初一数学上有理数与无理数的概念和练习(有详细的答案)
2024年人教版七年级上册数学第二单元课后练习题(含答案和概念)

2024年人教版七年级上册数学第二单元课后练习题(含答案和概念)试题部分一、选择题:1. 下列哪个数是负数?()A. 3B. 0C. 5D. (3)2. 下列各数中,哪个数是最小的正整数?()A. 0.1B. 1C. 0D. 1A. 正数乘以正数等于负数B. 负数乘以负数等于正数C. 正数乘以负数等于正数D. 0乘以任何数都等于0A. 一个数的绝对值是它本身B. 一个数的绝对值是它的相反数C. 一个数的绝对值是它到原点的距离D. 一个数的绝对值是它的大小5. 计算下列各式的结果:()A. |3| = 3B. |(3)| = 3C. |3 5| = 2D. |3 (5)| = 76. 下列各式中,哪个是同类项?()A. 3x和4yB. 5a^2和6a^3C. 2m和3nD. 4ab和5ab7. 下列哪个选项是合并同类项的正确结果?()A. 3x + 4x = 7xB. 5a^2 2a^2 = 3a^4C. 6m + 3n = 9mnD. 4ab 5ab = ab8. 下列哪个选项是正确的算术平方根定义?()A. 一个数的算术平方根是它的平方B. 一个数的算术平方根是它的相反数的平方C. 一个正数的算术平方根是它的正的平方根D. 一个负数的算术平方根是它的负的平方根9. 下列哪个数是有理数?()A. √2B. πC. 1.414D. √110. 下列哪个选项是正确的有理数的除法法则?()A. 正数除以正数等于负数B. 负数除以负数等于正数C. 正数除以负数等于负数D. 0除以任何数都等于0二、判断题:1. 任何数乘以0都等于0。
()2. 负数的绝对值是它本身。
()3. 同类项可以相加或相减。
()4. 算术平方根一定是正数。
()5. 0是正数和负数的分界点。
()6. 有理数的乘法满足交换律。
()7. 有理数的除法满足结合律。
()8. 任何有理数都可以表示为分数的形式。
()9. 负数的平方是正数。
()10. 两个负数相除的结果一定是正数。
2024年最新人教版初一数学(上册)期末试卷及答案(各版本)

2024年最新人教版初一数学(上册)期末试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 1B. 0C. 1D. 22. 已知a > b,则下列不等式成立的是()A. a b > 0B. a + b < 0C. a b < 0D. a + b > 03. 下列哪一个数是有理数()A. √2B. √3C. √5D. √94. 下列哪一个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 平行四边形5. 下列哪一个数是无理数()A. 0.333B. 0.666C. 0.121212D. 0.1010010001二、判断题5道(每题1分,共5分)1. 任何两个有理数的和都是有理数。
()2. 任何两个无理数的积都是无理数。
()3. 任何两个实数的和都是实数。
()4. 任何两个实数的积都是实数。
()5. 任何两个实数的差都是实数。
()三、填空题5道(每题1分,共5分)1. 两个数的和为10,其中一个数为x,另一个数为______。
2. 两个数的积为15,其中一个数为x,另一个数为______。
3. 两个数的差为8,其中一个数为x,另一个数为______。
4. 两个数的商为3,其中一个数为x,另一个数为______。
5. 两个数的和为6,其中一个数为x,另一个数为______。
四、简答题5道(每题2分,共10分)1. 请简要解释有理数的概念。
2. 请简要解释无理数的概念。
3. 请简要解释实数的概念。
4. 请简要解释平行四边形的性质。
5. 请简要解释矩形的性质。
五、应用题:5道(每题2分,共10分)1. 已知一个数为x,它的相反数为3,求x的值。
2. 已知一个数为x,它的倒数为2,求x的值。
3. 已知一个数为x,它的平方为9,求x的值。
4. 已知一个数为x,它的立方为27,求x的值。
5. 已知一个数为x,它的平方根为3,求x的值。
六、分析题:2道(每题5分,共10分)1. 请分析有理数和无理数的区别。
七年级有理数概念题

七年级有理数概念题有理数是整数和分数的统称,包括正整数、负整数、零以及正分数、负分数。
在学习有理数概念题时,需要掌握有理数的加减乘除运算规则、有理数的大小比较、有理数的绝对值等基本概念。
下面将为您介绍一些七年级有理数概念题的相关内容:1. 有理数的加减法:有理数的加减法遵循以下规则:- 同号相加,取绝对值相加,结果的符号与原数相同。
- 异号相加,取绝对值相减,结果的符号取绝对值较大的数的符号。
通过练习一些有理数的加减法题目,可以帮助学生掌握有理数的加减法规则,提高计算能力。
2. 有理数的乘法:有理数的乘法规则为:- 同号相乘,结果为正数。
- 异号相乘,结果为负数。
在乘法运算中,学生需要注意符号的运用,通过练习有理数的乘法题目,巩固乘法规则,提高计算水平。
3. 有理数的除法:有理数的除法也有相应的规则:- 除数不为0,被除数为0时,商为0。
- 同号相除,结果为正数。
- 异号相除,结果为负数。
在进行有理数的除法运算时,学生需要注意除数不能为0的情况,熟练掌握有理数的除法规则,避免出现计算错误。
4. 有理数的大小比较:在比较有理数的大小时,可以通过绝对值的大小来判断,绝对值大的数较大,绝对值小的数较小。
同时,注意有理数的正负情况,负数的绝对值大于正数的绝对值。
通过练习有理数的大小比较题目,可以帮助学生理解有理数的大小关系,提高比较能力。
5. 有理数的绝对值:有理数的绝对值是数的绝对值,即数到原点的距离,绝对值为正数,不考虑数的符号。
绝对值的概念在有理数的运算中有着重要的作用,通过练习有理数的绝对值题目,可以帮助学生理解绝对值的概念,提高数的理解能力。
通过练习以上的有理数概念题目,可以帮助学生巩固有理数的基本概念,提高有理数的运算能力,加深对数学知识的理解。
希望以上内容能对您有所帮助,有任何疑问,欢迎继续咨询。
人教初一数学上册知识点

人教初一数学上册知识点一、知识概述1. 《有理数》①基本定义:有理数就是能够写成两个整数之比的数,简单来说就是整数、有限小数还有无限循环小数这一类的数。
比如2是有理数,也是,因为可以写成1/2,…(无限循环)写成1/3也是有理数。
②重要程度:在初一数学里超级重要。
它是学习后面各种计算、方程的基础。
很多数学概念和实际问题的解决都是基于有理数的运算。
③前置知识:在学有理数之前,得知道整数的概念,会简单的加减法等算术运算。
④应用价值:在生活中算钱的时候就会用到,假如买东西花了元,就是有理数,还有计算距离、速度啥的也用到有理数运算。
2. 《整式》①基本定义:像3x、-4y²这种数与字母的乘积形式就是整式。
单独的一个数或者一个字母也叫做整式,就好比5是整式,a也是整式。
②重要程度:这是代数的起步知识,以后学各种函数、方程等都会涉及到整式的相关知识。
③前置知识:要对有理数运算比较熟,还有知道字母可以表示数这个概念。
④应用价值:举个例子,如果要计算长方形面积,设长为x,宽为y,面积就是xy,这就是整式在生活几何中应用的例子。
二、知识体系1. 《有理数》①知识图谱:有理数在初一数学上册中属于数的概念范畴,是基础的基础,很多其他数的学习都和它相关或基于它拓展。
②关联知识:和后面要学的无理数合起来就是实数了。
有理数的运算规则对整式运算也有启发意义。
③重难点分析:对有理数的正负性在运算中的影响是个难点,像两个负数相乘得正数这种规则有些同学一开始很难理解。
关键点就是得牢记运算规则,多做练习。
④考点分析:考试中经常单独出题考查有理数的运算,要么就是和后面的知识结合一起考查。
考查方式从单纯的计算,到在应用题中的运算都有。
2. 《整式》①知识图谱:整式在代数部分处于起始位置,往后的多项式、因式分解等都以整式为基础。
②关联知识:和方程关系紧密,比如一元一次方程中的未知数就是整式的形式。
③重难点分析:整式的系数、次数概念容易混淆,这是难点。
初一数学有理数试题答案及解析

初一数学有理数试题答案及解析1.若的相反数是3,5,则的值为_________.【答案】2或-8【解析】因为的相反数是3,所以.因为,所以.所以的值为2或-8.2.某初中校为每个学生编号,设定末尾用1表示男生,用2表示女生,若201103202表示“2011年入学的3班20号同学,是位女生”,则2012年入学的5班13号男生的编号是.【答案】201205131.【解析】根据编号的方法,前四位表示入学年份,第五、六位表示班级,第七、八位表示学号,末尾数表示性别,然后写出该同学的编号即可.2012年入学的5班13号男生的编号是:201205131;故答案为:201205131.【考点】用数字表示事件.3.(1)问题:你能比较和的大小吗?为了解决这个问题,首先写出它的一般形式,即比较和的大小(是正整数),然后我们从分析,,,…这些简单情况入手,从中发现规律,经过归纳,猜想出结论.通过计算,比较下列各组数的大小(在横线上填写“>”、“<”、“=”号):,,,,,…(2)从第(1)题的结果经过归纳,可以猜想出和的大小关系是什么?(3)根据上面的归纳猜想,尝试比较和的大小.【答案】(1)<,<,>,>,>;(2)当时,<,当≥3时,>;(3)>.【解析】仔细分析所给各组数的大小即可得到规律,再应用这个规律解题即可.(1),,,,;(2)当时,<,当≥3时,>;(3)>.【考点】找规律-数字的变化点评:解答找规律的题目要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找到“<”、“>”的临界点.4.下列式子一定成立的是()A.x4+x4=2x8B.x4·x4 =x8C.(x4)4=x8D.x4÷x4=0【答案】B【解析】A.错误:x4+x4=2x4;C.错误:(x4)4=x16 D.错误:x4÷x4=1,选B正确。
【考点】整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握。
初一有理数分类题10题

初一有理数分类题10题初一数学课程中,有理数的分类是一个重要的知识点。
在学习中,我们需要掌握不同类型的有理数,并能够准确地对其进行分类。
下面我将为大家介绍10道有理数分类题,帮助大家更好地理解和掌握这一知识点。
题目一:将-3,-1/2,2/3,1.5,√4,0,-4/5这7个数按照大小从小到大排列。
解析:首先,我们需要将这些数转化为相同的形式,如分数或小数。
然后,我们可以通过比较数的大小来进行排序。
按照从小到大的顺序排列,得到的结果为:-4/5,-3,-1/2,0,2/3,1.5,√4。
题目二:将-3,5/6,-2/3,0.7,√9,1,-5/4这7个数按照大小从大到小排列。
解析:同样地,我们需要将这些数转化为相同的形式,如分数或小数。
然后,通过比较数的大小来进行排序。
按照从大到小的顺序排列,得到的结果为:√9,1,5/6,0.7,0,-2/3,-3。
题目三:判断下列数是正数、负数还是零:-3,1/2,-1/3,0,√16,2/3,-0.5。
解析:正数是大于零的数,负数是小于零的数,零是不大不小的数。
通过判断这些数的大小和符号,我们可以得出以下结论:-3是负数,1/2是正数,-1/3是负数,0是零,√16是正数,2/3是正数,-0.5是负数。
题目四:将-2/5,0,1/3,-1/4,√25,1.2,-1这7个数分别归类为有理数和无理数。
解析:有理数是可以表示为两个整数的比值的数,无理数是不能表示为两个整数的比值的数。
通过观察这些数的形式,我们可以得出以下结论:-2/5,0,1/3,-1/4,1.2,-1都是有理数;√25是无理数。
题目五:判断下列数是整数还是分数:-3,1/2,-1/3,0,√16,2/3,-0.5。
解析:整数是不带小数部分的数,分数是带有分母的数。
通过观察这些数的形式,我们可以得出以下结论:-3是整数,1/2,-1/3,2/3都是分数,0是整数,√16是整数,-0.5是分数。
题目六:将-2/3,0.5,1/4,-0.2,√9,2/5,-1这7个数分别归类为正数、负数和零。
苏教版七年级数学上册 第2章《有理数》考点归纳(含答案)

第2章《有理数》考点归纳知识梳理重难点分类解析考点1相反意义的量【考点解读】中考中对于相反意义的量的考查主要涉及用正负数表示相反意义的量,解此类题的关键是要深刻理解正数、负数的意义.例1一个物体做左右方向的运动,规定向右运动4m记作+4m,那么向左运动4m记作()A.-4mB.4mC.8mD.-8m分析:若向右运动4 m记作+4 m,则向左运动4 m记作-4 m.答案:A【规律·技法】解题时要抓住以下几点:①记住区分相反意义的量;②记住相反意义的量的表示方法.【反馈练习】1.某财务科为保密起见采取新的记账方式,以5万元为1个记数单位,并记100万元为0,少于100万元记为负,多于100万元记为正.例如:95万元记为-1,105万元记为1.依此类推,75万元应记为( )A. -3B. -4C. -5D. -6 点拨:每多5万元记为+1,每少5万元记为-1.2. (2017·苏州期末)一个物体做左右方向的运动,规定向右运动5m 记作+5m ,那么向左运 动5m 记作( )A. -5mB.5mC.10mD. -10 m 点拨:若向右为正,则向左为负. 考点2 数轴【考点解读】中考中对于数轴的考查主要涉及数轴的认识以及数形结合的思想.用数轴上的点来表示有理数,这是运用了数形结合的思想.利用数轴这一工具,加强数形结合的训练可沟通知识间的联系.例2 如图,四个有理数在数轴上的对应点分别为,,,M P N Q ,若点,M N 表示的有理数互 为相反数,则图中表示绝对值最小的数的点是( )A.点MB.点NC.点ND.点Q 分析:因为点,M N 表示的有理数互为相反数,所以原点的位置在线段MN 的中点,所以表示绝对值最小的数的点是点P . 答案:C【规律·技法】解答与数轴有关的问题时要抓住以下几点:①记住数轴上的点与有理数的对应关系;②相反数、点与点之间的距离在数轴上的表示方法;③数轴常常与相反数、距离、绝对值结合考查. 【反馈练习】3.有理数,a b 在数轴上的位置如图所示,则下列各式正确的是( )A. 0a b +<B. 0a b -<C. 0ab >D. 0a b -> 点拨:先判断,a b 的正负和大小关系.4. (2017·苏州期末)有理数,a b 在数轴上的位置如图所示,则下列各式正确的是( )A. 0ab >B. b a <C. 0b a <<D. 0a b +>点拨:先判断,a b的正负和大小关系.考点3绝对值、相反数、倒数【考点解读】中考中对于绝对值、相反数、倒数的考查主要涉及概念的理解,因此掌握基本概念是解题关键.例3(1)(2017·盐城)-2的绝对值是( )A. 2B. -2C. 12D.12-(2)-3的相反数是,-3的绝对值是.(3) 23的倒数是.分析:根据相反数、绝对值、倒数的定义解答.符号不同、绝对值相同的两个数互为相反数,0的相反数是0;正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;乘积为1的两个数互为倒数.答案:(1) A (2) 3 3 (3) 3 2【规律·技法】(1)正确理解相反数的概念是关健;(2)数a的绝对值要由字母a本身的取值来确定:①当a是正数时,a的绝对值是它本身;②当a是负数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零;(3)应熟练掌握倒数的定义,需要注意的是负数的倒数还是负数,正数的倒数还是正数,0没有倒数.【反馈练习】5.23-的相反数是( )A.23- B.23C.32- D.32点拨:符号相反、绝对值相同的两个数互为相反数.6.若a与1互为相反数,则1a+等于( )A.-1B. 0C.1D.2点拨:互为相反数的两个数的和为0.考点4有理数大小的比较【考点解读】比较有理数大小的基本方法:①绝对值法:两个正数,绝对值大的正数大;两个负数,绝对值大的负数小;②数轴法:在数轴上表示的两个有理数,右边的点表示的数总比左边的点表示的数大.例4 (1) (2017·扬州)下列各数中,比-2小的数是()A.-3B.-1C. 0D. 1(2)下列各式中,计算结果最大的是( )A. 25 X 132-152B. 16 X 172-182C. 9 X 212-132D. 4X312-122分析:(1)比-2小的数是负数,且绝对值大于2,故只有选项A符合.(2) 25X132-152=(5X13)2-152=4 000 ;16X172-182=(4X17)2-182=4 300;9X212-132=(3X21)2-132=3 800;4X312-122=(2X31)2-122=3700.因为4300>4000>3800>3700,所以计算结果最大的式子是16X172-182. 答案:(1) A (2) B【规律·技法】解答有关有理数大小的比较问题时要抓住以下几点:①比较有理数的大小时,正数大于0,负数小于0,两个负数比较大小,绝对值大的反而小;②比较两个有理数的大小有以下五种情况:正数与正数、正数与负数、0与正数、0与负数、负数与负数的比较. 【反馈练习】7. (2017·扬州期末)在-2,0,1,-4这四个数中,最小的数是()A. -4B. 0C. 1D. -2 点拨:负数小于0,正数大于0;两个负数,绝对值大的负数小.8. (2017·泰州期中)在数轴上把下列各数表示出来,并用“<”号连接各数: 2112.5,1,(2),(1),222----+--.点拨:先把需要化简计算的式子计算出结果,再来画数轴. 考点5 有理数的混合运算 【考点解读】 解答有关有理数运算的问题时要抓住以下几点:(1)符号的判断;(2)运算顺序的选择;(3)运算律的使用.有理数的运算在中考中一般不单独命题,常常与以后学习的实数结合命题考查.例5 (1)计算: 42201721(3)2(1)-÷---⨯-;(2)计算: 1133()33-⨯÷⨯-; (3)若2a ba b a+*=,则(42)(1)**-= . 分析:(1)先算乘方,再算乘除,最后算加减;(2)先将除法运算转化为乘法运算,再根据有理数乘法法则计算;(3)根据新定义计算. 4224224+⨯*==,22(1)(42)(1)2(1)02+⨯-**-=*-==. 解答:(1) 42201721(3)2(1)1682220-÷---⨯-=-÷+=-+=. (2) 111111()33()3()333339-⨯÷⨯-=-⨯⨯⨯-=. (3) 0【规律·技法】有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的. 【反馈练习】9. (2017·徐州期末)计算: 2018142(3)-+-+⨯-.点拨:注意运算顺序和符号. 10.计算: 517()(24)8612--+⨯-.点拨:运用乘法分配律计算.考点6 科学记数法【考点解读】 解答有关科学记数法的问题时要抓住以下几点:①对于大于10的数,在科学记数法的表示形式10na ⨯中,110a ≤<,n 为正整数;②小数点移动的位数与指数的关系;③理解近似数的意义. 例6 据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42 X 10n ,则n 的值是( )A. 4B. 5C. 6D. 7 分析:对于大于10的数,科学记数法的表示形式为10na ⨯,其中110a ≤<,n 为正整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.确定10na ⨯(110a ≤<,n 为整数)中n 的值时,由于9 420 000是七位数,所以可以确定n =7-1=6. 答案:C【规律·技法】用科学记数法表示大于10的数时,确定a 与n 的值是关健.其中110a ≤<,n等于原数的整数位数减1. 【反馈练习】11. (2017·庐州)“五一”期间,某市共接待海内外游客约567 000人次,将567 000用科学 记数法表示为( )A. 567 X 103B. 56.7 X 104C. 5.67 X 105D. 0.567 X 106 点拨: 110a ≤<.12. (2017·宁波)2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮— “泰欧”轮,其中45万吨用科学记数法表示为( )A. 0.45 X 106吨B. 4.5 X 105吨C. 45 X 104吨D. 4.5 X 1 04吨 点拨:单位要统一,万吨化为吨. 易错题辨析例1 给出下列各数: ①0.363 663 666 3…(每两个3之间依次多一个6);②2.121 121 112;③355113;④3π-.其中为无理数的是 .(填序号) 错误解答:①③④ 错因分析:把355113化成小数后,误以为是无限不循环小数,其实是循环小数. 正确解答:①④易错辨析:识别无理数时,要抓住其“无限不循环”的定义.本题若忽视无理数是无限小数,就会误认为有限小数2.121 121 112是无理数;若在把分数355113化成小数时,除了几位后,没有继续除下去,会错误的判断它不是循环小数,错误地认为它是无理数.实质上,所有的分数都是有理数,不是无理数. 易错点2 忽视分类讨论例2 在数轴上,点A 表示的数是-3,那么与点A 相距5个单位长度的点表示的数是多少? 它与132-相比较,大小关系如何? 错误解答:与点A 相距5个单位长度的点表不的数是-3+5=2,它与132-的大小关系为1322-<. 错因分析:考虑问题不全面.正确解答:如图,在数轴上,与点A 相距5个单位长度的点有,B C 两个.由点,B C 在数轴上的位置可知它们所表示的数分别为-8,2.在数轴上找到表示132-的点,观察点,B C 与表示132-的点在数轴上的位置,容易发现它们与132-之间的大小关系为13132,822>--<-. 易错辨析:一般地,在数轴上与某点相距一定单位长度的点有两个,分别位于该点的左、右两侧,不要遗漏.易错点3 乘法的分配律对除法不适用例3 计算:11(15)()53-÷- 错误解答:原式=11(15)(15)75453053-÷--÷=-+=-.错因分析:除法没有分配律. 正确解答:原式=215225(15)()(15)()1522-÷-=-⨯-=. 易错辨析:有的同学会错误地认为除法也有分配律,其实除法没有分配律.易错点4 幂的底数识别不清例4 计算:(1) 4(2)-= , 42-= ; (2) 32()3= , 323= .错误解答:(1)-16 -16 (2)827 827错因分析:负数的偶次幂的运算结果是正数,计算分数的幂时,注意分子、分母应分别乘方.在323中,注意是2的3次方,而不是23的3次方.(1) 4(2)-表示4个-2相乘,即它是底数为-2,指数为4的幂,所以4(2)-=16;42-表示42的相反数,即-2不是底数,所以42-=-16.(2)因为32()3表示3个23相乘,即它是底数为23,指数为3的幂,所以322228()333327=⨯⨯=.因为323表示3个2相乘的积与3的商,所以23不是底数,所以322228333⨯⨯==. 正确解答:(1) 16 -16 (2)827 83易错辨析:在进行幂的运算时,首先要区分底数和指数,然后根据幂的意义计算,得出正确结果.易错点5 混合运算顺序不清例5 计算: 23272(2)()83-÷⨯-. 错误解答:原式=2784()4(1)4827÷⨯-=÷-=-. 错因分析:易知328()327-=-,勿将“278”与“827-”结合运算,导致出错.实际上,本题中只有乘、除运算,故应从左往右按步计算. 正确解答:原式=278882564()4()8272727729÷⨯-=⨯⨯-=-. 易错辨析:乘、除是同级运算,应遵循从左往右的计算顺序.【反馈练习】1. (2016·宜昌)给出下列各数:1.414,1.732 050 8…,13-,0,其中为无理数的是( ) A. 1.414 B. 1.732 050 8… C . 13- D. 0 点拨:无理数即为无限不循环小数.2.已知数轴上有,A B 两点,点A 与原点的距离为2, ,A B 两点间的距离为1,则满足条件的 点B 所表示的数为 . 点拨:注意分类讨论.3.计算:(1) 23(2)(1)4-⨯-; (2) 22439-÷;(3) 2225(3)[()](6)439-⨯-+---÷; (4) 2017231(1)[2(1)(3)]6--⨯⨯---;点拨:注意有理数混合运算的顺序. 4.阅读下面的材料,并完成下列问题.计算: 12112()()3031065-÷-+-. 解法一:原式=12111112()()()()3033010306305-÷--÷+-÷-÷-=1111203512-+-+=16.解法二:原式=12112()[()()]3036105-÷+-+=151()()3062-÷-=1330-⨯ 110-.解法三:原式的倒数=21121()()3106530-+-÷- =2112()(30)31065-+-⨯- =203512-+-+ =10-.综上所述,原式=110-(1)上述三种解法得出的结果不同,肯定有错误的解法,解法 是错误的; (2)在正确的解法中,解法 最简便; (3)利用最简便的解法计算: 11322()()4261437-÷-+-.点拨:可以转化为先求原式的倒数. 探究与应用探究1 复杂的有理数混合运算 例1 计算:(1) 86[47(18.751)2]0.461525--÷⨯÷; (2) 32017201723(0.2)(50)(1)()35-⨯-+-⨯-. 点拨:按照有理数的运算法则进行计算即可. 解答:(1)原式=31556100[47(181)]482546--⨯⨯⨯=751556100[47()]482546--⨯⨯=13556100(47)82546-⨯⨯=4610020546⨯=(2)原式=20172017153()(50)()()12535-⨯-+-⨯-=2017253[()()]535+-⨯-=27155+=.规律·提示在有理数的混合运算过程中,要善于观察与思考,在正常运算较繁琐时,要根据算式的特点,灵活选择正确而简洁的解法(如运算律的运用等).对于复杂运算,更要保持不急不躁的态度,切不可跳步,欲速则不达. 【举一反三】 1.计算:(1) 222353()34()8()3532-⨯-÷-⨯+⨯-;(2) 321116(0.5)[2(3)]0.52338---÷⨯-----.探究2 错位相减法巧算例2 求23201712222S =++++⋅⋅⋅+的值.点拨:观察和式,不难发现:后面一个数是它前面一个数的2倍.为此,在和式两边同乘一个常数2后,再与原和式两边分别相减(这里的相减是错位相减),可使计算简便. 解答:因为23201712222S =++++⋅⋅⋅+①, 所以2342018222222S =++++⋅⋅⋅+②,所以②-①,得201821S =-.规律·提示:当一和式乘一个恰当的常数后,得到的新和式与原和式中绝大部分数相同时,应用错位相减法可以简化计算. 【举一反三】2.求23201613333++++⋅⋅⋅+的值.例3 求232017111112222S =++++⋅⋅⋅+的值. 点拨:观察和式,不难发现:后面一个数是它前面一个数的12.那么类似例2,在和式两边同乘一个常数12后,再与原和式两边分别相减(这里的相减是错位相减),可使计算简便. 解答:因为232017111112222S =++++⋅⋅⋅+①,所以2342018111111222222S =++++⋅⋅⋅+②.①-②,得201811122S =-,所以2017122S =-.规律·提示应用错位相减法时,一定要选择一个合适的常数. 【举一反三】 3.计算: 11112481024+++⋅⋅⋅+.探究3 拆项分解法巧算例4 计算: 111112123123100+++⋅⋅⋅+++++++⋅⋅⋅+. 点拨:因为(1)1232n n n ++++⋅⋅⋅+=,所以11222(1)123(1)12n n n n n n n ===-++++⋅⋅⋅+++,所以 111112123123100+++⋅⋅⋅+++++++⋅⋅⋅+可转化为 222222123341001001+-+-+⋅⋅⋅+-+.进一步通过加法的结合律计算,得22121001+-+,至此问题解决. 解答:原式=22222229912123341001001101101+-+-+⋅⋅⋅+-=-=+. 规律·提示(1)12342n n n +++++⋅⋅⋅+=. 这是初中数学计算中的一条重要公式. 再进一步拆分,得1111111,()(1)1()n n n n n n m m n n m=-=-++++.也可以类推三个及三个以上的数的积的拆项. 【举一反三】 4.求111113355720152017+++⋅⋅⋅+⨯⨯⨯⨯的值.探究4 整体换元法巧算例5 计算: 7737121738(172711)(1385)271739172739+-÷+-. 点拨: 73472437761716,2726,1110272717173939===,通过观察可以发现,这3个数分别是第2个括号内3个数的2倍.解答:令1217381385172739A =+-. 因为77373424761727111626102271739271739A +-=+-=, 所以原式=22A A ÷=. 规律·提示把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫做换元法.换元法是常用的解题方法,它能化复杂为简单,明确题目的结构特征,丰富解题思路.【举一反三】5.已知33331231514400+++⋅⋅⋅+=,求333324630+++⋅⋅⋅+的值.探究5 配对、分组巧算例6 计算:11212312341235859()()()()23344455556060606060++++++++++⋅⋅⋅++++⋅⋅⋅++. 点拨:观察每个括号内式子的特点,依特征求解;也可用一个符号表示所求的式子,将式子进行整体变形,寻找内在关系,简化运算.解答:解法一:原式=(0.529.5)590.51 1.5229.58852+⨯++++⋅⋅⋅+==. 解法二:原式=0.51 1.5229.5++++⋅⋅⋅+=(0.51 1.5229.5)(1229)++++⋅⋅⋅++++⋅⋅⋅+ (0.529.5)30(129)2988522+⨯+⨯=+= 解法三:设原式之和为S ,对每个括号内的各项都交换位置再相加,显然其和不变, 即121321432159585721()()()()23344455556060606060S =++++++++++⋅⋅⋅++++⋅⋅⋅++. 将原序和倒序相加,其相应两项之和为1,则有 (159)59212345930592S +⨯=++++⋅⋅⋅+==⨯, 所以1559885S =⨯=.规律·提示计算时需要观察规律,本例三种解法分别从三个角度着眼:解法一是配成59个“对子”;解法二是分组计算; 解法三是倒序与正序的综合运用.上述三种解法在计算中的运用都十分广泛.【举一反三】6.计算:(1234)(5678)(9101112)(2013201420152016)+--++--++--+⋅⋅⋅++--.参考答知识梳理负数 分数 不循环 正方向 单位长度 距离 本身 相反数0 绝对值1 异号 相反数 正 负 不等于0 倒数 相同 幂 正整数重难点分类解析【反馈练习】1.C2.A3.B4.C5.B6.B7.A8. 2112 2.5(1)1(2)22-<--<+-<<--9.原式=―310.原式=511.C 12.B易错题辨析1.B2. 3或1或―1或―33. (1) 原式=1;(2) 原式=38-;(3) 原式=―20;(4) 原式= 356-;4.(1)一 (2) 三(3)原式=114-探究与应用【举一反三】1.(1) 原式=7279;(2) 原式=―3.895.2.23201613333++++⋅⋅⋅+= 201713-12(). 3.11112481024+++⋅⋅⋅+= 102310244.111113355720152017+++⋅⋅⋅+⨯⨯⨯⨯= 10082017. 5. 333324630+++⋅⋅⋅+=115200.6. 原式=―2016。
初一数学有理数无理数题目

2.2有理数与无理数同步精练一、单选题1.下列说法中,正确的个数有()①-3.14既是负数,又是小数,也是有理数;②-25既是负数,又是整数,但不是自然数;③0既不是正数也不是负数,但是整数;④0是非负数.A.1个B.2个C.3个D.4个2.下列说法正确的个数有()①负分数一定是负有理数②自然数一定是正数③﹣π是负分数④a一定是正数⑤0是整数A.1个B.2个C.3个D.4个3.下列各数:1.414,π,13-,0,其中是无理数的为()A.1.414B.πC.13-D.04.对于 3.271-,下列说法不正确的是()A.是负数,不是整数B.是分数,不是自然数C.是有理数,不是分数D.是负有理数,且是负分数5.下列说法正确的是()A.有理数包括正有理数和负有理数B.2a是正数C.正数又可称为非负数D.有理数中有绝对值最小的数6.下列实数是无理数的是()A.-2B.16C D7.下列说法正确的是()A.所有的整数都是正数B.整数和分数统称有理数C.0是最小的有理数D.不是正数的数一定是负数8.下列四个数中,是正整数的是()A.﹣1B.0C.12D.1 9.下列实数中的无理数是()A BC D .22710.在5-,2.3,0,π,123-五个数中,非负的有理数共有().A .1个B .2个C .3个D .4个11.下列实数为无理数的是()A .-5B .72C .0D .π12.在3-,3π,1.62,0四个数中,有理数的个数为()A .4B .3C .2D .1二、填空题13.是整数而不是正数的有理数是______.14.在-42,+0.01,π,0,120这5个数中,正有理数是___________.15.在有理数﹣0.5,﹣3,0,1.2,2,312中,非负整数有____.16.在 3.5+,0,11,2-,23-,0.7-中,负分数有个______个.17.写出两个符合条件:是正数但不是整数的数,这两个数可以是____.三、解答题18.如图所示,将下列各数填入相应的集合圈内:12-,﹣7,+2.8,﹣900,﹣312,99.9,0,4.19.把下列各数分类,并填在表示相应集合的大括号里:-2,37+,0.8,12,0,-2.1,375-,17%,0.4.(1)正数集合:{}(2)整数集合:{}(3)分数集合:{}(4)负数集合:{}(5)正整数集合:{}(6)负分数集合:{}20.请把下列各数填入相应的集合中:﹣(+4),|﹣3.5|,0,3,10%,2018,+(﹣5),﹣2.030030003…(每两个3之间逐次加一个0).正分数集合:{…};负有理数集合:{…};非负整数集合:{…};参考答案1--10DBBCD DBDCB11--12DB13.非正整教殊性.14.+0.01,120.15.0,216.217.12和13(答案不唯一).键.18.解:根据负数的定义,负数有1-2、﹣7、﹣900、﹣312;根据整数的定义,整数有﹣7、﹣900、0、4.根据正数的定义,正数有+2.8、99.9、4.∴既是负数又是整数的有﹣7、﹣900;既是整数又是正数的有4.19.(1)解:正数集合:{37+,0.8,12,17%,0.4}(2)整数集合:{-2,12,0}(3)分数集合:{37+,0.8,-2.1,375-,17%,0.4}(4)负数集合:{-2,-2.1,375 -}(5)正整数集合:{12}(6)负分数集合:{-2.1,375 -}20.正分数集合:{|﹣3.5|,10%,…};负有理数集合:{﹣(+4),+(-5),…};非负整数集合:{0,2018,…};。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数和无理数
1.什么是有理数?我们把能够写成分数形式
n
m (m 、n 是整数,n≠0)的数叫做有理数。
2.有理数的分类?
整数和分数都可以写成分数的形式,它们统称为有理数。
零既不是正数,也不是负数。
有限小数和无限循环小数是有理数。
2.什么是无理数?①无限②不循环小数叫做无理数。
3无理数的两个前提条件是什么?
(1) 无限(2)不循环
4两者的区别是什么?
(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数。
(2)任何一个有理数后可以化为分数的形式,而无理数则不能。
1:下列各数中,哪些是有理数?哪些是无理数?
-3,3π,-61,0.333…,3.30303030…,42,-3.1415926,0,3.101001000……(相邻两个1之间0的个数逐个加1),面积为π的圆半径为r 。
答:无理数有:3
π,0,3.101001000……,(相邻两个1之间0的个数逐个加1) 有理数有:-3,-6
1,0.333…,3.30303030…,42,-3.1415926,0,面积为π的圆半径为r
2:下列说法正确的是:( )
A.整数就是正整数和负整数
B.分数包括正分数、负分数
C.正有理数和负有理数统称有理数
D.无限小数叫做无理数 答:B 因为:A 、C 的答案里缺少 0这一部分 D ,无限小数循环小数是有理数,无限不循环小数才是无理数
3:我们把能够写成分数形式n
m (m 、n 是整数,n≠0)的数叫做 有理数 。
4:有限小数和无限循环小数都可以化为分数,他们都是有理数。
5:无限不循环小数叫做无理数。
6:无理数与有理数的差都是有理数;答:错,如3π-0=3
π 7:无限小数都是无理数;答:错,如:0.333… 8:无理数都是无限小数;答:对,无理数的两个前提条件之一无限
9:两个无理数的和不一定是无理数。
答:对,3π+(-3
π)=0 10:有理数不一定是有限小数。
答:对,如:0.333…。