模拟信号源测试实验

合集下载

模拟信号源实验报告

模拟信号源实验报告

实验1 模拟信号源实验一、实验目的1.了解本模块中函数信号产生芯片的技术参数;2.了解本模块在后续实验系统中的作用;3.熟悉本模块产生的几种模拟信号的波形和参数调节方法。

二、实验仪器1.时钟与基带数据发生模块,位号:.时钟与基带数据发生模块,位号:G G2.频率计1 1 台台3.20M 20M 双踪示波器双踪示波器1 1 台台4.小电话单机1 1 部部三、实验原理本模块主要功能是产生频率、幅度连续可调的正弦波、三角波、方波等函数信号(非同步函数信号),另外还提供与系统主时钟同源的2KHZ 2KHZ 正弦波信号(同步正弦波信号)和模拟正弦波信号(同步正弦波信号)和模拟电话接口。

在实验系统中,可利用它定性地观察通信话路的频率特性,同时用做PAM PAM、、PCM PCM、、ADPCM ADPCM、、CVSD CVSD((Δ M M)等实验的音频信号源。

本模块位于底板的左边。

)等实验的音频信号源。

本模块位于底板的左边。

1.非同步函数信号它由集成函数发生器XR2206 XR2206 和一些外围电路组成,和一些外围电路组成,XR2206 XR2206 芯片的技术资料可到网上搜芯片的技术资料可到网上搜索得到。

函数信号类型由三档开关K01 K01 选择,类型分别为三角波、正弦波、方波等;峰峰值选择,类型分别为三角波、正弦波、方波等;峰峰值幅度范围0~10V 10V,可由,可由W03调节;频率范围约500HZ 500HZ~~5KHZ 5KHZ,可由,可由W02 W02 调节;直流电平可由调节;直流电平可由W01 W01 调节(一般左旋到底)调节(一般左旋到底)。

非同步函数信号源结构示意图,见图2-12-1。

2.同步正弦波信号它由2KHz 2KHz 方波信号源、低通滤波器和输出放大电路三部分组成。

方波信号源、低通滤波器和输出放大电路三部分组成。

方波信号源、低通滤波器和输出放大电路三部分组成。

2KHz 2KHz 2KHz 方波信号由“时方波信号由“时钟与基带数据发生模块”分频产生。

通信原理实验

通信原理实验

上海工程技术大学通信原理综合实验报告学院电子电气工程学院专业电子信息工程班级学号022211117学生沈文杰指导教师赵晓丽一.验证性实验1.模拟信号源实验一、实验目的1、熟悉各种模拟信号的产生方法及其用途2、观察分析各种模拟信号波形的特点。

二、实验内容1、测量并分析各测量点波形及数据。

2、熟悉几种模拟信号的产生方法、来源及去处,了解信号流程。

三、设计思想利用信号源模块和20M 双踪示波器进行模拟信号源实验。

主要测试点和可调器件说明如下:1、测试点2K同步正弦波:2K的正弦波信号输出端口,幅度由W1调节。

64K同步正弦波:64K的正弦波信号输出端口,幅度由W2调节。

128K同步正弦波:64K的正弦波信号输出端口,幅度由W3调节。

非同步信号源:输出频率范围100Hz~16KHz的正弦波、三角波、方波信号,通过JP2选择波形,可调电阻W4改变输出频率,W5改变输出幅度。

音乐输出:音乐片输出信号。

音频信号输入:音频功放输入点(调节W6改变功放输出信号幅度)。

2、可调器件K1:音频输出控制端。

K2:扬声器控制端。

W1:调节2K同步正弦波幅度。

W2:调节64K同步正弦波幅度。

W3:调节128K同步正弦波幅度。

W4:调节非同步正弦波频率。

W5:调节非同步正弦波幅度。

W6:调节扬声器音量大小。

四、实验方法1、用示波器测量“2K同步正弦波”、“64K同步正弦波”、“128K同步正弦波”各点输出的正弦波波形,对应的电位器W1,W2,W3可分别改变各正弦波的幅度。

参考波形如下:2、用示波器测量“非同步信号源”输出波形。

1)将跳线开关JP2选择为“正弦波”,改变W5,调节信号幅度(调节范围为0~4V),用示波器观察输出波形。

2)保持信号幅度为3V,改变W4,调节信号频率(调节范围为0~16KHz),用示波器观察输出波形。

3)将波形分别选择为三角波,方波,重复上面两个步骤。

3、将控制开关K1设为“ON”,令音乐片加上控制信号,产生音乐信号输出,用示波器在“音乐输出”端口观察音乐信号输出波形。

实验2模拟信号源实验

实验2模拟信号源实验
建议
在实验中应该注意安全问题,特别是在使用高电压或大电流的设备时。同时, 应该加强实验前的预习和实验后的总结,以便更好地掌握实验内容和提高实验 效果。
05 参考文献
参考文献
出版年份:XXXX年
作者:张三
文献标题:模拟信号源实 验原理与技术
01
03 02
THANKS FOR WATCHING
感谢您的观看
实验设备
示波器
用于观察信号波形。
幅度计
用于测量信号幅度。
信号发生器
用于产生模拟信号。
频率计
用于测量信号频率。
实验箱
提供必要的电路连 接和测试环境。
实验原理简述
• 模拟信号源是电子测量和通信系统中的重要组成部分,用于产生各种频率、幅度和波形的信号。本实验通过使用信号发生 器和相关测量仪器,探究模拟信号源的基本原理和应用。实验过程中,学生将学习如何设置信号发生器的参数,如频率、 幅度和波形,以及如何使用示波器、频率计和幅度计进行信号的测量和分析。通过本实验,学生将深入了解模拟信号源的 工作原理和性能指标,为后续的电子测量和通信系统实验打下基础。
02 实验步骤
实验准备
1 2
实验器材
信号发生器、示波器、万用表、连接线等。
实验原理
了解模拟信号源的基本原理,包括信号发生器的 组成、工作原理及性能指标等。
3
实验步骤
熟悉实验操作流程,明确实验目的和要求。
实验操作流程
连接信号源与示波器
使用连接线将信号发生器与示波器连接起来, 确保连接稳定可靠。
调整信号源
问题1
信号发生器输出不稳定。
解决方案
检查信号发生器的电源和连接线 ,确保其正常工作。

模拟信号源测试实验

模拟信号源测试实验

实验一:各种模拟信号源测试实验一.实验目的1.熟悉各种模拟信号源的产生方法,波形和用途。

2.熟练掌握各种模拟信号源电路连接及参数调整方法,为后面通信原理实验作准备。

二.实验仪器1.RZ8621D 实验箱一台2.20MHZ 双踪示波器一台3.平口小螺丝刀一个三.实验电路连接图1-1 同步正弦波产生电路图1-2 非同步三角波、正弦波、方波产生电路图1-3 音乐信号产生电路 图1-4 外接信号源接口TP004TTP004R图1-5 电话接口电路图1-6 音频功率放大电路四.实验预习及测量点说明实验前请先了解模拟信号源模块电路并了解同步正弦波产生电路,非同步三角波,正弦波,方波产生电路,音乐信号产生电路,电话接口电路及音频功率放大电路原理。

1.同步正弦信号发生器同步正弦信号发生器可产生与主时钟同步的2KHx正弦波,它主要用于抽样定理及PAM 通信、PCM编码、∆M编码等实验的模拟输入信号。

由于同步正弦波在频率与相位上与取样时钟、编码时钟保持严格同步。

因此用它作模拟输入信号时,在普通示波器上便能观察到稳定的取样信号及编码信号的波形。

同步正弦信号发生器,由电路图1-7所示,它是从CPLD模块引入2KHx方波、经低通滤波放大得到正弦波,输出的2KHz方波可从TP001观察。

U001A(TL082)及周围电路构成低通滤波器,其截止频率约为2.5KHz,用以滤除2KHz方波的各次谐波。

U001B为反相放大器,W001可改变运放的反馈,用以调节输出正弦波幅度。

TP002为信号输出。

图1-7 同步正弦信号发生器图1-8非同步信号发生器2.非同步信号发生器非同步信号发生器是自激式信号发生器,能产生频率自由调节的正弦波、三角波和方波,非同步信号发生器如图1-8所示,它是由函数信号发生器和放大器组成。

U002(XR2206)是集成函数信号发生器芯片,它与周围电路构成函数发生器,能产生正弦波、三角波和方波信号。

XR2206的11脚能输出方波。

光纤通信_实验4实验报告 模拟信号光纤传输实验

光纤通信_实验4实验报告 模拟信号光纤传输实验

课程名称:光纤通信实验名称:实验 4 模拟信号光纤传输实验姓名:班级:学号:实验时间:指导教师:得分:一、实验目的1、了解模拟信号光纤通信原理。

2、了解不同频率不同幅度的正弦波、三角波、方波等模拟信号的系统光传输性能情况。

二、实验器材1、主控&信号源模块2、25 号光收发模块3、示波器三、实验内容测量不同的正弦波、三角波和方波的光调制系统性能。

四、实验步骤(注:实验过程中,凡是涉及到测试连线改变时,都需先停止运行仿真,待连线调整完后,再开启仿真进行后续调节测试。

)1、登录e-Labsim 仿真系统,创建仿真工作窗口,选择实验所需模块和示波器。

2、参考系统框图,依次按下面说明进行连线。

(1)用连接线将信号源A-OUT,连接至25 号模块的TH1 模拟输入端。

(2)连接25 号模块的光发端口和光收端口,此过程是将电信号转换为光信号,经光纤跳线传输后再将光信号还原为电信号。

(3)将25 号模块的P4 光探测器输出端,连接至23 号模块的P1 光探测器输入端。

3、设置25 号模块的功能初状态。

(1)将收发模式选择开关S3 拨至“模拟”,即选择模拟信号光调制传输。

(2)将拨码开关J1 拨至“ON”,即连接激光器;拨码开关APC 此时选择“ON”或“OFF” 都可,即APC 功能可根据需要随意选择。

(3)将功能选择开关S1 拨至“光功率计”,即选择光功率计测量功能。

4、运行仿真,开启所有模块的电源开关。

5、进行系统联调和观测。

(1)设置主控模块的菜单,选择【主菜单】→【光纤通信】→【模拟信号光调制】。

此时系统初始状态中A-OUT输出为1KHz正弦波。

调节信号源模块的旋钮W1,使A-OUT输出正弦波幅度为1V。

(2)选择进入主控&信号源模块的【光功率计】功能菜单。

(3)保持信号源频率不变,改变信号源幅度测量光调制性能:调节信号源模块的率,自行设计表格记录不同频率时的光调制功率变化情况。

6、停止仿真,删除23 号模块和25 号模块之间的连接线,示波器两个通道分别连接光接收机的模拟输出端TH4 和光发射机的模拟输入端TH1。

实验一 信号源实验

实验一 信号源实验

实验一信号源实验一、实验目的1、了解通信系统的一般模型及信源在整个通信系统中的作用。

2、掌握信号源模块的使用方法。

二、实验内容1、对应液晶屏显示,观测DDS信源输出波形。

2、观测各路数字信源输出。

3、观测正弦点频信源输出。

4、模拟语音信源耳机接听话筒语音信号。

三、实验仪器1、信号源模块一块2、带话筒立体声耳机一副3、20M双踪示波器一台四、实验原理信号源模块大致分为DDS信源、数字信源、正弦点频信源和模拟语音信源几部分。

1、DDS信源DDS直接数字频率合成信源输出波形种类、频率、幅度及方波B占空比均可通过“DDS 信源按键”调节(具体的操作方法见“实验步骤”),并对应液晶屏显示波形信息。

正弦波输出频率范围为1Hz~200KHz,幅度范围为200mV~4V。

三角波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。

锯齿波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。

方波A输出频率范围为1Hz~50KHz,幅度范围为200mV~4V,占空比50%不变。

方波B输出频率范围为1Hz~20KHz,幅度范围为200mV~4V,占空比以5%步进可调。

输出波形如下图1-1所示。

正弦波:1Hz-200KHz图1-1 DDS信源信号波形2、数字信源(1)数字时钟信号24.576M:钟振输出时钟信号,频率为24.576MHz。

2048K:类似方波的时钟信号输出点,频率为2048 KHz。

64K:方波时钟信号输出点,频率为64 KHz。

32K:方波时钟信号输出点,频率为32KHz。

8K:方波时钟信号输出点,频率为8KHz。

输出时钟如下图1-2所示。

ttt图1-2 数字时钟信号波形(2)伪随机序列PN15: N=15位的m序列输出点,码型为1111 0101 1001 000,15位一周期循环。

PN31:N=31位的m序列输出点,码型为1111 1001 1010 0100 0010 1011 1011 000,31位一周期循环。

通信原理实验报告 各种模拟信号源实验

通信原理实验报告 各种模拟信号源实验

《通信原理》课程实验报告实验项目名称:各种模拟信号源实验院系:专业:指导教员:学员姓名:学号:成绩:学员姓名:学号:成绩:实验地点:完成日期:年月日一、实验目的和要求1、熟悉各种模拟信号的产生方法及其用途;2、分析测量各种模拟信号触发及幅度、频率等调节方法。

二、实验内容及电路工作原理1、用示波器在相应测试点上测量并观察:同步正弦波信号、非同步简易信号、电话语音输出信号、音乐信号及话音发送与接收信号等的波形。

2、掌握同步正弦波幅度调节、非同步正弦波幅度调节与频率调节、音乐信号触发及用户终端回波衰减测量。

3、模拟信号源电路用来产生实验所需的各种音频信号:同步正弦波信号、非同步简易正弦波信号、音乐信号及话路用户电路和音频功放电路。

图2-1 通信原理实验箱2(一)方波信号直接使用示波器检测方波信号的波形,并记录 (二)同步信号源(同步正弦波发生器)1、功用同步信号源用来产生与编码数字信号同步的2kHz 正弦波信号,可作为抽样定理PAM 、增量调制CVSD 编码、PCM 编码实验的输入音频信号。

在没有数字存贮示波器的条件下,用它作为取样及编码实验的输入信号,可在普通示波器上观察到稳定的取样及编码数字信号波形。

2、电路原理图2-2为同步正弦信号发生器的电路图。

它由2kHz 方波经高通滤波器、低通滤波器和输出放大及跟随等电路三部分组成。

由CPLD 可编程器件U101产生的2kHz 方波信号,经R201接入本电路。

TP111为其测量点。

U201A 及周边的阻容网络组成一个截止频率为234HZ 高通滤波器和截止频率为2342HZ 的低通滤波器,用以滤除2kHz 方波的各次谐波,输出2kHz 正弦波,TP202“同步输出”铜铆孔为其输出点。

2kHz 正弦波通过铜铆孔输出可供2kHz 正弦波通过铜铆孔输出可供PAM 、PCM 、CVSD (△M )模块使用。

W201用来改变输出同步正弦波的幅度。

图2-2 同步正弦信号发生器电路图(三)非同步信号源1、功用非同步正弦波信号源是一个简易信号发生器,它可产生频率为0.3~10kHz 频率可调的正弦波信号,输出幅度为0~10V (一般使用范围0~4V )连续可调。

模拟信号源实验总结

模拟信号源实验总结

模拟信号源实验总结前言模拟信号源是电子实验中常用的仪器,用于产生模拟信号,如正弦波、方波等。

此实验旨在通过搭建模拟信号源电路并进行相关测量,加深对模拟信号源原理的理解,同时掌握相关测量技巧。

实验目的1.掌握模拟信号源电路的搭建方法;2.理解模拟信号源的工作原理;3.学会使用示波器进行模拟信号的测量;4.掌握正弦波、方波等模拟信号的特性分析。

实验步骤1.搭建模拟信号源电路。

根据实验要求,我们需要搭建一个产生正弦波的模拟信号源。

首先准备好电源、函数发生器等设备,然后按照电路图连接各个元件,注意接线的正确性。

2.调整函数发生器的参数。

将函数发生器连接到电路中,根据实验要求设置正弦波的频率、幅值等参数。

调整函数发生器的输出信号为所需的正弦波。

3.连接示波器进行信号测量。

将示波器连接到模拟信号源电路的输出端,选择合适的电压范围和触发方式,观察信号波形,并记录波形的特征,如峰值、周期等。

4.测量和分析正弦波的特性。

通过示波器测量正弦波信号的峰值、频率、相位等特性参数,并进行分析。

可以使用示波器提供的自动测量功能,也可以手动进行测量。

5.测量和分析方波信号的特性。

将函数发生器的输出信号设置为方波,重复步骤3和步骤4,测量和分析方波信号的特性参数。

实验结果和分析通过搭建模拟信号源电路并进行测量和分析,我们得到了如下实验结果:•正弦波信号:频率为100Hz,峰值为5V,相位为0°;•方波信号:频率为1kHz,峰值为3V。

在实验过程中,我们注意到正弦波信号的波形较为平滑,连续的曲线由连续的正弦函数表示;而方波信号的波形较为锐利,由一个周期的高电平和低电平组成。

通过对波形特性的测量和分析,我们可以进一步分析电路的工作情况以及信号产生原理。

例如,正弦波信号的频率和相位可以反映电路中的振荡频率和振荡器的相位差等。

方波信号的峰值可以指示数字信号的高低电平。

实验总结通过本次实验,我深入了解了模拟信号源的原理和工作方式,并通过搭建电路、测量信号特性,加深了对模拟信号源的理解和使用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1-7 同步正弦信号发生器
图1-8非同步信号发生器
2.非同步信号发生器
非同步信号发生器是自激式信号发生器,能产生频率自由调节的正弦波、三角波和方波,非同步信号发生器如图1-8所示,它是由函数信号发生器和放大器组成。U002(XR2206)是集成函数信号发生器芯片,它与周围电路构成函数发生器,能产生正弦波、三角波和方波信号。XR2206的11
实验一:各种模拟信号源测试实验
一.实验目的
1.熟悉各种模拟信号源的产生方法,波形和用途。
2.熟练掌握各种模拟信号源电路连接及参数调整方法,为后面通信原理实验作准备。
二.实验仪器
1.RZ8621D实验箱一台
2.20MHZ双踪示波器一台
3.平口小螺丝刀一个
三.实验电路连接
图1-1 同步正弦波产生电路
图1-2 非同步三角波、正弦波、方波产生电路
脚能输出方波。而2脚当13.14脚间开路时输出三角波;当13-14脚间接入200Ω时,则输出正弦波。输出何种波形受双路拨动开关K002控制。R033是为了平衡三角波与正弦波输出幅度大小而设置的。W003用以改变信号频率。C006也可改变信号频率,本电路已设定C006为0.22μf。U006为输出放大器。W002用以改变输出信号幅度。W004可调节运算放大器的直流偏置,保证输出信号幅度增大时也不会产生失真。TP003为信号输出。
图1-9 音乐信号产生电路
现将各测量点作用说明如下:
TP001—2KHZ方波信号,来自CPLD模块,它由主时钟分频得到。
TP002—2KHZ同步正弦波输出,幅度由W001调节。
TP003—非同步三角波,正弦波,方波输出,波形种类由K002选择,幅度由W002调节。
TP004T—模拟电话发话输出。
TP004R—模拟电话收话输入。
此外外加数字信号接口电路,外加模拟信号接口电路仅仅是信号的转接的节点,外加的数字或模拟信号源的信号加到该接线柱,若实验需要外加信号源时再用导线从该接线柱转接到所需的电路中去。误码测试时钟输出接口是用来接误码仪的外加时钟输入,并通过SW03插塞选择将FSK或PSK调制的时钟加到误码测试仪。误码测试数据接口是用来转接误码仪发数据至FSK或PSK调制器输入。至于该数据是加到FSK还是加到PSK,还要受薄膜开关“9:误码测试 01FSK 02PSK”状态的控制,若选“9:误码测试 01FSK”则误码仪发数据被加到FSK调制器输入。若选“9:误码测试 02PSK”则误码仪发数据被加到PSK调制器输入。
同步正弦信号发生器,由电路图1-7所示,它是从CPLD模块引入2KHx方波、经低通滤波放大得到正弦波,输出的2KHz方波可从TP001观察。U001A(TL082)及周围电路构成低通滤波器,其截止频率约为2.5KHz,用以滤除2KHz方波的各次谐波。U001B为反相放大器,W001可改变运放的反馈,用以调节输出正弦波幅度。TP002为信号输出。
图1-3 音乐信号产生电路 图1-4 外接信号源接口
图1-5 电话接口电路 图1-6 音频功率放大电路
四.实验预习及测量点说明
实验前请先了解模拟信号源模块电路并了解同步正弦波产生电路,非同步三角波,正弦波,方波产生电路,音乐信号产生电路,电话接口电路及音频功率放大电路原理。
1.同步正弦信号发生器
同步正弦信号发生器可产生与主时钟同步的2KHx正弦波,它主要用于抽样定理及PAM通信、PCM编码、∆M编码等实验的模拟输入信号。由于同步正弦波在频率与相位上与取样时钟、编码时钟保持严格同步。因此用它作模拟输入信号时,在普通示波器上便能观察到稳定的取样信号及编码信号的波形。
(二)非同步正弦波,三角波和方波观察与测试
1. 示波器各旋钮位置保持上述状态不变,K002置于正弦波(开关为中间位)将示波器1通道探头接至TP003,2通道探头空置。在示波器屏幕上半部即显示非同步正弦波。调节w002使幅度峰一峰值为3-4伏,调节w003则能改变正弦波频率。根据示波器扫描旋钮位置与波形,可粗略估计非同步正弦波频率。
将示波器1通道探头接至TP005,按下触发按钮,则示波器屏幕将显示音乐信号,它为频率有节奏跳动的方波。
(四)各种模拟信号的监听及测试
1. K001置于1-2位。用专用导线将TP002与TP006连接,示波器1通道探头接至TP006,2通道探头接至TP007,此时在示波器上能观察音频放大器的输入、输出端同步正弦波波形并监听声音,它为清脆的单音正弦波,调节W001可调节音量。
2. 示波器保持上述状态,将K002置于三角波位(开关为上位)则屏幕显示三角波,调节W002可改变三角波幅度,调节W003可改变三角波频率,并估计频率。
3. 示波器保持上述状态,将K002置于方波为(开关为下位)则屏幕显示方波,调节W002可改变方波幅度,调节W003可改变方波频率。并估计频率。
(三)音乐信号观察
TP005—音乐信号输出。按下触发按钮才有20秒钟的音乐信号输出。
TP006—音频功率放大器输入。
TP007—音频功率放大器输出。K001为喇叭控制插塞。
五.实验内容与步骤
(一)同步正弦波观察与测试
1. 打开实验箱右侧电源开关,电源指示灯应全部亮。
2. 示波器置于双踪,1通道为同步通道,将1通道探头接至TP001,该通道幅度灵敏度置于2伏/格,探头倍乘开关为“×1”档,交直流开关置于交流。示波器屏幕上便显示2KHZ方波,调节1通道上、下位置移动旋钮,使方波处于荧光屏的上半部。
3.音乐信号发生器
音乐信号发生器用来产生音乐信号,用以检查话音信道情况及话音传输质量。它由U004音乐厚膜集成电路及少量辅助元件组成。该集成电路1脚为电源,2脚为控制端,3脚为音乐信号输出,4脚接地。Vcc经R018稳压管D003稳压约3.3V加到1脚。SW001为触发按钮,当按钮按下一次3脚便输出约20秒的音乐信号。SW001未按,3脚则无信号输出。
3. 示波器1通道位置不变,2通道探头接至TP002,该通道幅度灵敏度置于2伏/格,探头倍乘调节2通道上、下位置移动旋钮,使正弦波处于荧光屏的下半部,调节W001使正弦波幅度峰一峰值为4伏(约两格)。
4. 比较方波与正弦波的相位与频率,观察两者波形是完全同步的。
相关文档
最新文档