高压电力设备在线监测技术 第5章 电力电缆在线监测与诊断
电力设备的在线监测与故障诊断

在线监测与故障诊断技术的发展趋势和未来发 展方向
智能化:利用人工智能和大数据技术提高监测和诊断的准确性和效率。
实时性:提高监测的实时性,以便及时发现和解决故障,减少设备 停机时间。
远程化:通过远程监测和诊断技术,减少现场维护成本和时间。
集成化:将多个监测系统集成在一起,实现统一管理和数据共享。
提高在线监测与故障诊断技术的有效途径和方 法
添加标题
添加标题
添加标题
数据处理模块:对采集的数据进 行预处理、分析和特征提取,为 后续的故障诊断提供依据。
预警与控制模块:根据故障诊断 结果,及时发出预警信号,并采 取相应的控制措施,保障电力设 备的安全稳定运行。
监测技术应用场景
变压器在线监测
高压断路器在线监测
输电线路在线监测
配电设备在线监测
监测技术发展趋势
提高运行效率:通过对电力设备的在线监测和故障诊断,优化设备运行状 态,提高运行效率。
在线监测与故障诊断技术在电力设备故障预警 和预防中的作用
预测设备寿命,制定维修计 划,避免突然停机
提高设备运行可靠性,减少 非计划停机时间
实时监测设备运行状态,及 时发现潜在故障
为故障诊断提供数据支持, 辅助技术人员快速定位故障
电力设备在线监测与故障诊断的应 用
在线监测与故障诊断在电力系统中的重要性
提高电力设备运行可靠性:通过实时监测和故障诊断,及时发现并解 决潜在问题,降低设备故障率,提高运行稳定性。
延长设备使用寿命:及早发现设备异常,采取相应措施,可有效延 长设备使用寿命,降低更换成本。
提高电力系统的安全性能:在线监测与故障诊断能够及时发现并预警 潜在的安全隐患,保障电力系统的安全稳定运行。
探讨高压断路器的在线监测与诊断

探讨高压断路器的在线监测与诊断摘要:高压断路器在供配电系统中得到了广泛的应用,其对局域电网电压的调节、控制、保护作用使其在现代供配电系统中占有不可替代的地位。
但高压断路器在电网正常供配电中产生的故障则有可能造成局部甚至于整个电网的供配电系统瘫痪,因此,对高压断路器进行实时的监测、故障诊断与排除对于保障供配电系统的安全稳定是极为重要的。
关键词:高压;断路器;在线监测;诊断现代社会的高速发展使得城乡地区主要动力源从传统的石油煤炭逐渐向清洁度高、污染较小、安全稳定性高的电力转变。
而长距离高压供配电系统、地区电网供配电系统以及局部电网供配电系统在进行正常工作时常会根据实际的需要对某部分的供配电进行限制、调节、保护、控制等管理,因此就需要大量的断路器接入供配电电网系统中以实现其特定的功能。
一、高压断路器高压断路器是串联在电网线路中用以对电网供配电流进行切断、限制、过流保护作用的装置,俗称高压开关。
它在供配电电网中主要有控制电网供配电和保护供配电系统等作用。
(一)控制在供配电系统需要进行大范围的检修、设施更换时或者在进行其他作业,有可能发生触电人身伤亡事故时,在没有带电作业条件的情况下可以通过切断高压断路器的方式来切断局部电网中的电流供应。
(二)保护断路器的保护作用主要是指在电网中供配电正常工作时,对于由于短路、过载等引起的线路过流而进行的强制性切断电力供应动作,有些生产性企业对于部分价格较为昂贵、工作技术条件要求比较苛刻的电力设备会同时安装过载保护断路器和欠压保护断路器,以防止设备过载或者欠压运转产生的设备机械故障。
目前社会上广泛采用的高压断路器主要有油断路器(多油断路器、少油断路器)、六氟化硫断路器(SF6 断路器)、真空断路器、压缩空气断路器等几种,根据不同的安装要求和使用环境进行合理的选择。
二、高压断路器的在线监测与诊断由于高压断路器一般是通过串联的方式接入供配电系统动力线中,因此,在供配电工作中断路器能否处于正常工作状态不仅影响着其在供配电系统出现故障时能否进行及时的应急响应,而且很大的影响到供配电系统能否以稳定、安全、可靠的状态进行供配电作业。
电气设备在线监测与故障诊断第章

电气设备在线监测与故障诊断第一章电力系统监测与安全问题分析1.1 电力系统监测的重要性在当今电力系统的运行中,电力设备的在线监测已经成为电力行业不可或缺的一项重要工作。
通过对电力系统内设备的监测,可以及时检测到设备的运行状态并对异常情况进行预警,有利于在设备出现故障之前及时采取措施排查问题。
1.2 电力设备故障的危害性电力设备的故障会直接影响到电力系统的安全稳定运行。
因此,通过在线监测并及时诊断并排查故障,有助于避免因设备故障导致的停电、事故等重大损失。
第二章电力设备在线监测技术2.1数据采集技术通过对电力设备的实时监测和采集数据,可以获取在高温、高压、高电磁干扰、高振动等严酷环境下工作的电器设备内部信息。
传感器、数据采集器等实现电量、电流、电压、功率因数、频率、温度、振动等各种参数的在线检测和监测,可以精确地掌握各种关键参数,在设备出现异常之前及时发现问题。
2.2 云计算与大数据随着电力设备在线监测的应用越来越广泛,大量数据被采集并存储在云端。
这些数据不能仅仅是堆积在服务器上,需要通过应用大数据技术,分析每个设备所产生的数据信息,实现故障预测、监控设备运行参数波动等功能。
通过大数据的分析、挖掘以及对故障机理的研究,可以更精准地识别故障源,提高设备的健康度。
2.3 物联网技术在物联网技术的支持下,不同的设备可以自动地和其他设备进行通信而实现自主管理,同时,物联网技术还可以为设备提供远程协议及数据管理。
通过物联网技术的远程操作,可以大大减少因现场配置问题而带来的风险,实现人机可远程交互,提高运行效率。
第三章故障诊断技术3.1 基于数据分析的故障诊断通过对电力设备的历史数据进行分析,可了解其运行状况。
如果设备运行的某个参数出现了异常,这个异常是否可以被认为是故障?哪一台设备在其运行与其他电器设备形成的联动中存在故障?这些诊断都可以通过分析数据常见到达。
基于数据分析的故障诊断技术将成为关键的手段,帮助管理人员保障设备运行的稳定性。
高压开关柜的在线监测与故障诊断技术(三篇)

高压开关柜的在线监测与故障诊断技术高压开关柜是电力系统中重要的电气设备之一,用于控制和保护电力系统中的电器设备。
其在线监测与故障诊断技术的研究和应用对于确保电力系统的稳定运行和故障快速处理具有重要意义。
本文将从高压开关柜的在线监测技术和故障诊断技术两个方面展开论述。
高压开关柜的在线监测技术是指通过传感器和数据采集装置将开关柜的运行状态参数进行实时监测,并通过远程通信技术传输到监控中心,进行实时分析和监控。
其主要包括以下几个方面的内容:第一,温度监测。
高压开关柜中的电器设备在运行时会产生一定的热量,如果温度过高可能导致设备失效或发生故障。
因此,通过设置温度传感器对高压开关柜的关键部位进行温度监测,可以及时发现异常情况并进行预警。
第二,电流监测。
高压开关柜中的电流是电力系统正常运行的基本依据,通过安装电流传感器对高压开关柜中电流进行实时监测,可以掌握设备的运行状态,提前预防设备过载或短路等故障的发生。
第三,压力监测。
高压开关柜中的气体压力是其正常运行的重要参数,通过安装压力传感器对高压开关柜中的气体压力进行监测,可以及时发现气体泄漏或压力异常,防止设备损坏或发生爆炸等事故。
第四,湿度监测。
高压开关柜中的湿度会影响设备的绝缘性能和运行稳定性,通过安装湿度传感器对高压开关柜中的湿度进行监测,可以及时发现湿度过高或过低的情况,采取相应的措施保障设备的正常运行。
高压开关柜的故障诊断技术是指通过监测和分析高压开关柜运行时产生的信号,判断设备是否存在故障,并通过相应的算法和方法对故障进行诊断和定位。
其主要包括以下几个方面的内容:第一,振动分析。
高压开关柜在运行时会产生一定的振动信号,通过对振动信号进行分析,可以判断设备是否存在运行不稳定、松动或其他故障。
第二,红外热像技术。
通过红外热像仪对高压开关柜的外观进行拍摄,可以观察设备局部温度分布情况,通过温度异常点的识别和定位,判断设备是否存在故障。
第三,气体分析。
高压开关柜在运行时会产生一定的气体,通过对开关柜内气体的成分和浓度进行分析,可以判断设备是否存在绝缘失效、短路故障等情况。
电力设备的在线监测与故障诊断第二版课程设计

电力设备的在线监测与故障诊断第二版课程设计一、背景介绍电力设备在长期运行过程中企业中无法避免出现一些故障,如果不能及时诊断和解决,会对正常的生产经营产生不良的影响。
因此,针对电力设备的在线监测与故障诊断是电力生产企业所必须掌握的重要技术之一。
为此,在电力行业中,电力设备的在线监测与故障诊断具有十分重要的地位。
二、课程目标本课程旨在让学员了解电力设备的管理及监测方法,相关设备的维护与保养,以及故障诊断技术等方面的知识。
课程将从以下三个方面来进行讲解:1.电力设备的在线监测技术2.电力设备的故障诊断技术3.电力设备的维护与保养三、课程大纲1. 电力设备的在线监测技术1.1 监测手段•无线传感器网络•云平台监测•其他现代化的监测手段1.2 监测器件•传感器•监测仪•其他相关器件1.3 监测内容•温度•压力•振动•声音•工作情况•等等2. 电力设备的故障诊断技术2.1 诊断手段•媒介传播法•特征频率法•神经网络法•统计学法•等等2.2 诊断技术•健康评估•健康预警•健康诊断•健康维护•等等2.3 故障诊断范例与案例分析3. 电力设备的维护与保养3.1 维护•正确的验收•定期的维护•现场维护•等等3.2 保养•运行保养•停机保养•季节保养•等等3.3 保养计划四、课程特点本课程采用在线教学方式,主要通过PPT讲解、实验、讨论、案例介绍等形式来进行。
优点如下:1.根据适合学员的学习情况分为基础知识讲解,课堂互动讨论和案例学习等不同环节2.加强实际应用的训练,每个环节都涉及到实际操作3.采用案例式教学,理论和实践相结合,使学员掌握知识更有针对性,容易理解五、课程考核1.考勤是否到达2.平时作业得分3.实验报告4.期末大作业六、总结在电力行业中,电力设备的在线监测与故障诊断相当重要。
本课程着重从技术、方法和管理三个方面对学生进行思维和实践的训练,让他们在日后的工作中表现更为优秀。
电力设备的在线监测与故障诊断第二版教学设计

电力设备的在线监测与故障诊断第二版教学设计一、引言随着电力设备的逐步智能化发展,对于设备的在线监测和故障诊断的要求也越来越高。
本教学设计旨在通过课堂教学和实验操作两个环节,对学生进行电力设备在线监测与故障诊断相关知识的掌握。
二、教学目标1.理解电力设备在线监测的基本原理和常用技术;2.掌握电力设备故障诊断的方法和流程;3.学习使用相关在线监测与故障诊断设备进行实验操作。
三、教学内容1.电力设备在线监测技术1.在线监测系统组成及原理2.传感器原理和常用传感器类型3.信号采集与分析技术2.电力设备故障诊断方法1.故障诊断基本流程2.常用故障诊断方法及原理3.故障诊断案例分享3.实验操作环节1.熟悉在线监测与故障诊断设备2.基本操作和功能练习3.实验数据处理和分析四、教学方法1.理论课堂授课:通过教师讲解、案例分析和讨论等形式,让学生掌握电力设备在线监测和故障诊断的基本概念和方法,了解监测与诊断技术的最新进展。
2.实验操作:通过使用设备进行实验操作,让学生深入了解在线监测与故障诊断设备的组成和原理,并且掌握相关操作技能。
3.电子教学:提供电子学习资源,本着学生为中心的原则,让学生自主选择自己感兴趣的课程内容进行学习。
五、教学评估1.课堂考试:通过考试形式,检查学生对于本教学内容的掌握程度。
2.实验报告:对学生的实验操作及数据分析进行评估,检查是否熟练掌握在线监测与故障诊断设备的操作和数据处理能力。
3.学生评价:通过学生的反馈意见,了解学生对教学方法和教学内容的评价,以此改进教学。
六、教学资源1.本教学设计包含课件、实验操作内容、教学视频等多种电子教学资源,供学生自主学习和巩固所学内容。
七、总结本教学设计旨在通过课堂教学和实验操作两个环节,对学生进行电力设备在线监测与故障诊断相关知识的掌握。
本教学设计内容全面,结构合理,增加了实验操作环节,有助于学生更好的掌握在线监测与故障诊断设备的操作和数据处理能力,提高其应用实践能力。
电力设备的在线监测与故障诊断PPT课件

变压器绕组变形的监测
变压器绕组变形的监测
离线检测方法:短路阻抗测量法、频响分析法、低 压脉冲法、径向漏磁场测试法
在线监测方法:短路电抗法、振动信号分析法、频 响分析法
短路电抗法
振动法
变压器本体振动来源
硅钢片磁滞伸缩引起铁芯振动 硅钢片接缝处和叠片之间存在因漏磁引起的电磁吸引力,
电气设备状态监测与故障诊断的意义
电气设备的组成:绝缘材料、导电材料、导磁材料等。
绝缘材料大多为有机材料:矿物油、绝缘纸、各种有机合成 材料,运行中受电、热、机械、环境等各种因素的作用,容 易发生劣化,造成设备故障。——设备绝缘结构性能的好坏, 成为决定整台设备寿命的关键。
由于大型电气设备发生故障而造成突发性停电事故,会造成 巨大的经济损失和不良的社会影响。
局部放电监测的意义
局部放电是造成高压电气设备最终发生绝缘击穿的主 要原因。这是一个“日积月累”的过程,可谓“冰冻 三尺非一日之寒”。
刷形树枝
丛林状树枝
变压器中局部放电类型
气隙放电
(1)密封于固体内的气泡。例如:铁芯环氧绑扎带内的气泡。 (2)油和固体包围的气泡。例如:纸板夹层的气泡。
悬浮放电
不同故障类型产生的气体组分
故障类型
主要气体成分
油过热 油和纸过热
CH4、C2H4 CH4、C2H4、CO、CO2
油纸绝缘中局部放电
H2、CH4、C2H2、CO
油中火花放电
C2H2、H2
油中电弧
H2、C2H2
油和纸中电弧
H2、C2H2、CO、CO2
次要气体成分
H2、C2H6 H2、C2H6 C2H6、CO2
动触头的行程可以通过旋转编码器进行监测。
电力机械设备在线监测与故障诊断技术研究

电力机械设备在线监测与故障诊断技术研究第一章:引言随着电力工业的发展,电力机械设备在电力系统中起着非常重要的作用,但是由于机械设备的长期使用和维修保养不到位等原因,容易出现各种故障,甚至引发事故,这对于电力系统的正常运行和稳定性影响非常大。
因此,电力机械设备的在线监测和故障诊断技术逐渐成为研究的热点,本文将介绍一些相关技术和研究成果。
第二章:电力机械设备在线监测技术电力机械设备在线监测主要是通过安装相应的传感器和检测设备,对设备的电气、机械、热学等性能进行实时监测,及时发现异常情况,得出故障预警,从而提高设备的可靠性和运行效率。
常用的在线监测技术包括:1. 振动监测技术:通过在设备上安装振动传感器,对设备的振动情况进行监测,可以判断设备是否出现故障,并能够初步确定故障的类型。
2. 温度监测技术:通过安装温度传感器,对设备的温度进行监测,能够提前发现设备出现过热等异常情况。
3. 油液监测技术:通过对设备的油液状态进行实时监测,能够发现油液的变质、污染等情况,及时进行维修。
4. 电量监测技术:通过监测电力设备的电量变化情况,可以判断设备是否正常运行。
第三章:电力机械设备故障诊断技术电力机械设备故障诊断技术是针对设备出现故障时,通过检测和分析故障信号和参数,确定故障原因并进行修复,以保证设备的正常运行。
常用的故障诊断技术包括:1. 基于模型的故障诊断技术:这种方法是基于设备的数学模型进行分析和预测,通过与实际运行数据比对,确定设备的故障类型和故障位置。
2. 数据驱动的故障诊断技术:这种方法是基于大量历史数据,通过机器学习等算法分析数据,建立故障模型,对实时数据进行监测和分析,从而实现故障诊断与预测。
3. 智能算法的故障诊断技术:通过应用智能算法,如神经网络、遗传算法等技术,对设备运行数据进行分析和处理,从而实现故障诊断和预测。
第四章:电力机械设备在线监测与故障诊断技术的应用实例1. 发电机振动监测系统:通过在发电机上安装振动传感器、温度传感器、油液监测装置等设备,建立实时监测系统,能够对振动、温度、油液等情况进行监测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15
电缆敷设情况
电压等级 / kV 10 35 110 (66) 220 (330) 电缆总长度 / km 73,664 11,569 05,303 00,528 XLPE电缆所占比例 /% 98.2 95.3 90.7 57.9
500
00,056
42.7
16
电缆故障率 按电压等级
17
电缆故障率 按运行时间
电力电缆监测和诊断方法
离线方法 直流法 工频法 低频法 综合判断法
22
对已运行油纸电力电缆的试验项目
项目 测量绝缘电阻 周期 1~3 年一次 类型 直流耐压试验 并测量泄漏电 流 主干线每年 一次 油纸 橡塑 电缆油的耐压 电缆油的 tgδ 2~3 年一次 2~3 年一次 标准 绝缘电阻的标准自行规定 试验电压标准 额定电压 U0(kV) 15~35 63~110 220 330 2~35 试验电压 4 U0 2.6 U0 2.3 U0 2 U0 2.5 U0 说明 1kV 以上者用 2.5kV 兆欧表 加电压 5min,除塑 料电缆外,三相泄 漏电流的不平衡 系数应不大于 2 耐压试验用的标 准油杯 测 tgδ 用的标准 油杯
11kVrms
more than 22kVrms
Rated highest voltage +α
AC breakdown voltage (kV)
水树枝劣化的监测方法:
●Detection of bridged water tree On-line diagnostic methods ●Detection of un-bridged water tree Off-line diagnostic methods
1913年 霍希施泰特研制成分相屏蔽电缆。
1981年 研制成1000kV的特高压电力电缆。
7
XLPE电缆
• 结构简单 • 无敷设落差限制 • 安装维护方便 • 1952年:发明XLPE材料 • 1957年:GE制成XLPE电缆 • 50年代末:第一代工艺 | 湿法交联 • 70年代末:第二代工艺 | 干式交联 • 80年代中后期:第三代工艺 | 净化材料,自动控制
Resistance measured by DC leakage current 直流漏れ電流法による絶縁抵抗( MΩ) (MΩ)
直流重畳法による絶縁抵抗( MΩ) Resistance measured
DC power supply
Measuring equipment
cable
Test circuit
18
§5.2 电缆绝缘的劣化和诊断内容
电缆故障原因
B
C D
编号
A B C
电缆故障原因
外力破坏 附件制造质量缺陷 敷设施工质量缺陷
比例
58% 27% 12%
A
D
电缆本体质量缺陷
3%
19
交联聚乙烯电缆的寿命
电压寿命极限
额定 电压
3-6kVrms
10
BDV; 10-20kV
No. of BD samples
34
直流泄漏电流
DC power supply (buttery)
terminal
guard electrod e
recorder
cable
试验线路
判断标准
泄漏电流值 电流波形 状态良好 <0.1μA Normal 损坏或值得注意 0.1-1μA ≧1μA
PI (= I1 / I10) <1 Existence of kick
23
运行中油不小于 45kV,新油不小于 50kV
+2℃时,运行中油不大于 1%,新油不大 100于 0.5%
XLPE预试时不宜用直流耐压
• 运行后常有(电、水)树枝生成
• 直流耐压时沿树枝有电荷注入 • XLPE电阻率极高,短路时电荷放不完
• 再加交流时电场畸变,更易击穿
24
XLPE几种停电预试方案
L、C
调谐于50 Hz
杂散电流Es的影响 正、反向 叠加直流
电压消除
48
直流叠加法
判断规则 测得绝缘电阻
大于1000 M 绝缘良好
小于10 M 绝缘不良
介于两者间
加强监测
试验证明:用直流叠加法测得的绝缘电阻与停 电后加直流高压时的测试结果很相近。
49
DC Superposition Method
借助电抗器将直流电压在线叠加于电缆绝缘测量直流叠加电流。
45
直流叠加法
防止影响GPT二次输出电压
直流电压不能很高,约1050 V
直流电压不高 电缆绝缘处于交流高压作用下 真实反映绝缘的实际状况
46
直流叠加法
6 kV XLPE电缆
直流叠加电流
与
水树长度 的关系
47
直流叠加法
保证安全
●DC 5 - 50V is superimposed on the high voltage in service. ●DC component in leakage current is measured.
by DC superposition method (MΩ)
Relationship between DC superposition method and DC leakage current.
第五章 电力电缆在线监测 与诊断
On-line monitoring and fault diagnosis for power cable
1
本章内容
• • • • 概述 电缆绝缘的劣化和诊断内容 电缆绝缘的在线监测 电缆的故障定位方法
2
§5.1 概述
什么是电力电缆?
架空线 电力传输通道 电力电缆
8
电缆的种类
油纸绝缘电缆 气体绝缘电缆 塑料绝缘电缆
9
聚氯乙烯电缆
塑料绝缘电缆 聚乙烯电缆
XLPE(交联聚乙烯电缆)
100 150
1 2 3 66 0 74 78 82 86
1. 电力电缆合计
铜量/1000t
2. XLPE电缆
3. 油纸电缆
50
10
交联聚乙烯电缆
XLPE, cross linked polyethylene 30余年历史 性能优良、工艺简单、安装方便 得到广泛应用
(2)从投运到破坏的时间需要数年至十几年,大多 数在10年以上。
(3)贯通绝缘体的水树枝状劣化,大部分能维持正 常工作电压以上的电压值,只有在发生脉冲电压等 异常电压时才产生破坏。
(4)环境温度高时,劣化进程加快。
因此对电力电缆绝缘本体进行故障监测是可行 的,也是必要的。
21
§5.3 电缆绝缘的在线监测
11
XLIE电缆的基本结构
12
交联聚乙烯绝缘电缆结构示意图
1、导体 2、导体屏蔽 3、交联聚乙烯绝缘 4、绝缘屏蔽 5、金属屏蔽 6、填充 7、内衬层 8、铠装层 9、外护 套 13
1. 导电线芯:高导电率材料,绞线承圆形或扇形截 面。
2. 绝缘层:高电阻率材料,tg、 低而电气强度Eb 高的油浸纸、橡皮或塑料。 3. 密封护套:保护绝缘线芯免受机械、水分、化学 等的损伤,有时外部还有保护覆盖层。 4. 半导体层的作用:均匀电场,它可以克服电晕及 游离放电,使芯线与绝缘层之间有良好的过渡。
• 用超低频0.1Hz测tanδ及耐压 • 用交流(串联谐振)测tanδ及耐压 • 用振荡波试验耐压
• 测回复电压
• 测极化去极化电流
• 测损耗电流中的谐波分量
25
回复电压的测量方法
26
回复电压实例
27
Tettex 5462
28
极化去极化电流测量原理
29
极化去极化电流典型曲线
30
PDC-ANALYSER-1MOD
●DC leakage current is highly sensitivity.
39
回路中流通微弱的直流成分电流
直流成分电流监测
微电流测量装置
微电流测量仪
低通滤波器
衰减交流成分、检出直流成分 接地保护装置 保证试验人员和装置的安全
40
直流成分电流监测
6 kV XLPE电缆交流击穿电压与 直流分量的关系
41
直流成分电流监测
判断规则 直流成分电流 小于1 nA 绝缘良好
3
为什么使用电缆?
输电通道小 不受环境污染影响 使用电缆的优点 可靠性高 对人身及周围环境干扰小
特殊应用环境
4
制造工艺复杂 使用电缆的缺点 造价高 施工维修麻烦
5
电力电缆发展简史
6
电力电缆的使用至今已有百余年历史。
1879年 爱迪生首次使用电缆实现地下输电。
1911年 德国敷设60kV高压电缆。
BDV of cable with bridged WT
Electrical tree
Insulation layer
Insulation layer 20 tree Un-bridged water
Bridged water tree
根据现场运行经验,水树枝劣化特性如下: (l)仅发生在6kV以上的高压交联聚乙烯电缆中。
直流法
直流成分电流监测
直流叠加法
直流电桥法
37
直流成分电流监测
直流成分法机理
电缆中存在水树时,类似尖板电极具有整流作用。因此 在工作电压下,电缆绝缘中将流过微小的直流电流。根据这一 电流的数值,既可判断电缆中水树的发展状况。
38
直流成分电流监测
直流成分电流监测原理接线
TR 配电变压器 GPT 接地保护用 电压互感器 M 直流微电流 检测装置 (nA级)