实实验二 脉冲产生电路及计数器的使用1

合集下载

定时计数器(8253)实验报告

定时计数器(8253)实验报告

实验6 8253定时计数器电路接口实验2220083443 赵洪宇一、实验目的掌握8253定时器的编程原理,用示波器观察不同模式下的输出波形。

二、实验设备MUT—Ⅲ型实验箱、8086CPU模块、示波器(实验台无)。

三、实验内容8253计数器0,1,2工作于方波方式,观察其输出波形四、实验原理介绍本实验用到两部分电路:脉冲产生电路、8253定时器/计数器电路(1)电路原理该电路由1片8253组成,8253的片选输入端插孔CS8253,数据口,地址,读写线均已接好,T0、T1、T2时钟输入分别为8253CLK0、8253CLK1、8253CLK2。

定时器输出,GATE控制孔对应如下:OUT0、GATE0、OUT1、GATE1、OUT2、GATE2、CLK2。

本实验用到两部分电路:脉冲产生电路、8253定时器/计数器电路脉冲产生电路8253的方式控制字8253的状态字(2)电路测试检查复位信号,通过8253定时器/计数器接口实验,程序全速运行,观察片选、读、写、总线信号是否正常。

五、实验步骤1、实验连线:CS0CS8253 OUT08253CLK2 OUT2LED1示波器(实验中无)OUT1 CLK38253CLK0 CLK38253CLK1实验接线原理图如下:注:GATE信号无输入时为高电平2、编程调试程序assume cs:codecode segment publicorg 100hstart:mov dx,04a6h ;控制寄存器mov ax,36h ;计数器0,方式3out dx,axmov dx,04a0hmov ax,7Chout dx,axmov ax,92hout dx,ax ;计数值927Chmov dx,04a6hmov ax,76h ;计数器1,方式3out dx,axmov dx,04a2hmov ax,32hout dx,axmov ax,0 ;计数值32hout dx,axmov dx,04a6hmov ax,0b6h ;计数器2,方式3out dx,axmov dx,04a4hmov ax,04hout dx,axmov ax,0 ;计数值04hout dx,axnext:nopjmp nextcode endsend start3、全速运行,观察实验结果六、实验结果程序全速运行后,LED1闪烁(周期为0.25s),本实验由于实验台没有提供示波器,所以对于实验所要求的观察方式3的波形无法实现。

数电实验之计数器

数电实验之计数器

计数器一实验目的1、掌握中规模集成计数器的逻辑功能及使用方法。

2、学习运用集成电路芯片计数器构成N位十进制计数器的方法。

二实验原理计数器是一个用以实现计数功能的时序器件,它不仅可以用来记忆脉冲的个数,还常用于数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。

计数器种类很多,按构成计数器中的各个触发器输出状态更新是否受同一个CP脉冲控制来分,有同步和异步计数器,根据计数制的不同,分为二进制、十进制和任意进制计数器。

根据计数的增减趋势分,又分为加法、减法和可逆计数器。

另外,还有可预置数和可编程功能的计数器等。

目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器芯片。

如:异步十进制计数器74LS90,4位二进制同步计数器74LS93,CD4520,4位十进制计数器74LS160、74LS162;4位二进制可预置同步计数器CD40161、74LS161、74LS163;4位二进制可预置同步加/减计数器CD4510、CD4516、74LS191、74LS193;BCD码十进制同步加/减计数器74LS190、74LS192、CD40192等。

使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列就能正确使用这些器件。

例如74LS192同步十进制可逆计数器,具有双时钟输入十进制可逆计数功能;异步并行置数功能;保持功能和异步清零功能。

74192功能见表表19.1*表中符号和引脚符号的对应关系:CR = CLR—清零端;LD= LOAD—置数端(装载端)CP U = UP—加计数脉冲输入端CP D = DOWN—减计数脉冲输入端CO——非同步进位输出端(低电平有效)BO——非同步借位输出端(低电平有效)D3 D2 D1 D0 = D C B A—计数器数据输入端Q D Q C Q B Q A—计数器数据输出端根据功能表我们可以设计一个特殊的12进制的计数器,且无0数。

如图19.1所示:当计数器计到13时,通过与非门产生一个复位信号,使第二片74LS192(时十位)直接置成0000,而第一片74LS192计时的个位直接置成0001;从而实现了1——12的计数。

计数器实验报告

计数器实验报告

实验4计数器及其应用一、实验目的1、学习用集成触发器构成计数器的方法2、掌握中规模集成计数器的使用及功能测试方法二、实验原理计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。

计数器种类很多。

按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。

根据计数制的不同,分为二进制计数器,十进制计数器和任意进制计数器。

根据计数的增减趋势,又分为加法、减法和可逆计数器。

还有可预置数和可编程序功能计数器等等。

目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器。

使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。

1、中规模十进制计数器CC40192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能,其引脚排列及逻辑符号如图5-9-1所示。

图5-9-1 CC40192引脚排列及逻辑符号图中LD—置数端 CP U—加计数端 CP D—减计数端CO—非同步进位输出端BO—非同步借位输出端D0、D1、D2、D3—计数器输入端Q0、Q1、Q2、Q3—数据输出端 CR—清除端CC40192的功能如表5-9-1,说明如下:表5-9-1当清除端CR为高电平“1”时,计数器直接清零;CR置低电平则执行其它功能。

当CR 为低电平,置数端LD 也为低电平时,数据直接从置数端D 0、D 1、D 2、D 3 置入计数器。

当CR 为低电平,LD 为高电平时,执行计数功能。

执行加计数时,减计数端CP D 接高电平,计数脉冲由CP U 输入;在计数脉冲上升沿进行 8421 码十进制加法计数。

执行减计数时,加计数端CP U 接高电平,计数脉冲由减计数端CP D 输入,表5-9-2为8421码十进制加、减计数器的状态转换表。

表5-9-2加法计数减计数2、计数器的级联使用一个十进制计数器只能表示0~9十个数,为了扩大计数器范围,常用多个十进制计数器级联使用。

完整版脉冲计数器设计

完整版脉冲计数器设计

脉冲计数设计与分析摘要我们知道,555电路在应用和工作方式上一般可归纳为3类。

每类工作方式又有很多个不同的电路。

在实际应用中,除了单一品种的电路外,还可组合出很多不同电路,如:多个单稳、多个双稳、单稳和无稳,双稳和无稳的组合等。

这样一来,电路变的更加复杂。

为了便于我们分析和识别电路,更好的理解555电路,这里我们这里按555电路的结构特点进行分类和归纳,把555电路分为3大类、8种、共18个单元电路。

每个电路除画出它的标准图型,指出他们的结构特点或识别方法外,还给出了计算公式和他们的用途。

555时基电路是一种将模拟功能与逻辑功能巧妙地结合在同一硅片上的组合集成电路。

该电路可以在最基本的典型应用方式的基础上,根据实际需要,经过参数配置和电路的重新组合,与外接少量的阻容元件就能构成不同的电路,因而555电路在波形的产生与变换、测量与控制、家用电器、电子玩具等许多领域中都得到了广泛应用关键字:NE555 计数译码显示目录第一章脉冲计数器简介 (3)1.1脉冲计数器绪论 ......................................... 错误!未定义书签。

1.2脉冲计数器主要内容 ................................. 错误!未定义书签。

第二章脉冲计数器设计与分析 .. (4)2.1方案与论证 (4)2.2总体框图及模块设计 (5)2.3总体电路设计 (9)2.4系统测试,抗干扰及注意细节 (9)第三章脉冲计数器设计结果分析论证 (10)3.1硬件调试 (10)3.2结果分析得出结论 (11)附录: .......................... 错误!未定义书签。

参考文献: .. (12)第一章脉冲计数器简介1.1发展趋势由555时基电路构成常见的最基本的典型应用电路有:单稳态触发电路、双稳态触发电路、无稳态电路,而用这3种方式中的1种或多种组合起来可以组成各种实用的电子电路,如定时器、分频器、脉冲信号发生器、元件参数和电路检测电路、玩具游戏机电路、音响告警电路、电源交换电路、频率变换电路、自动控制电路等第二章脉冲计数器设计与分析2.1方案与论证方案一:用MAX0832产生脉冲信号,经过计数、译码、显示,此方案性价比高,硬件电路较为简单。

《微机原理与接口技术》实验指导书

《微机原理与接口技术》实验指导书

《微机原理与接口技术》课程实验指导书实验内容EL-8086-III微机原理与接口技术教学实验系统简介使用说明及要求✧实验一实验系统及仪器仪表使用与汇编环境✧实验二简单程序设计实验✧实验三存储器读/写实验✧实验四简单I/0口扩展实验✧实验五8259A中断控制器实验✧实验六8253定时器/计数器实验✧实验七8255并行口实验✧实验八DMA实验✧实验九8250串口实验✧实验十A/D实验✧实验十一D/A实验✧实验十二8279显示器接口实验EL-8086-III微机原理与接口技术教学实验系统简介使用说明及要求EL-8086-III微机原理与接口技术教学实验系统是为微机原理与接口技术课程的教学实验而研制的,涵盖了目前流行教材的主要内容,该系统采用开放接口,并配有丰富的软硬件资源,可以形象生动地向学生展示8086及其相关接口的工作原理,其应用领域重点面向教学培训,同时也可作为8086的开发系统使用。

可供大学本科学习《微机原理与接口技术(8086)》,《单片机应用技术》等课程提供基本的实验条件,同时也可供计算机其它课程的教学和培训使用。

为配合使用EL型微机教学实验系统而开发的8086调试软件,可以在WINDOWS 2000/XP等多种操作系统下运行。

在使用本软件系统调试程序时,可以同时打开寄存器窗口、内存窗口、反汇编窗口、波形显示窗口等等,极大地方便了用户的程序调试。

该软件集源程序编辑、编译、链接、调试与一体,每项功能均为汉字下拉菜单,简明易学。

经常使用的功能均备有热键,这样可以提高程序的调试效率。

一、基本特点EL型微机教学实验系统是北京精仪达盛科技有限公司根据广大学者和许多高等院校实验需求,结合电子发展情况而研制的具有开发、应用、实验相结合的高科技实验设备。

旨在尽快提高我国电子科技发展水平,提高实验者的动手能力、分析解决问题能力。

系统具有以下特点:1、系统采用了模块化设计,实验系统功能齐全,涵盖了微机教学实验课程的大部分内容。

电子线路实验-数电-2019

电子线路实验-数电-2019
0010
B4 B3 B2 B1
0101
C0
C4
0
数码 显示
结果转换为 十进制数
0010 0110 1 1010 1101 0
a
f
g
b
e
c
d
a b c def g
74L S248
LT BI /RBO
RBI
1
F4
F3
F2
F1
C4 7 4 L S 2 8 3
C0
B 4B 3B 2B 1
A 4A 3A 2A 1
D0D D 10 D21 D30 D4D D50 D61 D7D
三、集成触发器
实验目的
1. 熟悉常用触发器的基本结构及其逻辑功能。 2. 能用触发器设计基本的时序逻辑电路。
实验所用仪器、设备
• 万用表 • 直流稳压电源 • 函数信号发生器 • 双踪示波器 • 数字电路实验板
实验说明
2.用3-8译码器实现函数:F1 m(1,4,6) F2 m(1,2,4,5,6,7)
3.用8选1数据选择器74LS151实现函数
F ( A ,B , C ,D ) m ( 0 , 4 , 5 , 8 , 1 2 , 1 3 , 1 4 )
• (二)扩展命题 3.用3-8译码器74LS138和门电路设计一个数字显 示报警电路。 要求:
Y
16
2
1
0
74LS148
VCC
ST
8
II I
7
6
5
II
4
3
I 2
I 1
I 0
K 1
K KKKK KK
2
3
4
5
6
7

8253定时计数器实验

8253定时计数器实验

8253定时器/计数器实验一、实验目的:1、进一步了解可编程定时/计数器8253的特点与功能;2、掌握8253定时/计数器的应用、编程方法。

二、实验设备:MUT—Ⅲ型实验箱、8086CPU模块、示波器。

三、实验内容:用定时/计数器8253的计数器0、计数器1级联实现1秒的定时。

使OUT1端所接发光二极管每隔1S闪烁一次,模拟电子秒表或信号报警器。

两个计数器皆工作于方式3(输出方波),CLK0端接频率为750KHz的时钟。

四、实验电路:本实验用到两部分电路:时钟脉冲发生器(脉冲产生电路)(见附录)、8253定时器/计数器(1片)。

电路原理图如图1所示。

图1:8253定时/计数器实验电路五、实验步骤:(1)实验连线:CS0连CS8253,8253CLK0连时钟脉冲发生电路的CLK3,OUT0连8253CLK1,OUT1连LED1。

如图2所示。

注意:GATE信号线、数据线、地址线、读写控制信号线均已接好。

图2:线路连接示意图(2)输入以下程序,编译、链接后,全速运行,观察实验结果。

;8253初始化参考程序CODE SEGMENTASSUME CS:CODEORG 0100HSTART:MOV DX,04A6H ;控制寄存器地址MOV AL,00110110B ;计数器0控制字:方式3,二进制计数OUT DX,ALMOV DX,04A0H ;计数器0的口地址MOV AL,0EEH ;写计数初值低8位OUT DX,ALMOV AL,02H ;写计数初值高8位OUT DX,ALMOV DX,04A6H ;控制寄存器地址MOV AL,01110110B ;计数器1控制字:方式3,二进制计数OUT DX,ALMOV DX,04A2H ;计数器1的口地址MOV AL,0E8H ;计数初值低8位OUT DX,ALMOV AL,03H ;计数值高8位OUT DX,ALNEXT: NOPJMP NEXT ;CPU在此循环执行空操作,说明8253独立工作。

数字时钟实验报告

数字时钟实验报告

数字时钟实验报告一、实验目的本次数字时钟实验的主要目的是设计并实现一个能够准确显示时、分、秒的数字时钟系统,通过该实验,深入理解数字电路的原理和应用,掌握计数器、译码器、显示器等数字电路元件的工作原理和使用方法,提高电路设计和调试的能力。

二、实验原理1、时钟脉冲产生电路时钟脉冲是数字时钟的核心,用于驱动计数器的计数操作。

本实验中,采用石英晶体振荡器产生稳定的高频脉冲信号,经过分频器分频后得到所需的秒脉冲信号。

2、计数器电路计数器用于对时钟脉冲进行计数,分别实现秒、分、时的计数功能。

秒计数器为 60 进制,分计数器和时计数器为 24 进制。

计数器可以由集成计数器芯片(如 74LS160、74LS192 等)构成。

3、译码器电路译码器将计数器的输出编码转换为能够驱动显示器的信号。

常用的译码器芯片有 74LS47(用于驱动共阳数码管)和 74LS48(用于驱动共阴数码管)。

显示器用于显示数字时钟的时、分、秒信息。

可以使用数码管(LED 或 LCD)作为显示元件。

三、实验器材1、集成电路芯片74LS160 十进制计数器芯片若干74LS47 BCD 七段译码器芯片若干74LS00 与非门芯片若干74LS10 三输入与非门芯片若干2、数码管共阳数码管若干3、电阻、电容、晶振等无源元件若干4、面包板、导线、电源等四、实验步骤1、设计电路原理图根据实验原理,使用电路设计软件(如 Protel、Multisim 等)设计数字时钟的电路原理图。

在设计过程中,要合理布局芯片和元件,确保电路连接正确、简洁。

按照设计好的电路原理图,在面包板上搭建实验电路。

在搭建电路时,要注意芯片的引脚排列和连接方式,避免短路和断路。

3、调试电路接通电源,观察数码管是否有显示。

如果数码管没有显示,检查电源连接是否正确,芯片是否插好。

调整时钟脉冲的频率,观察秒计数器的计数是否准确。

如果秒计数器的计数不准确,检查分频器的连接是否正确,晶振的频率是否稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二脉冲产生电路及计数器的使用
一、实验目的
1、掌握使用门电路、555定时器构成脉冲信号产生电路的方法。

2、掌握中规模集成计数器的使用及功能测试方法。

二、实验设备与器件
1、数字电路实验箱。

2、集成门电路:CC4011×1
3、电阻器: 100Ω×1、1MΩ×2、2MΩ×1、
4、电容器:0.01μF×1、0.1μF×1、1μF×1
5、555定时器×1
6、集成计数器:CC40192(74LS192)×2
16 15 14 13 12 11 10 9
V D D D0 CR BO CO LD D2 D3
CC40192(74LS192)
D1Q1Q0 CP D CP U Q2 Q3V S S
1 2 3 4 5 6 7 8
图中:CP U——加法计数时钟脉冲输入端,
CP D——减法计数时钟脉冲输入端,
LD——置数端,CR——清除端,
CO——非同步进位输出端,
BO——非同步借位输出端,
D0、D1、D2、D3——数据输入端,
Q0、Q1、Q2、Q3——数据输出端。

CC40192(74LS192)的功能如下表一所示:
表一
三、实验过程
1、依图一所示带RC延迟电路环形振荡器原理图,在数字电路实验箱上,用1片CC4011、100Ω及2MΩ电阻各1个、0.1μF电容器1个接成脉冲产生电路的实际电路。

图一
图一电路中,R为2MΩ电阻,R S为100Ω电阻,C为0.1μF电容器。

电路利用电容C的充放电过程,控制d点的电位,从而控制非门的自动启
闭,形成多谐振荡。

改变R和C可改变电路输出的振荡周期T=2.2RC。

(1)请画出带RC延迟电路环形振荡器的实际接线图。

(2)电路是否一次接线成功且实现应有功能?若不是,请将遇到的情况记下,并说明解决的方法。

2、依图二所示用555定时器构成的多谐振荡器原理图,在数字电路实验箱上,用1片555定时器、1MΩ电阻2个、1μF及0.01μF电容器各1个接成脉冲产生电路的实际电路。

图二
图二电路中,R1、R2都为1MΩ电阻,C为1μF电容器。

电容C 循环充电和放电,使电路产生振荡,输出矩形脉冲,脉冲周期为T = 0.7 (R1 + 2R2)C。

(1)请画出振荡器的实际接线图。

(2)电路是否一次接线成功且实现应有功能?若不是,请将遇到的情况记下,并说明解决的方法。

3、测试CC40192(74LS192)同步十进制可逆计数器的逻辑功能
计数脉冲由单次脉冲源提供,清除端CR、置数端LD、数据输入端D3、D2、D1、D0分别接逻辑开关,输出端Q3、Q2、Q1、Q0接实验设备的一个译码显示输入相应插口D、C、B、A;CO和BO接逻辑电平显示插口。

按表一逐项测试并判断该集成块的功能是否正常。

(1)清除
令CR=1,其它输入为任意态,这时Q3 Q2 Q1 Q0=0000,译码数字显示为0。

清除功能完成后,置CR=0。

(2)置数
CR=0,CP U、CP D任意,数据输入端输入任意一组二进制数,令LD=0,观察计数译码显示输出,预置功能是否完成,此后置LD=1。

(3)加法计数
CR=0,LD= CP D=1,CP U接单次脉冲源。

清零后送入10个单次脉冲,观察译码数字显示是否按8421码十进制状态转换表进行。

(4)减法计数
CR=0,LD= CP U=1,CP D接单次脉冲源。

清零后送入10个单次脉冲,观察译码数字显示是否按8421码十进制状态转换表进行。

测试过程是否顺利进行?若不是,请将遇到的情况记下,并说明解决的方法。

4、按图三所示,用两片CC40192组成两位十进制加法计数器,输入由555定时器构成的多谐振荡器输出的连续计数脉冲,进行由00~99累加计数。

计数器的级联使用
一个十进制计数器只能表示0~9十个数,为了扩大计数范围,常用多
个十进制计数器级联使用。

同步计数器往往设有进位(或借位)输出端,故可选用进位(或借位)输出信号驱动下一级计数器。

图三是由CC40192利用进位输出CO控制高一位的CP U端构成的加法计数器级联图。

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7
CP U 图三
012 3 4567
(1)请画出加法计数器的实际接线图。

(2)电路是否一次接线成功且实现应有功能?若不是,请将遇到的情况记下,并说明解决的方法。

相关文档
最新文档