的中点,则DA →+2EB →+3FC →=( ) A .12AD → B .32AD → C .12AC → D .32AC →5.答案 D 解析 因为D ,E ,F 分别为△ABC 三边BC ,CA ,AB 的中点,所以DA →+2EB →+3FC →=12(BA →+CA →)+2×12(AB →+CB →)+3×12×(AC →+BC →)=12BA →+AB →+CB →+32BC →+32AC →+12CA →=12AB →+12BC →+AC →=12AC →+AC →=32AC →.6.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC →=2AE →,则EM →=( ) A .12AC →+13AB → B .12AC →+16AB → C .16AC →+12AB → D .16AC →+32AB →6.答案 C 解析 如图,∵EC →=2AE →,∴EM →=EC →+CM →=23AC →+12CB →=23AC →+12(AB →-AC →)=12AB →+16AC →.7.在△ABC 中,P ,Q 分别是边AB ,BC 上的点,且AP =13AB ,BQ =13BC .若AB →=a ,AC →=b ,则PQ →=( )A .13a +13bB .-13a +13bC .13a -13bD .-13a -13b7.答案 A 解析 PQ →=PB →+BQ →=23AB →+13BC →=23AB →+13(AC →-AB →)=13AB →+13AC →=13a +13b ,故选A .8.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC →=a ,CA →=b ,给出下列命题:①AD →=12a -b ;②BE →=a +12b ;③CF →=-12a +12b ;④AD →+BE →+CF →=0.其中正确命题的序号为________.8.答案 ②③④ 解析 BC →=a ,CA →=b ,AD →=12CB →+AC →=-12a -b ,BE →=BC →+12CA →=a +12b ,CF →=12(CB →+CA →)=12(-a +b )=-12a +12b ,所以AD →+BE →+CF →=-b -12a +a +12b +12b -12a =0.所以正确命题的序号为②③④.9.(多选)在△ABC 中,D ,E ,F 分别是边BC ,CA ,AB 的中点,AD ,BE ,CF 交于点G ,则( ) A .EF →=12CA →-12BC → B .BE →=-12BA →+12BC → C .AD →+BE →=FC → D .GA →+GB →+GC →=09.答案 CD 解析 如图,因为点D ,E ,F 分别是边BC ,CA ,AB 的中点,所以EF →=12CB →=-12BC →,故A 不正确;BE →=BC →+CE →=BC →+12CA →=BC →+12(CB →+BA →)=BC →-12BC →-12AB →=-12AB →+12BC →,故B 不正确;FC →=AC →-AF →=AD →+DC →+F A →=AD →+12BC →+F A →=AD →+FE →+F A →=AD →+FB →+BE →+F A →=AD →+BE →,故C正确;由题意知,点G 为△ABC 的重心,所以AG →+BG →+CG →=23AD →+23BE →+23CF →=23×12(AB →+AC →)+23×12(BA→+BC →)+23×12(CB →+CA →)=0,即GA →+GB →+GC →=0,故D 正确.故选CD .10.如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,则用a ,b 表示向量AO →为____________.10.答案 AO →=13(a +b ) 解析 由D ,O ,C 三点共线,可设DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝⎛⎭⎫b -12a =-12k 1a +k 1b (k 1为实数),同理,可设BO →=k 2BF →=k 2(AF →-AB →)=k 2⎝⎛⎭⎫12b -a =-k 2a +12k 2b (k 2为实数),①,又BO →=BD →+DO →=-12a +⎝⎛⎭⎫-12k 1a +k 1b =-12(1+k 1)a +k 1b ,②,所以由①②,得-k 2a +12k 2b =-12(1+k 1)a BCA EF G+k 1b ,即12(1+k 1-2k 2)a +⎝⎛⎭⎫12k 2-k 1b =0.又a ,b 不共线,所以⎩⎨⎧12(1+k 1-2k 2)=0,12k 2-k 1=0,解得⎩⎨⎧k 1=13,k 2=23.所以BO →=-23a +13b .所以AO →=AB →+BO →=a +⎝⎛⎭⎫-23a +13b =13(a +b ). 另解 因为B ,O ,F 三点共线,所以AO →=λ1AB →+(1-λ1)AF →=λ1a +12(1-λ1)b ,①,因为D ,O ,C 三点共线,所以AO →=λ2AC →+(1-λ2)AD →=λ2b +12(1-λ2)a ,②,由①②可得⎩⎨⎧12(1-λ1)=λ2,λ1=1-λ22,解得⎩⎨⎧λ1=13,λ2=13.故AO →=13(a +b ).11.如图,正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF 等于( )A .12AB -13AD B .14AB +12ADC .13AB +12DAD .12AB -23AD11.答案 D 解析 在△CEF 中,有EF →=EC →+CF →.因为点E 为DC 的中点,所以EC →=12DC →.因为点F为BC 的一个三等分点,所以CF →=23CB →.所以EF →=12DC →+23CB →=12AB →+23DA →=12AB →-23AD →,故选D .12.如图,在平行四边形ABCD 中,E 为DC 边的中点,且AB →=a ,AD →=b ,则BE →=( )A .12b -aB .12a -bC .-12a +bD .12b +a12.答案 C 解析 BE →=BA →+AD →+12DC →=-a +b +12a =b -12a ,故选C .13.在平行四边形ABCD 中,AB =a ,AD =b ,AN =3NC ,M 为BC 的中点,则MN =____________.(用a ,b 表示)13.答案 -14a +14b 解析 由AN →=3NC →得,AN →=34AC →=34(a +b ),AM →=a +12b ,所以MN →=AN →-AM →=34(a+b )-⎝⎛⎭⎫a +12b =-14a +14b . 14.在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=_________.(用e 1,e 2表示)14.答案 -23e 1+512e 2 解析 如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.15.在平行四边形ABCD 中,E ,F 分别是BC ,CD 的中点,DE 交AF 于H ,记AB →,BC →分别为a ,b ,则AH →=( )A .25a -45bB .25a +45bC .-25a +45bD .-25a -45b15.答案 B 解析 设AH →=λAF →,DH →=μDE →.而DH →=DA →+AH →=-b +λAF →=-b +λ⎝⎛⎭⎫b +12a ,DH →=μDE →= μ⎝⎛⎭⎫a -12b .因此,μ⎝⎛⎭⎫a -12b =-b +λ⎝⎛⎭⎫b +12a .由于a ,b 不共线,因此由平面向量的基本定理,得⎩⎨⎧μ=12λ,-12μ=-1+λ.解之得λ=45,μ=25.故AH →=λAF →=λ⎝⎛⎭⎫b +12a =25a +45b .16.在梯形ABCD 中,AB →=3DC →,则BC →=( )A .-23AB →+AD → B .-23AB →+43AD →C .-13AB →+23AD → D .-23AB →-AD →16.答案 A 解析 因为在梯形ABCD 中,AB →=3DC →,所以BC →=BA →+AD →+DC →=-AB →+AD →+13AB →=-23AB →+AD →,故选A .考点二 根据向量线性运算求参数 【方法总结】利用平面向量的线性运算求参数的一般方法向量方程AD →=xAB →+yAC →中x ,y 的确定方法(1)在几何图形中通过三点共线即可考虑使用“爪”子定理完成向量的表示,进而确定x ,y . (2)若所给图形比较特殊(正方形、矩形、直角梯形、等边三角形、等腰三角形或直角三角形等),则可通过建系将向量坐标化,从而得到关于x ,y 的方程组,再进行求解.(3)若题目中某些向量的数量积已知,则对于向量方程AD →=xAB →+yAC →,可考虑两边对同一向量作数量积运算,从而得到关于于x ,y 的方程组,再进行求解.(4)对于求x +y 的值的有关问题可考虑平面向量的等和线定理法,见《平面向量特训之满分必杀篇》第一讲平面向量的等和线.【例题选讲】[例1](1)如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2P A →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14答案 A 解析 由题意知OP →=OB →+BP →,又BP →=2P A →,所以OP →=OB →+23BA →=OB →+23(OA →-OB →)=23OA →+13OB →,所以x =23,y =13. (2)(2013·江苏)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC→(λ1,λ2为实数),则λ1+λ2的值为________.答案 12 解析 由题意,得DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,则λ1=-16,λ2=23,即λ1+λ2=12.(3)如图,在△ABC 中,点D 在线段BC 上,且满足BD =12DC ,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AM →=mAB →,AN →=nAC →,则( )A .m +n 是定值,定值为2B .2m +n 是定值,定值为3C .1m +1n 是定值,定值为2D .2m +1n是定值,定值为3答案 D 解析 法一:如图,过点C 作CE 平行于MN 交AB 于点E .由AN →=nAC →可得AC AN =1n ,所以AE EM =AC CN =1n -1,由BD =12DC 可得BM ME =12,所以AM AB =n n +n -12=2n 3n -1,因为AM →=mAB →,所以m =2n 3n -1,整理可得2m +1n=3.故选D .法二:因为M ,D ,N 三点共线,所以AD →=λAM →+(1-λ)·AN →.又AM →=mAB →,AN →=nAC →,所以AD →=λmAB →+(1-λ)·nAC →.又BD →=12DC →,所以AD →-AB →=12AC →-12AD →,所以AD →=13AC →+23AB →.比较系数知λm =23,(1-λ)n=13,所以2m +1n=3,故选D . (4)如图,在△ABC 中,AD →=23AC →,BP →=13BD →,若AP →=λAB →+μAC →,则λ+μ的值为( )A .89B .49C .83D .43答案 A 解析 AP →=AB →+BP →=AB →+13BD →=AB →+13(AD →-AB →)=23AB →+13×23AC →=23AB →+29AC →.因为AP →=λAB →+μAC →,所以λ=23,μ=29,则λ+μ=23+29=89.(5)已知在Rt △ABC 中,∠BAC =90°,AB =1,AC =2,D 是△ABC 内一点,且∠DAB =60°,设AD →=λAB →+μAC →(λ,μ∈R ),则λμ=( )A .233B .33C .3D .23答案 A 解析 如图,以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系,则B 点的坐标为(1,0),C 点的坐标为(0,2),因为∠DAB =60°,所以设D 点的坐标为(m ,3m )(m ≠0).AD →=(m ,3m )=λAB →+μAC →=λ(1,0)+μ(0,2)=(λ,2μ),则λ=m ,且μ=32m ,所以λμ=233.(6)如图,在△ABC 中,设AB →=a ,AC →=b ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点为P ,若AP →=m a +nb ,则m +n =________.答案 67 解析 根据已知条件得,BQ →=AQ →-AB →=12AP →-AB →=12(m a +n b )-a =⎝⎛⎭⎫m 2-1a +n 2b ,CR →=BR →-BC →=12BQ →-AC →+AB →=12⎣⎡⎦⎤⎝⎛⎭⎫m 2-1a +n 2b -b +a =⎝⎛⎭⎫m 4+12a +⎝⎛⎭⎫n 4-1b ,∴QP →=m 2a +n 2b ,RQ →=⎝⎛⎭⎫m 4-12a +n 4b ,RP →=-⎝⎛⎭⎫m 8+14a +⎝⎛⎭⎫12-n 8b .∵RQ →+QP →=RP →,∴⎝⎛⎭⎫3m 4-12a +3n 4b =⎝⎛⎭⎫-m 8-14a +⎝⎛⎭⎫12-n 8b ,∴⎩⎨⎧3m 4-12=-m 8-14,3n 4=12-n 8,解得⎩⎨⎧m =27,n =47,故m +n =67.(7)如图所示,点P 在矩形ABCD 内,且满足∠DAP =30°,若|AD →|=1,|AB →|=3,AP →=mAD →+nAB →(m ,n ∈R ),则mn等于( )A .13B .3C .33D .3答案 B 解析 如图,过点P 作P E ⊥AB 于点E ,作PF ⊥AD 于点F ,则结合图形及题设得AP →=AF →+AE →=mAD →+nAB →,所以可得|AF →|=m ,|PF →|=|AE →|=3n .又∠DAP =30°,在Rt △APF 中,t a n ∠F AP =t a n 30°=|PF →||AF →|=33,则33=3n m ,化简得m n =3.故选B .优解:如图所示,假设点P 在矩形的对角线BD 上,由题意易知|DB →|=2,∠ADB =60°,又∠DAP =30°,所以∠DP A =90°.由|AD →|=1,可得|DP →|=12=14|DB →|,从而可得AP →=AD →+DP →=AD →+14DB →=AD →+14(AB →-AD →)=34AD →+14AB →.又AP →=mAD →+n AB →,所以m =34,n =14,则m n=3.故选B .(8)在平行四边形ABCD 中,点E 和F 分别是边CD 和BC 的中点.若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=__________.答案 43 解析 选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=⎝⎛⎭⎫12λ+μAB →+⎝⎛⎭⎫λ+12μAD →,于是得⎩⎨⎧12λ+μ=1,λ+12μ=1,即⎩⎨⎧λ=23,μ=23,故λ+μ=43.(9)如图,在直角梯形ABCD 中,DC →=14AB →,BE →=2EC →,且AE →=rAB →+sAD →,则2r +3s =( )A .1B .2C .3D .4答案 C 解析 根据图形,由题意可得AE →=AB →+BE →=AB →+23BC →=AB →+23(BA →+AD →+DC →)=13AB →+23(AD →+DC →)=13AB →+23⎝⎛⎭⎫AD →+14AB →=12AB →+23AD →.因为AE →=rAB →+sAD →,所以r =12,s =23,则2r +3s =1+2=3,故选C .优解:如图,建立平面直角坐标系xAy ,依题意可设点B (4m ,0),D (3m ,3h ),E(4m ,2h ),其中m >0,h >0.由AE →=rAB →+sAD →,得(4m ,2h )=r (4m ,0)+s (3m ,3h ),∴⎩⎪⎨⎪⎧4m =4mr +3ms 2h =3hs ,解得⎩⎨⎧r =12,s =23.∴2r +3s =3.(10) (2017·江苏)如图,在同一个平面内,向量OA →,OB →,OC →的模分别为1,1,2,OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R ),则m +n =__________.答案 3 解析 以O 为坐标原点,OA 所在直线为x 轴建立平面直角坐标系,则A (1,0),由tan α=7,α∈⎝⎛⎭⎫0,π2,得sin α=752,cos α=152,设C (x C ,y C ),B (x B ,y B ),则x C =|OC →|cos α=2×152=15,y C =|OC →|sin α=2×752=75,即C ⎝⎛⎭⎫15,75.又cos(α+45°)=152×12-752×12=-35,sin(α+45°)=45,则x B=|OB →|cos(α+45°)=-35,y B =|OB →|sin(α+45°)=45,即B ⎝⎛⎭⎫-35,45,由OC →=mOA →+nOB →,可得⎩⎨⎧15=m -35n ,75=45n ,解得⎩⎨⎧m =54,n =74,所以m +n =54+74=3.【对点训练】1.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.1.答案 23 解析 由图知CD →=CA →+AD →,①.CD →=CB →+BD →,②.且AD →+2BD →=0.①+②×2得:3CD →=CA →+2CB →,∴CD →=13CA →+23CB →,∴λ=23.2.如图所示,在△ABC 中,D 为BC 边上的一点,且BD =2DC ,若AC →=mAB →+nAD →(m ,n ∈R ),则m -n =________.2.答案 -2 解析 由于BD =2DC ,则BC →=-3CD →,其中BC →=AC →-AB →,CD →=AD →-AC →,那么BC →=- 3CD →可转化为AC →-AB →=-3(AD →-AC →),可以得到-2AC →=-3AD →+AB →,即AC →=-12AB →+32AD →,则m =-12,n =32,那么m -n =-12-32=-2. 3.已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( ) A .23 B .43C .-3D .03.答案 D 解析 ∵DB →=AB →-AD →,∴CD →=AB →-DB →-AC →=AB →-12CD →-AC →,∴32CD →=AB →-AC →,∴CD →=23AB →-23AC →.又CD →=rAB →+sAC →,∴r =23,s =-23,∴r +s =0,故选D . 4.在锐角△ABC 中,CM →=3MB →,AM →=xAB →+yAC →(x ,y ∈R ),则x y=________.4.答案 3 解析 由题设可得AM →=CM →-CA →=34CB →+AC →=34(AB →-A C →)+AC →=34AB →+14AC →,则x =34,y=14.故xy=3.5.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________,y =______. 5.答案 12 -16 解析 MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →=xAB →+yAC →,∴x=12,y =-16.6.如图所示,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB 、AC 于不同的两点M 、N , 若AB →=mAM →,AC →=nAN →,则m +n 的值为________.6.答案 2 解析 ∵O 是BC 的中点,∴AO →=12(AB →+AC →).又∵AB →=mAM →,AC →=nAN →,∴AO →=m 2AM →+n2AN →.∵M ,O ,N 三点共线,∴m 2+n 2=1.则m +n =2.7.已知点G 是△ABC 的重心,过G 作一条直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则xy x +y的值为( )A .12B .13C .2D .37.答案 B 解析 由已知得M ,G ,N 三点共线,∴AG →=λAM →+(1-λ)AN →=λxAB →+(1-λ)yAC →.∵ 点G 是△ABC 的重心,∴AG →=23×12(AB →+AC →)=13·(AB →+AC →),∴⎩⎨⎧λx =13,(1-λ)y =13,即⎩⎨⎧λ=13x,1-λ=13y,得13x+13y =1,即1x +1y =3,通分变形得,x +y xy =3,∴xy x +y =13. 8.如图所示,AD 是△ABC 的中线,O 是AD 的中点,若CO →=λAB →+μAC →,其中λ,μ∈R ,则λ+μ的值为 ( )A .-12B .12C .-14D .148.答案 A 解析 由题意知,CO →=12(CD →+CA →)=12×⎝⎛⎭⎫12CB →+CA →=14(AB →-AC →)+12CA →=14AB →-34AC →,则λ= 14,μ=-34,故λ+μ=-12. 9.如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.9.答案311 解析 设BP →=kBN →,k ∈R .因为AP →=AB →+BP →=AB →+kBN →=AB →+k (AN →-AB →)=AB →+k (14AC →-AB →) =(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.10.在△ABC 中,AN →=14NC →,若P 是直线BN 上的一点,且满足AP →=mAB →+25AC →,则实数m 的值为( )A .-4B .-1C .1D .410.答案 B 解析 根据题意设BP →=nBN →(n ∈R ),则AP →=AB →+BP →=AB →+nBN →=AB →+n (AN →-AB →)=AB →+n (25AC →-AB →)=(1-n )AB →+n 5AC →.又AP →=mAB →+25AC →,∴⎩⎪⎨⎪⎧1-n =m ,n 5=25,解得⎩⎪⎨⎪⎧n =2,m =-1. 11.在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN →=λAB →+μAC →,则λ+μ的值为( )A .12B .13C .14D .111.答案 A 解析 设BM →=tBC →,则AN →=12AM →=12(AB →+BM →)=12AB →+12BM →=12AB →+t 2BC →=12AB →+t 2(AC →-AB →)=⎝⎛⎭⎫12-t 2AB →+t 2AC →,∴λ=12-t 2,μ=t 2,∴λ+μ=12,故选A . 12.在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若AO →=λAB →+μBC →,则λ+μ等于( )A .1B .12C .13D .2312.答案 D 解析 ∵AD →=AB →+BD →=AB →+13BC →,∴2AO →=AB →+13BC →,即AO →=12AB →+16BC →.故λ+μ=12+16=23.13.在△ABC 中,D 为三角形所在平面内一点,且AD →=13AB →+12AC →.延长AD 交BC 于E ,若AE →=λAB →+μAC →,则λ-μ的值是________.13.答案 -15 解析 设AE →=xAD →,∵AD →=13AB →+12AC →,∴AE →=x 3AB →+x 2AC →.由于E ,B ,C 三点共线,∴x 3+x 2=1,x =65.根据平面向量基本定理,得λ=x 3,μ=x 2.因此λ-μ=x 3-x 2=-x 6=-15. 14.如图,正方形ABCD 中,E 为DC 的中点,若AE →=λAB →+μAC →,则λ+μ的值为( )A .12B .-12C .1D .-114.答案 A 解析 由题意得AE →=AD →+12AB →=BC →+AB →-12AB →=AC →-12AB →,∴λ=-12,μ=1,∴λ+μ=12,故选A .15.如图所示,正方形ABCD 中,M 是BC 的中点,若AC →=λAM →+μBD →,则λ+μ=( )A .43B .53C .158D .215.答案 B 解析 因为AC →=λAM →+μBD →=λ(AB →+BM →)+μ(BA →+AD →)=λ (AB →+12AD →)+μ(-AB →+AD →)=(λ-μ) AB →+⎝⎛⎭⎫12λ+μAD →,且AC →=AB →+AD →,所以⎩⎪⎨⎪⎧λ-μ=1,12λ+μ=1,得⎩⎨⎧λ=43,μ=13,所以λ+μ=53,故选B .16.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2等于( )A .58B .14C .1D .51616.答案 A 解析 DE →=12DA →+12DO →=12DA →+14DB →=12DA →+14(DA →+AB →)=14AB →-34AD →,所以λ=14,μ=-34,故λ2+μ2=58,故选A .17.如图,直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E ,F 两点,且与对角线AC 交于点K ,其中,AE →=25AB →,AF →=12AD →,AK →=λAC →,则λ的值为______.17.答案 29 解析 ∵AE →=25AB →,AF →=12AD →,∴AB →=52AE →,AD →=2AF →.由向量加法的平行四边形法则可知,AC →=AB →+AD →,∴AK →=λAC →=λ(AB →+AD →)=λ(52AE →+2AF →)=52λAE →+2λAF →,∵E ,F ,K 三点共线,∴52λ+2λ=1,∴λ=29. 18.如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ等于( )A .1B .34C .23D .1218.答案 B 解析 ∵E 为线段AO 的中点,∴BE →=12BA →+12BO →=12BA →+12×12BD →=12BA →+14BD →=λBA →+μBD →,∴λ+μ=12+14=34.19.一直线l 与平行四边形ABCD 中的两边AB ,AD 分别交于点E ,F ,且交其对角线AC 于点M ,若AB →=2AE →,AD →=3AF →,AM →=λAB →-μAC →(λ,μ∈R ),则52μ-λ=( )A .-12B .1C .32D .-319.答案 A 解析 AM →=λAB →-μAC →=λAB →-μ(AB →+AD →)=(λ-μ)AB →-μAD →=2(λ-μ)AE →-3μAF →.因为E ,M ,F 三点共线,所以2(λ-μ)+(-3μ)=1,即2λ-5μ=1,∴52μ-λ=-12.20.如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=________.20.答案 12解析 由题意可设CG →=xCE →(0<x <1),则CG →=x (CB →+BE →)=x ⎝⎛⎭⎫CB →+12CD →=x 2CD →+xCB →.因为 CG →=λCD →+μCB →,CD →与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.21.如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若CA →=λCE →+μDB →(λ,μ∈R ),则λ+μ的值为( )A .65B .85C .2D .8321.答案 B 解析 建立如图所示的平面直角坐标系,则D (0,0).不妨设AB =1,则CD =AD =2,所以C (2,0),A (0,2),B (1,2),E (0,1),∴CA →=(-2,2),CE →=(-2,1),DB →=(1,2),∵CA →=λCE →+μDB →,∴(-2,2)=λ(-2,1)+μ(1,2),∴⎩⎪⎨⎪⎧-2λ+μ=-2,λ+2μ=2,解得⎩⎨⎧λ=65,μ=25,则λ+μ=85.22.在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB →=λAM →+μAN →,则λ+μ的值为( )A .14B .15C .45D .5422.答案 C 解析 法一:连接AC (图略),由AB →=λAM →+μAN →,得AB →=λ·12(AD →+AC →)+μ·12(AC →+AB →),则⎝⎛⎭⎫μ2-1AB →+λ2AD →+⎣⎡⎭⎫λ2+μ2AC →=0,得⎝⎛⎭⎫μ2-1AB →+λ2AD →+⎣⎡⎭⎫λ2+μ2 [AD →+12AB →]=0,得⎝⎛⎭⎫14λ+34μ-1AB →+⎝⎛⎭⎫λ+μ2AD →=0.又AB →,AD →不共线,所以由平面向量基本定理得⎩⎨⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎨⎧λ=-45,μ=85.所以λ+μ=45.法二:因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ+μ=45.法三:根据题意作出图形如图所示,连接MN 并延长,交AB 的延长线于点T ,由已知易得AB =45AT ,所以45AT →=AB →=λAM →+μAN →,因为T ,M ,N 三点共线,所以λ+μ=45.23.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则mn的值为( )A .2B .52C .3D .423.答案 C 解析 ∵OA →·OB →=0,∴OA →⊥OB →,以OA →所在直线为x 轴,OB →所在直线为y 轴建立平面直角 坐标系(图略),OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3n m =33,∴m=3n ,即mn=3,故选C .考点三 根据向量线性运算求参数的取值范围(最值) 【方法总结】向量线性运算求参数的取值范围(最值)问题的2种求解方法(1)几何法:即临界位置法,结合图形,确定临界位置的动态分析求出范围.(2)代数法:即目标函数法,将参数表示为某一个变量或两个变量的函数,建立函数关系式,再利用三角函数有界性、二次函数或基本不等式求最值或范围.【例题选讲】[例1](1)已知在△ABC 中,点D 满足2BD →+CD →=0,过点D 的直线l 与直线AB ,AC 分别交于点M ,N ,AM →=λAB →,AN →=μAC →.若λ>0,μ>0,则λ+μ的最小值为________.答案3+223 解析 连接AD .因为2BD →+CD →=0,所以BD →=13BC →,AD →=AB →+BD →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →.因为D ,M ,N 三点共线,所以存在x ∈R ,使AD →=xAM →+(1-x )AN →,则AD →=xλAB →+(1-x )μAC →,所以xλAB →+(1-x )μAC →=23AB →+13AC →,所以xλ=23,(1-x )μ=13,所以x =23λ,1-x =13μ,所以23λ+13μ=1,所以λ+μ=13(λ+μ)⎝⎛⎭⎫2λ+1μ=13⎝⎛⎭⎫3+2μλ+λμ≥3+223,当且仅当λ=2μ时等号成立,所以λ+μ的最小值为3+223.(2)如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM →=xBA →+yBD →(x ,y ∈R ),则2x +y 的最大值为( )A .2B .3C .2D .22答案 C 解析 方法一 如图,连接DA ,以D 点为原点,BC 所在直线为x 轴,DA 所在直线为y 轴,建立如图所示的平面直角坐标系.设内切圆的半径为r ,则圆心为坐标(0,r ),根据三角形面积公式,得12×l △ABC ×r =12×AB ×AC ×sin 60°(l △ABC 为△ABC 的周长),解得r =1.易得B (-3,0),C (3,0),A (0,3),D (0,0),设M (cos θ,1+sin θ),θ∈[0,2π),则BM →=(cos θ+3,1+sin θ),BA→=(3,3),BD →=(3,0),故BM →=(cos θ+3,1+sin θ)=(3x +3y ,3x ),故⎩⎨⎧cos θ=3x +3y -3,sin θ=3x -1,则⎩⎨⎧x =1+sin θ3,y =3cos θ3-sin θ3+23,所以2x +y =3cos θ3+sin θ3+43=23sin ⎝⎛⎭⎫θ+π3+43≤2.当θ=π6时等号成立.故2x +y 的最大值为2.方法二 因为BM →=xBA →+yBD →,所以|BM →|2=3(4x 2+2xy +y 2)=3[(2x +y )2-2xy ].由题意知,x ≥0,y ≥0,|BM →|的最大值为(23)2-(3)2=3,又(2x +y )24≥2xy ,即-(2x +y )24≤-2xy ,所以3×34(2x +y )2≤9,得2x +y ≤2,当且仅当2x =y =1时取等号.(3) (2017·全国Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .22C .5D .2答案 A 解析 建立如图所示的直角坐标系,则C 点坐标为(2,1).设BD 与圆C 切于点E ,连接CE ,则CE ⊥BD .因为CD =1,BC =2,所以BD =12+22=5,EC =BC ·CD BD =25=255,所以P 点的轨迹方程为(x -2)2+(y -1)2=45.设P (x 0,y 0),则⎩⎨⎧x 0=2+255cos θ,y 0=1+255sin θ(θ为参数),而AP →=(x 0,y 0),AB →=(0,1),AD →=(2,0).因为AP →=λAB →+μAD →=λ(0,1)+μ(2,0)=(2μ,λ),所以μ=12x 0=1+55cos θ,λ=y 0=1+255sin θ.两式相加,得λ+μ=1+255sin θ+1+55cos θ=2+sin(θ+φ)≤3⎝⎛⎭⎫其中sin φ=55,cos φ=255,当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.故选A .(4)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC →=xOA →+yOB →,则x +3y 的取值范围是________.答案 [1,3] 解析 设扇形的半径为1,以OB 所在直线为x 轴,O 为坐标原点建立平面直角坐标系(图略),则B (1,0),A ⎝⎛⎭⎫12,32,C (cos θ,sin θ)⎝⎛⎭⎫其中∠BOC =θ,0≤θ≤π3.则OC →=(cos θ,sin θ)=x ⎝⎛⎭⎫12,32+y (1,0),即⎩⎨⎧x2+y =cos θ,32x =sin θ,解得x =23sin θ3,y =cos θ-3sin θ3,故x +3y =23sin θ3+3cos θ-3sin θ=3cos θ-33sin θ,0≤θ≤π3.令g (θ)=3cos θ-33sin θ,易知g (θ)=3cos θ-33sin θ在⎣⎡⎦⎤0,π3上单调递减,故当θ=0时,g (θ)取得最大值为3,当θ=π3时,g (θ)取得最小值为1,故x +3y 的取值范围为[1,3].【对点训练】1.在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( )A .⎝⎛⎭⎫0,12B .⎝⎛⎭⎫0,13C .⎝⎛⎭⎫-12,0D .⎝⎛⎭⎫-13,0 1.答案 D 解析 设CO →=yBC →,∵AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →)=-yAB →+(1+y )AC →.∵BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),∴y ∈⎝⎛⎭⎫0,13,∵AO →=xAB →+(1-x )AC →,∴x =-y ,∴x ∈⎝⎛⎭⎫-13,0. 2.在△ABC 中,点D 满足BD →=DC →,当点E 在线段AD 上移动时,若AE →=λAB →+μAC →,则t =(λ-1)2+μ2的最小值是________.2.答案 12 解析 因为BD →=DC →,所以AD →=12AB →+12AC →.又AE →=λAB →+μAC →,点E 在线段AD 上移动,所以AE →∥AD →,则12λ=12μ,即λ=μ⎝⎛⎭⎫0≤λ≤12.所以t =(λ-1)2+λ2=2λ2-2λ+1=2⎝⎛⎭⎫λ-122+12.当λ=12时,t 的最小值是12.3.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N , 若AB →=mAM →,AC →=nAN →,则mn 的最大值为__________.3.答案 解析 因为点O 是BC 的中点,所以AO →=12(AB →+AC →).又因为AB →=mAM →,AC →=nAN →,所以AO →=m 2AM →+n 2AN →.又因为M ,O ,N 三点共线,所以m 2+n2=1,即m +n =2,所以mn ≤⎝⎛⎭⎫m 2+n 22=1,当且仅当m =n =1时,等号成立,故mn 的最大值为14.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点O 为△ABC 的外接圆的圆心,A =π3,且AO →=λAB →+μAC →,则λμ的最大值为________.4.答案 19 解析 ∵△ABC 是锐角三角形,∴O 在△ABC 的内部,∴0<λ<1,0<μ<1.由AO →=λ(OB →-OA →)+μ(OC →-OA →),得(1-λ-μ)AO →=λOB →+μOC →,两边平方后得,(1-λ-μ)2AO →2=(λOB →+μOC →)2=λ2OB →2+μ2OC →2+2λμOB →·OC →,∵A =π3,∴∠BOC =2π3,又|AO →|=|BO →|=|CO →|.∴(1-λ-μ)2=λ2+μ2-λμ,∴1+3λμ=2(λ+μ),∵0<λ<1,0<μ<1,∴1+3λμ≥4λμ,设λμ=t ,∴3t 2-4t +1≥0,解得t ≥1(舍)或t ≤13,即λμ≤13⇒λμ≤19,∴λμ的最大值是19.5.在矩形ABCD 中,AB =5,BC =3,P 为矩形内一点,且AP =52,若AP →=λAB →+μAD →(λ,μ∈R ),则 5λ+3μ的最大值为______. 5.答案102解析 建立如图所示的平面直角坐标系,设P (x ,y ),B (5,0),C (5,3),D (0,3).∵ AP =52,∴x 2+y 2=54.点P 满足的约束条件为⎩⎪⎨⎪⎧0≤x ≤5,0≤y ≤3,x 2+y 2=54,∵AP →=λAB →+μAD →(λ,μ∈R ),∴(x ,y )=λ(5,0)+μ(0,3),∴⎩⎨⎧x =5λ,y =3μ,∴x +y =5λ+3μ.∵x +y ≤2(x 2+y 2)=2×54=102,当且仅当x =y 时取等号,∴5λ+3μ的最大值为102.6.平行四边形ABCD 中,AB =3,AD =2,∠BAD =120°,P 是平行四边形ABCD 内一点,且AP =1,若 AP →=xAB →+yAD →,则3x +2y 的最大值为________.6.答案 2 解析 |AP →|2=(xAB →+yAD →)2=9x 2+4y 2+2xy ×3×2×⎝⎛⎭⎫-12=(3x +2y )2-3(3x )·(2y )≥(3x +2y )2-34 (3x +2y )2=14(3x +2y )2.又|AP →|2=1,因此14(3x +2y )2≤1,故3x +2y ≤2,当且仅当3x =2y ,即x =13,y =12时,3x +2y 取得最大值2.7.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →, 则μ的取值范围是________.7.答案 ⎣⎡⎦⎤0,12 解析 由题意可求得AD =1,CD =3,所以AB →=2DC →.∵点E 在线段CD 上,∴DE →= λDC → (0≤λ≤1).∵AE →=AD →+DE →,又AE →=AD →+μAB →=AD →+2μDC →=AD →+2μλDE →,∴2μλ=1,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12,即μ的取值范围是⎣⎡⎦⎤0,12. 8.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.8.答案 (-1,0) 解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0.又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).9.给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,如图所示,点C 在以O 为圆心的圆弧AB ︵上 运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是( )A .1B .2C .3D .29.答案 B 解析 因为点C 在以O 为圆心的圆弧AB ︵上,所以|OC →|2=|xOA →+yOB →|2=x 2+y 2+2xyOA →·OB →= x 2+y 2,∴x 2+y 2=1,则2xy ≤x 2+y 2=1.又(x +y )2=x 2+y 2+2xy ≤2,故x +y 的最大值为2. 10.给定两个长度为1的平面向量OA 和OB ,它们的夹角为2π3.如图所示,点C 在以O 为圆心的圆弧AB 上运动.若OC =x OA +y OB ,其中x ,y ∈R ,则x +y 的最大值为________..10.答案 2 解析 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32),设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得1cos 2sin x y y αα⎧=-⎪⎪⎨⎪=⎪⎩,所以x =cos α+33sin α,y =233sin α,所以x +y =cos α+3sin α=2sin(α+π6),又α∈[0,2π3], 所以当α=π3时,x +y 取得最大值2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.□ABCD 中, - + 等于( )
A.
B.
C.
D.
【答案】A
【解析】
【分析】
在平行四边形中,两对对边平行且相等,以一对对边所在的线段构成向量,得到的向量要
么相等,要么是相反向量,根据本题所给的两个向量来看,它们是一对相反向量,和为零 向量,得到结果. 【详解】 ∵在平行四边形 ABCD 中, 与 是一对相反向量, ∴ =∴ -+=- + =, 故选 A. 【点睛】 此题考查向量加减混合运算及其几何意义,解题关键在于得出 与 是一对相反向量.
A.
1 a
ae;
B. e a a ;
C. b e b ;
D.
1 a
a
1 b
b.
【答案】B 【解析】 【分析】 长度不为 0 的向量叫做非零向量,向量包括长度及方向,而长度等于 1 个单位长度的向量 叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】
解: A 、左边得出的是 a 的方向不是单位向量,故错误;
A.
3
a
2
b
【答案】D
【解析】
【分析】
B.
2
a
3
b
C.
3
a
2
b
D.
2
a
3
b
根据 a 3, b 2 ,而且 x1, x2 R 和 a 的方向相反,可得两者的关系,即可求解.
【详解】
∵ a 3, b 2 ,而且 x1, x2 R 和 a 的方向相反
∴a 3b 2
故选 D. 【点睛】 本题考查的是向量,熟练掌握向量的定义是解题的关键.
形一定是平行四边形,此选项说法不正确; D. 平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解,此选项说法正 确. 故选:C. 【点睛】 本题考查的知识点是平面向量,掌握单位向量的定义、平行向量的定义以及平行四边形的 判定方法是解此题的关键.
17.已知一个单位向量 e ,设 a 、 b 是非零向量,那么下列等式中正确的是( ).
2.四边形 ABCD 中,若向量 与 是平行向量,则四边形 ABCD ( )
A.是平行四边形
B.是梯形
C.是平行四边形或梯形
D.不是平行四边形,也不是梯形
【答案】C
【解析】
【分析】
根据题目中给的已知条件 与 是平行向量,可得 AB 与 CD 是平行的,且不确定 与
的大小,有一组对边平行的四边形可能是梯形或者平行四边形,故可得答案.
C. OC
D. OD
【分析】
由四边形 ABCD 是平行四边形根据平行四边形法则,可求得 BC AD n ,然后由三角形
法则,求得 AC 与 BD ,继而求得答案.
【详解】
∵四边形 ABCD 是平行四边形,
∴ BC AD n ,
∴ AC = AB BC m n , BD= AD AB n m ,

,则向量 关于
A.
B.
C.
D.
【答案】B 【解析】 【分析】 由△ABC 中,两条中线 AE、CF 交于点 G 可知, 【详解】 ∵
,求出 的值即可解答.



故本题答案选 B. 【点睛】 本题考查向量的减法运算及其几何意义,是基础题.解题时要认真审题,注意数形结合思 想的灵活运用.
4.如图,已知向量 a , b , c ,那么下列结论正确的是( )
B 、符合向量的长度及方向,正确;
C 、由于单位向量只限制长度,不确定方向,故错误; D 、左边得出的是 a 的方向,右边得出的是 b 的方向,两者方向不一定相同,故错误.
B. 2 1 2 1 11 2 ,错误;
C. 3 8 2 2 1 8 12 2 4 ,错误; 2
D. 5 2 5 2 2 2 2 ,错误; 2
故答案为:A. 【点睛】 本题考查了向量垂直的问题,掌握向量互相垂直的性质以及判定是解题的关键.
15.如图,点 C 、 D 在线段 AB 上, AC BD ,那么下列结论中,正确的是( )
解:A. 设 e 为单位向量,那么| e | 1,此选项说法正确; B. 已知 a 、 b 、 c 都是非零向量,如果 a 2c , b 4c ,那么 a / /b ,此选项说法正
确;
C. 四边形 ABCD 中, 如果满足 AB / /CD ,| AD || BC |,即 AD=BC,不能判定这个四边
∴ OA=- 1 AC 1 m n ,OC= 1 AC 1 m n
2
2
2
2
OB=- 1 BD 1 n m , OD= 1 BD 1 n m
2
2
2
2
故选:C.
【点睛】
此题考查了平面向量的知识以及平行四边形的性质.注意掌握三角形法则与平行四边形法
则的应用是解此题的关键.
【详解】
解:∵在平行四边形 ABCD 中, AB a , AD b ,
∴ AC AB AD a b , BD AD AB b a ,M 分别为 AC、BD 的中点,
∴ MA 1 AC 1 a b 1 a 1 b ,故 A 不符合题意;
2
2
22
MB 1 BD 1 b a 1 a 1 b ,故 B 不符合题意;
【点睛】
本题主要考查的相等向量与相反向量,熟练掌握定义是解题的关键;就本题而言,就是正
确运用相等向量与相反向量的定义判断 A、B、D 三项结论正确.
12.下列各式正确的是( ).
A. 2 a b c 2a b c
B.3a b 3b a 0
C. AB BA 2AB
【答案】D
初中数学向量的线性运算图文答案
一、选择题 1.在平行四边形 ABCD 中, AC 与 BD 交于点 M ,若设 AB a , AD b ,则下列选项
与 1 a 1 b 相等的向量是( ). 22
A. MA
【答案】D
B. MB
C. MC
D. MD
【解析】
【分析】
根据向量加法的平行四边形法则和平行四边形的性质逐一判断即可.
故选 D. 【点睛】 本题是对平面向量计算法则的考查,熟练掌握平面向量计算法则是解决本题的关键.
13.如图,□ ABCD 对角线 AC 与 BD 相交于点 O ,如果 AB m , AD n ,那么下列
选项中,与向量 1 m n 相等的向量是( ). 2
A. OA
【答案】C 【解析】
B. OB
D. a b 3a 5b 4a 4b
【解析】
【分析】
根据平面向量计算法则依次判断即可.
【详解】
A、 2 a b c 2a 2b c ,故 A 选项错误;
B、 3 a b 3 b a 3a 3b+3b 3a=6b ,故 B 选项错误;
C、 AB BA 0 ,故 C 选项错误; D、 a b 3a 5b 4a 4b ,故 D 选项正确;
10.点
C
在线段
AB
上,且
AC
3 5
AB
,若
AC
mBC
,则
m
的值等于(
).
A. 2 3
【答案】D
B. 3 2
C. 2 3
D. 3 2
【解析】
【分析】
根据已知条件即可得: CB AB AC 2 AB ,从而得出: AB 5 BC ,再代入
5
2
AC 3 AB 中,即可求出 m 的值. 5
A. OC 3,20190 ,OD 31,1
B. OE 2 1,1 ,OF 2 1,1
C.
OG
3
8,
1 2
, OH
2
2 ,8
D. OM
5 2,
2 ,
5 2,
2 2
【答案】A
【解析】
【分析】
根据题意中向量垂直的性质对各项进行求解即可.
【详解】
A. 3 31 20190 1 0 ,正确;
A. AC 与 BD 是相等向量
B. AD 与 BD 是平行向量
C. AD 与 BD 是相反向量
【答案】B 【解析】
D. AD 与 BC 是相等向量
【分析】
由 AC=BD,可得 AD=BD,即可得 AD 与 BD 是平行向量, AD BC,AC BD ,继而
证得结论.
【详解】
A、∵AC=BD,
∴ AC BD ,该选项错误;
14.规定:在平面直角坐标系中,如果点 P 的坐标为 m, n ,向量 OP 可以用点 P 的坐标
表示为: OP m, n .已知 OA x1, y1 , OB x2 , y2 ,如果 x1 x2 y1 y2 0 ,那么
OA 与 OB 互相垂直.在下列四组向量中,互相垂直的是( )
2
2
22
MC 1 AC 1 a b 1 a 1 b ,故 C 不符合题意;
2
2
22
MD 1 BD 1 b a 1 a 1 b ,故 D 符合题意.
2
2
22
故选 D.
【点睛】 此题考查的是平行四边形的性质及向量的加、减法,掌握平行四边形的对角线互相平分和向 量加法的平行四边形法则是解决此题的关键.
()
ห้องสมุดไป่ตู้
A. a / /b
B. a b
C. BD 7 2
D. a 与 b 方向相反
【答案】C
【解析】
【分析】
利用相等向量与相反向量的定义逐项判断即可完成解答.
【详解】
解:已知 a=2c , b= 2c ,故 a,b 是长度相同,方向相反的相反向量,
故 A,B,D 正确,
向量之和是向量,C 错误,
相关文档
最新文档