电气主接线(一)

电气主接线(一)
电气主接线(一)

电气主接线(一)

一、单选题

1. 4台容量为600MW的机组接入500kV系统,分两期建设。一期先建2×600MW 的机组并有2回出线,二期工程将再扩建2×600MW的机组,主接线宜采用。

A.双母线接线;

B.桥形接线;

C.四角形接线;

D.一台半断路器接线。

答案:D

2. 当采用少油断路器时,220kV出线和110kV出线在时可采用带专用旁路的旁路母线。

A.220kV四回,110kV六回;

B.220kV五回,110kV七回;

C.220kV二回,110kV五回;

D.220kV三回,110kV六回。

答案:A

3. 小型火力发电厂、发电机中性点采用不接地方式,当与发电机电气上直接连接的6kV回路中单相接地故障电流超过时宜考虑装设消弧线圈。

A.5A;

B.3A;

C.4A;

D.8A。

答案:C

4. 110kV及以上配电装置采用角形接线的条件是。

A.一次建成,最终进出线为3~5回;

B.一次建成,最终进出线为5回以上;

C.需再扩建,一期进出线为3~5回;

D.需再扩建,一期进出线为5回以上。

答案:A

5. 如采用单母线分段接线,在变电所设计中与各级电压出线回路数有关,下列条件合适的是。

A.6~10kV4回以上,35~63kV4回以上,110~220kV2回以上;

B.6~10kV6回以上,35~63kV4~8回,110~220kV3~4回;

C.6~10kV8回以下,35~63kV6回以上,110~220kV2~4回;

D.6~10kV10回,35~63kV4回,110~220kV2回。

答案:B

6.

接线主要使用的电压等级为。

A.220~500kV;

B.220~300kV;

C.300~500kV及以上;

D.110~300kV。

答案:C

7. 在考虑系统新增机组时,一般最大机组容量不超过系统总容量的。

110kva变电站电气主接线图分析

把变电站内的电气设备都要算上啊 一次设备:主变(中性点隔离开关、间隙保护、消弧线圈成套设备)、断路器(或开关柜、GIS等)、电压互感器(含保险)、电流互感器、避雷器、隔离开关、母线、母排、电缆、电容器组(电容、电抗、放电线圈等等),站用变压器(或接地变),有的变电站还有高频保护装置 二次设备:综合自动化、. 、逆变0000.、小电流接地选线、站用电、直流(蓄电池)、逆变、远动通讯等等 其他:支持瓷瓶、悬垂、导线、接地排、穿墙套管等等,消防装置、SF6在线监测装置等等 好像有点说多了,也可能有少点的,存在差异吧 35KV高压开关柜上一般都设有哪些保护各作用是什么? 过电流保护:1.速断电流保护:用于保护本开关以后的母排、电缆的短路故障。 2.定时限电流保护:用于下一电压级别的短路保护。 3.反时限电流保护:作用与2相同,但灵敏度比2高。 4.电压闭锁过电流保护:防止越级跳闸和误跳闸,提高供电可靠性。 5.纵联差动电流保护:专用于变压器内部故障保护。 6.长延时过负荷保护:用于保护专用设备或者电网的过负荷运行,首选发信,其次跳闸。 零序电流保护:1.零序电流速断保护:保护线路和线路后侧设备对地短路、严重漏电故障。 2.定时限零序电流保护:保护线路和线路后侧设备的轻微对地短路和小电流漏电,监测绝缘状况。可以选择作用于跳闸或发信。 过电压保护:1.雷电过电压保护。 2.操作过电压保护。1、2两种过电压通常都是用避雷器来保护,可防止线路或设备绝缘击穿。

3.设备异常过电压保护:通过电压继电器和综保定值整定来实现跳闸或发信,用于保护设备在异常过压下运行造成的发热损坏。 低电压保护:瞬时低电压保护只发信不跳闸,用于避免瞬间短路或大负荷启动造成的正常设备误跳闸。俗称躲晃电。 非电量保护:1.重瓦斯保护:用于变压器内部强短路或拉弧放电的严重故障保护。选择跳闸。 2.轻瓦斯保护:用于变压器轻微故障的检测,选择发信报警。 3.温度保护:用于检测变压器顶层油温监测,轻超温发信报警,重超温跳闸。 以上都是针对一次侧设计的保护。 二次侧的保护:1.直流失压保护,用于变电所直流设备故障时防止设备在保护失灵状况下运行。一般设备通常选择发信报警。重要设备选择跳闸。 2.临柜直流消失保护,用于监测相邻高压柜的直流电压状态,选择发信报警。 随着技术的发展,继电保护的内容越来越多,供人们在不同情况下选用。 目前使用的微机型综合保护器内都设计了各种保护功能,可以通过控制字的设定很方便地选择所需要的保护功能组合。

电气主接线基本形式

电气主接线基本形式 第一节 单母线接线 一 单母线接线 1.接线特点 单母线接线如图10-1所示 单母线接线的特点是每一回路均经过一台断路器QF 和隔离开关QS 接于一组母线上。断路器用于在正常或故障情况下接通与断开电路。断路器两侧装有隔离开关,用于停电检修断路器时作为明显断开点以隔离电压,靠近母线侧的隔离开关称母线侧隔离开关(如11QS ),靠近引出线侧的称为线路侧隔离开关(如13QS )。在主接线设备编号中隔离开关编号前几位与该支路断路器编号相同,线路侧隔离开关编号尾数为3,母线侧隔离开关编号尾数为1(双母线时是1和2)。在电源回路中,若断路器断开之后,电源不可能向外送电能时,断路器与电源之间可以不装隔离开关,如发电机出口。若线路对侧无电源,则线路侧可不装设隔离开关。 图10-1 单母线接线 L1 1QF 4QF 13QS 11QS 2QF

二、单母线分段接线 1.接线特点 单母线分段接线,如图10-2所示。 正常运行时,单母线分段接线有两种运行方式: (1)分段断路器闭合运行。正常运行时分段断路器0QF 闭合,两个电源分别接在两段母线上;两段母线上的负荷应均匀分配,以使两段母线上的电压均衡。在运行中,当任一段母线发生故障时,继电保护装置动作跳开分段断路器和接至该母线段上的电源断路器,另一段则继续供电。有一个电源故障时,仍可以使两段母线都有电,可靠性比较好。但是线路故障时短路电流较大。 (2)分段断路器0QF 断开运行。正常运行时分段断路器0QF 断开,两段母线上的电压可不相同。每个电源只向接至本段母线上的引出线供电。当任一电源出现故障,接该电源的母线停电,导致部分用户停电,为了解决这个问题,可以在0QF 处装设备自投装置,或者重要用户可以从两段母线引接采用双回路供电。分段断路器断开运行的优点是可以限制短路电流。 图10-2 单母线分段接线 L1 1QF 0QF 01QS I 段 Ⅱ段 13QS 11QS 2QF 02QS

发电厂电气部分第四章习题解答

第四章电气主接线 4-1 对电气主接线的基本要求是什么 答:对电气主接线的基本要求是:可靠性、灵活性和经济性。 其中保证供电可靠是电气主接线最基本的要求。灵活性包括:操作、调度、扩建的方便性。经济性包括:节省一次投资,占地面积小,电能损耗少。 4-2 隔离开关与断路器的区别何在对它们的操作程序应遵循哪些重要原则 答:断路器具有专用灭弧装置,可以开断或闭合负荷电流和开断短路电流,故用来作为接通和切断电路的控制电器。而隔离开关没有灭弧装置,其开合电流极小,只能用来做设备停用后退出工作时断开电路。 4-3 防止隔离开关误操作通常采用哪些措施 答:为了防止隔离开关误操作,除严格按照规章实行操作票制度外,还应在隔离开关和相应的断路器之间加装电磁闭锁和机械闭锁装置或电脑钥匙。 4-4 主母线和旁路母线各起什么作用设置专用旁路断路器和以母联断路器或者分段断路器兼作旁路断路器,各有什么特点检修出线断路器时,如何操作 答:主母线主要用来汇集电能和分配电能。旁路母线主要用与配电装置检修短路器时不致中断回路而设计的。设置旁路短路器极大的提高了可靠性。而分段短路器兼旁路短路器的连接和母联短路器兼旁路断路器的接线,可以减少设备,节省投资。当出线和短路器需要检修时,先合上旁路短路器,检查旁路母线是否完好,如果旁路母线有故障,旁路断路器在合上后会自动断开,就不能使用旁路母线。如果旁路母线完好,旁路断路器在合上就不会断开,先合上出线的旁路隔离开关,然后断开出线的断路器,再断开两侧的隔离开关,有旁路短路器代替断路器工作,便可对短路器进行检修。 》 4-5 发电机-变压器单元接线中,在发电机和双绕作变压器之间通常不装设断路器,有何利弊 答:发电机和双绕组变压器之间通常不装设断路器,避免了由于额定电流或短路电流过大,使得在选择出口断路器时,受到制造条件或价格等原因造成的困难。但是,变压器或者厂用变压器发生故障时,除了跳主变压器高压侧出口断路器外,还需跳发电机磁场开关,若磁场开关拒跳,则会出现严重的后果,而当发电机定子绕组本身发生故障时,若变压吕高压侧失灵跳闸,则造成发电机和主变压器严重损坏。并且发电机一旦故障跳闸,机

电气一次设备和电气主接线讲义全

电气一次设备及主接线 第一章电气设备 第1节概述 发电厂变电站的电气设备,根据其用途常分为一次设备和二次设备。一次设备是指直接生产、输送和分配电能的设备,包括有生产变换电能的设备(如发电机、变压器),开关设备(如高、低压断路器、隔离开关、接触器等),限流限压设备(如避雷器、电抗器),接地装置,载流导体(如母线、电力电缆等)。二次设备是对一次设备进行控制、测量、监视和保护的电气设备,包括测量表计(如电压表、电流表、功率表),继电保护及自动装置(如各种继电器、端子排),直流设备(如直流发电机、蓄电池)。下面主要针对部分一次设备的作用和工作原理进行介绍。 第2节母线 在发电厂变电站中,将发电机、变压器和各种电器连接的导线称为母线。母线是电气主接线和各级电压配电装置中的重要环节。它的作用是汇集和分配电能。 母线按所使用的材料可分为铜母线、铝母线和钢母线。 铜母线:具有电阻率低、机械强度高、抗腐蚀性强等特点,是很好的导电材料。但铜的储量少,属贵重金属,一般在含有腐蚀性气体的场合采用。 铝母线:电阻率比铜高,但储量丰富,比重小,加工方便,价格便宜,通常情况下采用铝母线。 钢母线:机械强度高,价格便宜,但钢的电阻率是铜的7倍,用于交流时会有很强的集肤效应,所以仅用于高压小容量回路(如电压互感器)。 母线按其截面形状可分为矩形母线、管形母线和槽形母线。 矩形母线:具有集肤效应系数小、散热条件好、安装简单、连接方便等优点,在35kV 及以下的户配电装置中多采用矩形母线。 管形母线:是空芯导体,集肤效应系数小,且电晕放电电压高。在35kV以上的户外配电装置中广泛采用。 槽形母线:电流分布比较均匀,与同截面的矩形母线相比,具有集肤效应系数小、冷却条件好、金属材料的利用率高、机械强度高等优点。当母线的工作电流很大,每相需要三条以上的矩形母线才能满足要求时,一般采用槽形母线。

电气主接线(一)

电气主接线(一) 一、单选题 1. 4台容量为600MW的机组接入500kV系统,分两期建设。一期先建2×600MW 的机组并有2回出线,二期工程将再扩建2×600MW的机组,主接线宜采用。 A.双母线接线; B.桥形接线; C.四角形接线; D.一台半断路器接线。 答案:D 2. 当采用少油断路器时,220kV出线和110kV出线在时可采用带专用旁路的旁路母线。 A.220kV四回,110kV六回; B.220kV五回,110kV七回; C.220kV二回,110kV五回; D.220kV三回,110kV六回。 答案:A 3. 小型火力发电厂、发电机中性点采用不接地方式,当与发电机电气上直接连接的6kV回路中单相接地故障电流超过时宜考虑装设消弧线圈。 A.5A; B.3A; C.4A; D.8A。 答案:C

4. 110kV及以上配电装置采用角形接线的条件是。 A.一次建成,最终进出线为3~5回; B.一次建成,最终进出线为5回以上; C.需再扩建,一期进出线为3~5回; D.需再扩建,一期进出线为5回以上。 答案:A 5. 如采用单母线分段接线,在变电所设计中与各级电压出线回路数有关,下列条件合适的是。 A.6~10kV4回以上,35~63kV4回以上,110~220kV2回以上; B.6~10kV6回以上,35~63kV4~8回,110~220kV3~4回; C.6~10kV8回以下,35~63kV6回以上,110~220kV2~4回; D.6~10kV10回,35~63kV4回,110~220kV2回。 答案:B 6. 接线主要使用的电压等级为。 A.220~500kV; B.220~300kV; C.300~500kV及以上; D.110~300kV。 答案:C 7. 在考虑系统新增机组时,一般最大机组容量不超过系统总容量的。

电气一次主接线

电气一次主接线图 株叶II线 启动/备用变压器 #01高压 变压器 #4机励磁器(预留) 脱硫变压器(预留) 脱硫变压变压器 #3高压厂用6KV III A段 6KV IV B段6KV IV A 段 变压器 #4高压厂用B2304 B2305 B2302 B2301 A2302 A2301 A2305 A2304 #2除灰变#4江边变#4综合泵房变 #4B 锅炉工作变#4B 电除尘变 #4B 汽机工作变 #2照明变 #2公用变#4A 电除尘变 #4A 锅炉工作变 #4A 汽机工作变#4输煤变 #3B 电除尘变 #1除灰变 #3B 汽机工作变 #3B 锅炉工作变#3综合泵房变 #3江边变#1斗轮机变 #1照明变 #1公用变 #3A 锅炉工作变 #3A 汽机工作变 #3A 电除尘变 #3输煤变 B2313 B2321 B2325 B2320 B2322 B2323 B2324 A2314 A2327 A2328 A2326 A2325 A2323 A2324 A2312 -2 -1 #3发电机 #3主变压器 #4发电机 #4主变压器 B2404 B2402 B2401 B2425 B2413 B2421 B2422 B2420 B2424 B2423 A2414 A2426 A2325 A2424 A2423 A2422 A2412 A2404 A2405 A2402 A2401 5X016 536 3 3G442 3G441 3G443G46 3G45 6403640 6403 6403G 6303 G 3G36 630 6303-1 变压器 #3机励磁3G35 2 1 3G343G343 3G346303-2 株叶I线 5361 一期110KV 技改母线 Ⅰ5362 5362-1 Ⅱ

电气主接线讲义

第五章电气主接线讲义 第一节电气主接线概述 一、电气主系统与电气主接线图 (一)电气主接线 电气主接线是由多种电气设备通过连接线,按其功能要求组成的汇聚和分配电能的电路,也称电气一次接线或电气主系统。 (二)电气主接线图 用规定的设备文字和图形符号将各电气设备,按连接顺序排列,详细表示电气设备的组成和连接关系的接线图,称为电气主接线图。 电气主接线图一般画成单线图。 二、电气主接线中的电气设备和主接线方式 (一)电气主接线中的电气设备 电气主接线中的主要电气设备包括:电力变压器、断路器、隔离开关、电压互感器、电流互感器、避雷器、母线、接地装置以及各种无功补偿装置等。(二)主接线方式 常用的主接线方式有:单母线接线、单母线分段接线、单母线分段带旁路母线接线、双母线接线、双母线带旁路母线接线、双母线分段接线、双母线分段带旁路母线接线、内桥接线、外桥接线、一台半断路器接线、单元接线、和角形接线等。 三、电气主接线的基本要求 电气主接线的选择正确与否对电力系统的安全、经济运行,对电力系统的稳定和调度的灵活性,以及对电气设备的选择,配电装置的布置,继电保护及控制方式的拟定等都有重大的影响。在选择电气主接线时,应满足下列基本要求。 1. 保证必要的供电可靠性和电能的质量; 2. 具有一定的运行灵活性; 3. 操作应尽可能简单、方便; 4. 应具有扩建的可能性; 5. 技术上先进,经济上合理。

第二节 电气主接线的基本接线形式 一、单母线接线 (一) 单母线接线的优点 简单、清晰、设备少、投资小、运行操作方便,有利于扩建和采用成套配电装置。 (二) 单母线接线的主要缺点 母线或母线隔离开关检修时,连接在母线上的所有回路都将停止工作;当母线或母线隔离开关上发生短路故障,装设母差保护时,所有断路器都将自动断开,造成全部停电;检修任一电源或出线断路器时,该回路必须停电。 二、单母线分段接线 出线回路数增多时,可用断路器或隔离开关将母线分段,成为单母线分段接线,如图所示。根据电源的数目和功率,母线可分为2~3段。 (一)单母线分段接线的优点 该接线方式由双电源供电,故供电可靠性高,同时具有接线简单、操作方便、投资少等优点。当一段母线发生故障时,分段断路器或隔离开关将故障切除,保证正常母线供电,重要用户分别取自不同母线,不会全停,提高了供电的可靠性。 (二)单母线分段接线的缺点 当一段母线或母线隔离开关故障或检修时,必须断开接在该分段上的全部电源和出线,并使该段单回路供电的用户停电;任一出线断路器检修时, 该回路

电气一次设备和电气主接线讲义

电气一次设备和电气主接线讲义

————————————————————————————————作者:————————————————————————————————日期: 2

电气一次设备及主接线 第一章电气设备 第1节概述 发电厂变电站的电气设备,根据其用途常分为一次设备和二次设备。一次设备是指直接生产、输送和分配电能的设备,包括有生产变换电能的设备(如发电机、变压器),开关设备(如高、低压断路器、隔离开关、接触器等),限流限压设备(如避雷器、电抗器),接地装置,载流导体(如母线、电力电缆等)。二次设备是对一次设备进行控制、测量、监视和保护的电气设备,包括测量表计(如电压表、电流表、功率表),继电保护及自动装置(如各种继电器、端子排),直流设备(如直流发电机、蓄电池)。下面主要针对部分一次设备的作用和工作原理进行介绍。 第2节母线 在发电厂变电站中,将发电机、变压器和各种电器连接的导线称为母线。母线是电气主接线和各级电压配电装置中的重要环节。它的作用是汇集和分配电能。 母线按所使用的材料可分为铜母线、铝母线和钢母线。 铜母线:具有电阻率低、机械强度高、抗腐蚀性强等特点,是很好的导电材料。但铜的储量少,属贵重金属,一般在含有腐蚀性气体的场合采用。 铝母线:电阻率比铜高,但储量丰富,比重小,加工方便,价格便宜,通常情况下采用铝母线。 钢母线:机械强度高,价格便宜,但钢的电阻率是铜的7倍,用于交流时会有很强的集肤效应,所以仅用于高压小容量回路(如电压互感器)。 母线按其截面形状可分为矩形母线、管形母线和槽形母线。 矩形母线:具有集肤效应系数小、散热条件好、安装简单、连接方便等优点,在35kV 及以下的户内配电装置中多采用矩形母线。 管形母线:是空芯导体,集肤效应系数小,且电晕放电电压高。在35kV以上的户外配电装置中广泛采用。 槽形母线:电流分布比较均匀,与同截面的矩形母线相比,具有集肤效应系数小、冷却条件好、金属材料的利用率高、机械强度高等优点。当母线的工作电流很大,每相需要三条以上的矩形母线才能满足要求时,一般采用槽形母线。 3

电气主接线基本形式

电气主接线基本形式 第一节单母线接线 一单母线接线 1.接线特点 单母线接线如图10-1所示 单母线接线的特点是每一回路均经过一台断路器QF 和隔离开关QS 接于一组母线上。断路器用于在正常或故障情况下接通与断开电路。断路器两侧装有隔离开关,用于停电检修断路器时作为明显断开点以隔离电压,靠近母线侧的隔离开关称母线侧隔离开关(如11QS ),靠近引出线侧的称为线路侧隔离开关(如13QS )。在主接线设备编号中隔离开关编号前几位与该支路断路器编号相同,线路侧隔离开关编号尾数为3,母线侧隔离开关编号尾数为1(双母线时是1和2)。在电源回路中,若断路器断开之后,电源不可能向外送电能时,断路器与电源之间可以不装隔离开关,如发电机出口。若线路对侧无电源,则线路侧可不装设隔离开关。 二、单母线分段接线 1.接线特点 单母线分段接线,如图10-2所示。 图10-1 单母线接线 L1 1QF 4QF 13QS 11QS 2QF

正常运行时,单母线分段接线有两种运行方式: (1)分段断路器闭合运行。正常运行时分段断路器0QF 闭合,两个电源分别接在两段母线上;两段母线上的负荷应均匀分配,以使两段母线上的电压均衡。在运行中,当任一段母线发生故障时,继电保护装置动作跳开分段断路器和接至该母线段上的电源断路器,另一段则继续供电。有一个电源故障时,仍可以使两段母线都有电,可靠性比较好。但是线路故障时短路电流较大。 (2)分段断路器0QF 断开运行。正常运行时分段断路器0QF 断开,两段母线上的电压可不相同。每个电源只向接至本段母线上的引出线供电。当任一电源出现故障,接该电源的母线停电,导致部分用户停电,为了解决这个问题,可以在0QF 处装设备自投装置,或者重要用户可以从两段母线引接采用双回路供电。分段断路器断开运行的优点是可以限制短路电流。 三、单母线分段带旁路母线接线 图10-2 单母线分段接线 L1 1QF 0QF 01QS I 段 Ⅱ段 13QS 11QS 2QF 02QS

电气主接线

&第5章电气主接线 教学目的:熟悉各种形式主接线的特点及适用范围。 复习旧课: ⒈一次设备的种类及作用:发电机、变压器、电动机、高低压开关、互感器、导体等; ⒉电气主接线的定义和图的表示方法(符号、单线、规范、电压级、标题栏)。 重点:主接线的基本要求 难点:单母线接线 引入新课: 5.1 概述 一、主接线的定义 指发电厂或变电站中的一次设备按照设计要求连接起来,表示生产、汇集和分配电能的电路。电气主接线中的设备用标准的图形符号和文符号字符号表示的电路图称为电气主接线图。 二、基本要求: ⒈必须保证发供电的安全可靠性 ⑴涵义:连续不中断、安全和符合电能质量要求。 ⑵负荷(用户)的分类:一、二、三级 ⑶具体衡量要求 全厂QF、设备、线路等检修时停电范围、时间以及保证对一、二 级负荷供电的情况。 ⒉应具有一定的灵活性 ⑴涵义:适应各种运行方式(正常、检修、事故及处理、特殊、投切设备、增减负荷等)的变化。 ⑵具体衡量要求 变化过程短、影响范围小并保证人员安全。 ⒊操作尽可能简单、方便。简单性 接线简单清晰(回路数少、电压级、开关少); 操作步骤少。 ⒋经济上应合理。经济性 投资、年运行费用、占地少,经济效益高。

⒌发展和扩建(分期过渡)的可能性 主接线是电气部分的主体,设计的主要环节,其方案的必须根据 工程的地位、负荷的性质等条件,经技术经济比较确定。 可分为无母线和有母线两类。 5.2 电气主接线的基本形式 主接线基本接线形式构成的规律 主接线的总体分类 有母线类: 一、单母线接线 母线起汇集和分配电能的作用。每一条进出线回 路都组成一个接线单元,每个接线单元都与母线 相连,可分为: ⒈不分段单母线 1)接线方法及工作要求,见右图 ⑴主母线的作用 ⑵开关电器的配置 线路有反馈电可能或为架空配电线应装设QS ⑶操作程序“先通后断”原则 合:QF QS QS L B →→; 分:B L QS QS QF →→。 2)特点 ⑴优点: 简单、经济。 ①接线简单(设备少)、清晰、明了; ②布置、安装简单,配电装置建造费用低; ③断路器与隔离开关间易实现可靠的防误闭锁, 操作安全、方便,母线故障的几率低; ④易扩建和采用成套式配电装置。 ⑵缺点: 不够灵活可靠。 ①主母线、母隔故障或检修,全厂停电; ②任一回路断路器检修,该回路停电。 ⒊适用范围 L4

新形势下变电站电气一次主接线设计 周海

新形势下变电站电气一次主接线设计周海 发表时间:2019-05-17T10:37:02.890Z 来源:《电力设备》2018年第33期作者:周海 [导读] 摘要:随着社会经济的快速发展,电力能源的需求日益增长。 (国家能源集团神华新疆能源有限责任公司新疆乌鲁木齐 830000) 摘要:随着社会经济的快速发展,电力能源的需求日益增长。为了保障电力能源的稳定安全供给,变电站的建设发展力度不断加强,在用电量快速增多、电力安全指标日益严格的新形势之下,变电站电气一次设计的严格要求成为社会与电力企业的关注重点。本文对新形势下变电站电气一次主接线设计进行了探讨和研究,以供相关人士参考。 关键词:新形势;变电站;电气一次;主接线设计 近年来,我国电力事业快速发展,电网结构不断扩大,各行各业的电力需求也不断增加,这对于变电站运行的稳定性和可靠性提出了更高的要求。变电站一次主接线设计应综合考虑多方面内容,合理配置变压器,选择合适的控制方式和自动化装置,提高变电站电能质量,确保连续供电。 1电气一次主接线的概述 电气一次主接线又叫“电气主接线”,它是变电站高电压、大电流电气部分的主体结构,在整个电力系统体系中占据重要地位。电气主接线的布置,将直接影响到电力生产过程能否顺利进行,同时也会对配电装置的设置、电气设备的选型、控制模式等各方面产生决定性的影响。所以在变电站建设与改造中,必须做好电气一次主接线的设计工作,按照电能生产、传递、配置的标准程序和要求绘制出单相接线图,并全面考虑各方面的影响因素,在经济、技术、效益、可行性等方面进行充分分析和比较,进而选出最适用的方案。 2变电站电气的主接线及其设计原则 2.1变电站电气的主接线 电气一次主接线设计是电气一次设计中最为关键的环节,这是由于电气主接线与电力系统的各个装置与模块的选择以及电力系统的正常运转过程密切相关。在电气一次主接线设计过程中,需要重点关注变电站的使用年限、建设规模以及电力系统的负荷等指标,要以安全可靠为基本原则。同时还要保证电气一次主接线设计能够较为灵活地应对变电站运行时发生的各种意外情况。 2.2电气主接线设计原则 2.2.1灵活性原则 在当今经济、科技飞速发展的时代背景下,变电站随时可能更新、改造,因此,电气一次主接线设计必须遵循灵活性的原则。具体来说,要遵循“扩建灵活、调度灵活、检修灵活、事故处理灵活”的原则。在扩建灵活原则上,要求主接线的设计要满足变电站分期建设的要求,要适应从初期到完工的过程中扩建的要求;在调度灵活原则上,必须满足系统持续、正常运行的需要,方便操作,并能快速灵活地投入、更换或切除无功补偿装置、变压器等,最大限度提升电力系统的安全性、可靠性和经济性;在检修灵活上,要求必须能够方便地进行安全检修或更换开关设备、变压器等;在事故处理灵活上,要求在遇到变电站系统故障时,能快速隔离故障发生部位,及时恢复供电正常,以保证电力系统的安全、持续运行。 2.2.2可靠性原则 电能的输送是一项对人们的生产、生活具有重大影响的工作,因此,必须高度重视电气一次主接线设计的可靠性,确保电能生产、输送和分配的可靠性。遵循可靠性原则,要求在设计过程中着重考虑以下3个方面:①要考虑变电站全部停止运行的概率;②要考虑断路器在检修的过程中是否会影响到电能的供给;③要考虑在发生线路故障或维护时,可能导致的停电线路数量、停电的时间和对重要用户用电需求的保障。 2.3.3经济性原则 所谓“经济性原则”,指的就是电气一次主接线的设计必须考虑到各方面费用的花费,最大限度降低成本。遵循经济性原则,首先要节约设计成本,尽量选择高效益的设备,减少设备的使用量,同时还可通过限制短路电流、选择相对质优价廉的电气设备或者尽量避免使用截面较大的电缆,从多方面着手来达到节约成本的目的。另外,要尽量缩小占地面积。这就需要设计人员从接线方式的选择上入手,充分考虑设备布置所需的土地面积,通过充分的对比论证,选择占地最小、效果最佳的接线方案,同时还要考虑征地的价格,降低配电装置征地所需费用。 3变电站一次主接线设计内容 3.1主接线设计 变电站一次主接线设计时,应主要考虑到三方面内容:其一,变电站负荷;其二,变电站建设规模和占地面积;其三,变电站在整个电网中发挥的作用和地位。对于变电站中的三级负荷,结合设计要求,设置一个供电电源;对于变电站中的二级负荷和一级负荷,设置两个相互独立的供电电源,一旦其中某个电源出现运行故障,还可以由另一个供电电源保障安全、持续的供电。同时,变电站一次主接线设计,要结合变压器容量大小,如果变电站系统中包含多台变压器,当其中某台变压器运行故障时,其它变压器必须能够满足变电器的运行负荷要求,确保变电站的二级和一级负荷稳定性。 3.2主接线选择 结合变电站的实际规划设计要求,按照《变电站设计技术要求》,优化接线形式,若配电设备出线数小于2,可以采用桥形接线形式;若出线数小于4,可以设置分段单母线接线形式,并且尽量在变压器路旁设计双母线和单母分段配电装置。同时,变电站主接线选择时,应充分考虑多方面因素,尤其是中间变电站和终端变电站,在靠近变电站负荷中心区域的终端变电站接线要分两路设计进线,合理设置两台变压器,高压侧主接线设计包含变压器组接线、内桥接线和单母线接线,根据变电站的接线设计、容量a大小等实际情况,选择最合适的接线形式。 3.3主变压器设置 变电站一次主接线设计必须合理设置主变压器,首先确定合适的相数,一般情况下,330kV以下变电站应设置三相主变压器,然后设计合适绕组数,主要包含普通式双绕组、分裂式低压绕组、三绕组式等。结合变电站规划设计要求,尽量设置双绕组变压器。然后,分析绕组接线组别,一般情况下变电站绕组接线主要设置“YN”形式,根据变电站的实际调压形式,无激磁调压还是有载调压,确定合适的冷却方

35KV变电所一次系统电气主接线的设计

35KV变电所一次系统电气主接线的设计 目录 课程设计目的、设计原始资料及分析、设计任务及要求 (3) 主接线方案论证 (5) 变压器台数及容量选择 (7) 短路电流计算 (9) 无功补偿分析 (10) 设计小结 (12) 参考文献 (12)

A.课程设计目的、设计原始资料及分析、设计任务及要求 (一)设计目的 本课程设计是高校工科电气类相关专业的一门专业实践课。其目的是: 1.巩固和扩大所学的专业理论知识,并在课程设计的实践中得到灵活应用; 2.学习和掌握发电厂、变电所电气部分设计的基本方法,树立正确的设计思想;3.培养独立分析和解决问题的工作能力及解决实际工程设计的基本技能; 4.学习查阅有关设计手册、规范及其他参考资料的技能。 (二)设计条件(原始资料) 1、某企业为保证供电需要,要求设计一座35KV降压变电所,以10KV电缆给各车 间供电,一次设计并建成。 2、距该变电所65KM处有一系统变电所,用35KV双回架空线路向待设计的变电所 供电。在最大运行方式下,待设计变电所高压母线上的短路功率为1000MV A。3、待设计变电所10KV侧无电源,考虑以后装设两组电容器,提高功率因数,故要 求预留两个间隔。 4、35KV出线7回,最大负荷10000KV A,cos∮=0.8,T max=4000h;10KV出线10 回,最大负荷3600KV A,cos∮=0.8,T max=3000h。 5、本变电所10KV母线到各车间均用电缆供电,其中一车间和二车间为Ⅰ 级负荷,其余为Ⅱ级负荷。各馈线负荷如表1所示。 表1 各馈线负荷 6、所用电的主要负荷见表2。

相关文档
最新文档