载流子浓度和电导率.55页PPT
实验四 霍尔效应法测量半导体的载流子浓度、电导率和迁移

实验四霍尔效应法测量半导体的载流子浓度、电导率和迁移一、实验目的1.了解霍尔效应实验原理以及有关霍尔元件对材料要求的知识。
2.学习用“对称测量法”消除副效应的影响,测量并绘制试样的VH-IS和VH-IM 曲线。
3.确定试样的导电类型、载流子浓度以及迁移率。
二、实验原理置于磁场中的半导体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普斯金大学研究生霍尔于1879年发现的,后被称为霍尔效应。
随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。
通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。
若能测量霍尔系数和电导率随温度变化的关系,还可以求出半导体材料的杂质电离能和材料的禁带宽度。
如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz)、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。
在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广阔的应用前景。
了解这一富有实用性的实验,对日后的工作将有益处。
霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。
对于图(1)(a)所示的N型半导体试样,若在X方向的电极D、E上通以电流Is,在Z方向加磁场B,试样中载流子(电子)将受洛仑兹力:(1)其中e为载流子(电子)电量,为载流子在电流方向上的平均定向漂移速率,B为磁感应强度。
(a)(b)图(1) 样品示意图无论载流子是正电荷还是负电荷,Fg的方向均沿Y方向,在此力的作用下,载流子发生便移,则在Y方向即试样A、A´电极两侧就开始聚积异号电荷而在试样A、A´两侧产生一个电位差VH,形成相应的附加电场E—霍尔电场,相应的电压VH称为霍尔电压,电极A、A´称为霍尔电极。
电导率、迁移率、霍耳效应ppt

② 温度升高到杂质饱和电离区: 杂质已全部电离,本征激发还不显著,载流子浓度基本 不变 晶格振动散射是主要的.随着温度T的升高,迁移率下降,
T↑ → μ↓ → ↑
电阻率随温度升高而增大
③ 进入本征区后 随着温度T的升高,载流子浓度迅速增加,
而迁移率μ下降,但大量本征载流子的产生远远超过迁移 率减小对电阻率的影响。
NI ↑→电离杂质散射渐强→ μ随T 下降的趋势变缓
NI很大时(如1019cm-3),在低温的情况下, T↑,μ ↑(缓慢),说明 杂质电离项作用显著;在高温的情况下, T↑,μ↓,说明晶格散射作 用显著.
总之:低温和重掺杂时,电离杂质散射主要; 高温和低掺杂时,晶格振动散射主要。
室温下迁移率与杂质浓度关系
半导体片置于xy平面内
—— 电流沿x方向
—— 磁场垂直于半导 体片沿z方向
空穴导电的P型半导体, 载流子受到洛伦兹力
半导体片两端形成正负电荷的积累,产生静电场 达到稳恒,满足
电流密度 电场强度
—— 霍耳系数 电子导电的N半导体 电场强度
—— 霍耳系数
—— 霍耳系数
—— 霍耳系数
—— 半导体的霍耳系数与载流子浓度成反比 —— 半导体的霍耳效应比金属强得多 —— 测量霍耳系数可以直接测得载流子浓度 —— 确定载流子的种类
即: E,随着E的增加, E下降,因此,欧姆定律不再
成立.
⒊当E>105V/cm后, vd达到一饱和值,称为饱和漂移
速度.vd
max
107 cm
s
载流子热运动平均速度.
GaAs 电子
lg vd
Ge电子
Ge空穴
实验四 霍尔效应法测量半导体的载流子浓度、电导率和迁移

实验四霍尔效应法测量半导体的载流子浓度、电导率和迁移一、实验目的1.了解霍尔效应实验原理以及有关霍尔元件对材料要求的知识。
2.学习用“对称测量法”消除副效应的影响,测量并绘制试样的VH-IS和VH-IM 曲线。
3.确定试样的导电类型、载流子浓度以及迁移率。
二、实验原理置于磁场中的半导体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普斯金大学研究生霍尔于1879年发现的,后被称为霍尔效应。
随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。
通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。
若能测量霍尔系数和电导率随温度变化的关系,还可以求出半导体材料的杂质电离能和材料的禁带宽度。
如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz)、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。
在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广阔的应用前景。
了解这一富有实用性的实验,对日后的工作将有益处。
霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。
对于图(1)(a)所示的N型半导体试样,若在X方向的电极D、E上通以电流Is,在Z方向加磁场B,试样中载流子(电子)将受洛仑兹力:(1)其中e为载流子(电子)电量,为载流子在电流方向上的平均定向漂移速率,B为磁感应强度。
(a)(b)图(1) 样品示意图无论载流子是正电荷还是负电荷,Fg的方向均沿Y方向,在此力的作用下,载流子发生便移,则在Y方向即试样A、A´电极两侧就开始聚积异号电荷而在试样A、A´两侧产生一个电位差VH,形成相应的附加电场E—霍尔电场,相应的电压VH称为霍尔电压,电极A、A´称为霍尔电极。
电导率电阻率与载流子浓度

半导体物理与器件
电阻率和杂质浓度的关系
右图所示为 N型和P型硅 单晶材料在 室温(300K) 条件下电阻 率随掺杂浓 度的变化关 系曲线。
半导体物理与器件
右图所示为N型 和P型锗、砷化 镓以及磷化镓单 晶材料在室温 (300K)条件下电 阻率随掺杂浓度 的变化关系曲线。
半导体物理与器件
电阻率(电导率)同时受载流子浓度(杂质浓度)和 迁移率的影响,因而电阻率和杂质浓度不是线性关系。
射起主要作用,随温度升高迁移率下降
本征区,载 流子浓度随 温度升高而 迅速升高,
低温
饱和
本征
T
低温下晶格振动不明显,本征载流子浓度低。 电离中心散射随温度升高而减弱,迁移率增加
半导体物理与器件
载流子的漂移速度饱和效应 前边关于迁移率的讨论一直建立在一个基础之上:弱场
条件。即电场造成的漂移速度和热运动速度相比较小,从而不 显著改变载流子的平均自由时间。但在强场下,载流子从电场 获得的能量较多,从而其速度(动量)有较大的改变,这时, 会造成平均自由时间减小,散射增强,最终导致迁移率下降, 速度饱和。对于热运动的电子:
右图所示为一块N型 半导体材料中,当施 主杂质的掺杂浓度ND 为1E15cm-3时,半导 体材料中的电子浓度 及其电导率随温度的 变化关系曲线。
半导体物理与器件
从图中可见,在非本征激发为主的中等温度区间内(即大约 200K至450K之间),此时杂质完全离化,即电子的浓度基本 保持不变,但是由于在此温度区间内载流子的迁移率随着温度 的升高而下降,因此在此温度区间内半导体材料的电导率也随 着温度的升高而出现了一段下降的情形。
VT Vd
l
VT
em*ຫໍສະໝຸດ 平均漂移速度 : vd E E
载流子浓度和电导率

价带:gV(E)∝-E 1/2
● 载流子浓度:
导带电子浓度:
no Nc e
Ec EF kT
no ni e
价带空穴浓度:
EF Ei kT
EF Ev kT
po Nv e
P o ni (?)
浓度积:
no po n
2 i
● 本征半导体:
no po ni ,
EF Ei
得: 对三块材料分别计算如下:
Ei EF k T ln
p ni
(ⅰ) 即 p 型半导体的费米能级在禁带中线下 0.37eV 处。 10 3 Ei EF 0 n p n 1.5 10 cm (ⅱ) 02 02 i 即费米能级位于禁带中心位置。 (ⅲ)对 n 型材料有
Vdn nq E
单位场强下电子 的平均漂移速度
nq
上式为电导率和迁移率的关系
J n pqn E
dQ Jn nqV dn dsdt
在电场不太强时,漂移电流遵守欧姆定律,即
J E
其中σ为材料的电导率
E nqVdn
Vdn E nq
E 恒定,Vdn 恒定 E , J, Vdn
平均漂移速度的大小与 电场强度成正比,其比 值称为电子迁移率。
因为电子带负电,所以Vdn一般应和 E 反向,习惯上迁移率只取正值,即
二、本征载流子浓度及影响因素
1. 本征载流 子浓度 ni
no p0 N c NV e no po ni N C NV e
2 Eg kT Eg 2 kT Eg 2 kT Eg kT
ni N C NV e
1/ 2
半导体载流子浓度与电导率的关系

半导体材料在电子学和光学器件领域中具有非常重要的地位,而半导体载流子浓度与电导率之间的关系是决定半导体材料性能的重要因素之一。
在本文中,我们将从半导体材料的基本特性和电导率的定义出发,深入探讨半导体载流子浓度与电导率的关系,帮助读者更全面地理解这一重要的物理概念。
一、半导体材料的基本特性半导体是介于导体和绝缘体之间的材料,其电导率介于导体和绝缘体的电导率之间。
半导体材料的电导率受到两种载流子的影响,即自由电子和空穴。
在纯净的半导体晶体中,自由电子和空穴的浓度几乎相等,因此其电导率较低。
然而,通过掺杂或施加外加电压,可以改变半导体材料中的载流子浓度,从而改变其电导率。
二、载流子浓度与电导率的关系1. 载流子浓度对电导率的影响载流子浓度是半导体材料中自由电子和空穴的数量,它直接影响着半导体材料的电导率。
当半导体材料中的载流子浓度较低时,由于自由电子和空穴的数量有限,它们在外加电场的作用下移动的速度较慢,因此半导体材料的电导率较低。
当半导体材料中的载流子浓度较高时,自由电子和空穴的数量增多,它们在外加电场的作用下移动的速度加快,因此半导体材料的电导率也随之增大。
2. 掺杂对载流子浓度的影响通过向半导体材料中引入掺杂物,可以有效地改变半导体材料中的载流子浓度。
N型半导体是指在半导体晶体中掺杂了大量的施主杂质,使得半导体材料中的自由电子浓度远远大于空穴浓度。
相反,P型半导体是指在半导体晶体中掺杂了大量的受主杂质,使得半导体材料中的空穴浓度远远大于自由电子浓度。
三、个人观点和理解从上述分析可以看出,半导体载流子浓度与电导率之间存在着密切的关系。
在实际的半导体器件中,通过精确控制半导体材料中的载流子浓度,可以实现对器件电性能的精确调控,从而满足不同应用场景的需求。
深入理解半导体载流子浓度与电导率的关系对于半导体器件的设计和制造具有重要的意义。
四、总结与回顾在本文中,我们从半导体材料的基本特性出发,探讨了半导体载流子浓度与电导率的关系。
载流子浓度和电导率

n3
ni 2 p3
(1.51010 )2 2.25104
11016 cm3
(2) 即 p01 n01 2.251016 1104cm3 ,故为 p 型半导体. , p02 n02 即 ni n01 p01 1.51010 cm3 ,故为本征半导体. ,即 p01 n02 2.25104 11016 cm3 ,故为 n 型半导体.
J E
其中σ为材料的电导率
E nqVdn
E 恒定,Vdn 恒定 E , J, Vdn
Vdn
E nq
平均漂移速度的大小与 电场强度成正比,其比 值称为电子迁移率。
因为电子带负电,所以Vdn一般应和 E 反向,习惯上迁移率只取正值,即
Vdn
E nq
(3).当 T=300k 时, k T 0.026eV
由
p
ni
e
x
pE(i EF kT
)
得:
Ei
EF
kT
ln
p ni
对三块材料分别计算如下:
p
2.251016
(ⅰ)
Ei EF
k T ln ni
0.026ln
1.51010
0.37(eV )
即 p 型半导体的费米能级在禁带中线下 0.37eV 处。
(ⅲ)对 n 型材料有
n
ni e x
pE(F Ei kT
)
EF
Ei
k T ln n ni
0.026
ln
1016 1.51010
0.35(eV )
即对 n 型材料,费米能级在禁带中心线上 0.35eV 处。
载流子浓度和电导率.57页PPT

46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。