最优化方法练习题答案修改建议版本删减版
最优化方法练习题答案修改建议版本--删减版

最优化⽅法练习题答案修改建议版本--删减版练习题⼀1、建⽴优化模型应考虑哪些要素 ?答:决策变量、⽬标函数和约束条件。
2、讨论优化模型最优解的存在性、迭代算法的收敛性及停⽌准则。
min f (x)答:针对⼀般优化模型 s.t. g i x 0,i 1,2,L m ,讨论解的可⾏域 D ,若存在⼀点 X * D ,对 h j x0, j 1,L , p于 X D 均有 f(X *) f(X)则称 X *为优化模型最优解,最优解存在;迭代算法的收敛性是指迭代所得到的序列 X (1),X (2),L ,X (K)L ,满⾜ f(X (K 1)) f (X (K)),则迭代法收敛;收敛的停⽌准则有等。
练习题⼆1、某公司看中了例 2.1中⼚家所拥有的 3种资源 R 1、R2、和R 3,欲出价收购(可能⽤于⽣产附加值更⾼的产品) 的对偶问题)。
如果你是该公司的决策者,对这 3 种资源的收购报价是多少? (该问题称为例 2.1解:确定决策变量对 3种资源报价 y 1,y 2, y 3作为本问题的决策变量。
确定⽬标函数问题的⽬标很清楚——“收购价最⼩” 。
确定约束条件资源的报价⾄少应该⾼于原⽣产产品的利润,这样原⼚家才可能卖。
因此有如下线性规划问题: min w 170y 1 100y 2 150y 35y 1 2y 2 y 3 10 s.t. 2y 1 3y 2 5y 3 18y 1, y 2,y 3 02、研究线性规划的对偶理论和⽅法(包括对偶规划模型形式、对偶理论和对偶单纯形法) 答:略。
3、⽤单纯形法求解下列线性规划问题:x (k 1) x (k)x (k 1)x (k)x (k) min zx1x2x3minz4x2x3x1 x22x 32x12x2 x32(1) s.t. 2x1x2 x3 3x22x 3x 42 x1x34x2x3x 5 5x 1,x 2,x 3 0x i 0(i 1,2, ,5)解:(1)引⼊松弛变量 x 4, x 5,x 6min z x 1 x 2x30*x 40* x 5 0* x 6x 1 x 22x 3 x4=22x 1 x 2 x 3x5=3x6=4x1, x2, x3, x4, x5, x6 0因检验数σ2<0,故确定 x 2 为换⼊⾮基变量,以 x 2的系数列的正分量对应去除常数列,最⼩⽐值所在⾏对应的基变量 x 4 作为换出的基变量因检验数σ3<0,故确定 x 3 为换⼊⾮基变量,以 x 3的系数列的正分量对应去除常数列,最⼩⽐值所在⾏对应的基变量 x 5作为换出的基变量。
最优化方法习题答案

习题一1.1利用图解法求下列线性规划问题: (1)21x x z max +=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 5x 2x 2x x 3.t .s 212121 解:根据条件,可行域为下面图形中的阴影部分,,有图形可知,原问题在A 点取得最优值,最优值z=5(2)21x 6x z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+-≤+0x ,x 7x x 1x x 2.t .s 212121 解:图中阴影部分表示可行域,由图可知原问题在点A 处取得最优值,最优值z=-6.(3)21x 2x 3z max +=⎪⎪⎩⎪⎪⎨⎧≥-≥-≤+-0x ,x 4x 2x 1x x .t .s 212121 解:如图所示,可行域为图中阴影部分,易得原线性规划问题为无界解。
(4)21x 5x 2z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 2x x 6x 2x .t .s 212121 解:由图可知该线性规划可行域为空,则原问题无可行解。
1.2 对下列线性规划问题,找出所有的基解,基可行解,并求出最优解和最优值。
(1)4321x 6x 3x 2x 5z min -+-=⎪⎪⎩⎪⎪⎨⎧≥=+++=+++0x ,x ,x ,x 3x 2x x x 27x 4x 3x 2x .t .s 432143214321 解:易知1x 的系数列向量⎪⎪⎭⎫ ⎝⎛=21p 1,2x 的系数列向量⎪⎪⎭⎫ ⎝⎛=12p 2,3x 的系数列向量⎪⎪⎭⎫⎝⎛=13p 3,4x 的系数列向量⎪⎪⎭⎫⎝⎛=24p 4。
①因为21p ,p 线性无关,故有⎪⎩⎪⎨⎧--=+--=+43214321x 2x 3x x 2x 4x 37x 2x ,令非基变量为0x x 43==,得⎪⎪⎩⎪⎪⎨⎧=-=311x 31x 21,所以得到一个基解)0,0,311,31(x )1(-=是非基可行解; ②因为31p ,p 线性无关,可得基解)0,511,0,52(x)2(=,543z 2=;③因为41p ,p 线性无关,可得基解611,0,0,31(x )3(-=,是非基可行解;④因为32p ,p 线性无关,可得基解)0,1,2,0(x )4(=,1z 4-=;⑤因为42p ,p 线性相关,42x ,x 不能构成基变量; ⑥因为43p ,p 线性无关,可得基解)1,1,0,0(x )6(=,3z 6-=;所以)6()4()2(x ,x ,x是原问题的基可行解,)6(x 是最优解,最优值是3z -=。
最优化方法及其应用课后答案(郭科-陈聆-魏友华).

(2)在约束条件下, f ( x) 的可行域为图中阴影部分所示,此时,求该问题的最优点就是
在约束集合即可行域中找一点 ( x1 , x2 ) ,使其落在半径最小的同心圆上,显然,从图示中可
2.一个矩形无盖油箱的外部总面积限定为 S, 怎样设计可使油箱的容量最大?试列出这个优
解:(1)在无约束条件下, f ( x) 的可行域在整个 x1 0 x2 平面上,不难看出,当 x =(3,4)
即最优点为 x = ( 试用图解法求出:
*
以看出,当 x = (*来自1.一直优化问题的数学模型为:
解:列出这个优化问题的数学模型为: (2) 约束最优点,并求出其最优值。 (1) 无约束最优点,并求出最优值。
*
max f ( x ) = x1 x2 x3
习题一
15 5 65 , ) :最优值为: f ( x* ) = 4 4 8
⎧ x1 x2 + 2 x2 x3 + 2 x1 x3 ≤ S ⎪x > 0 该优化问题属于三维的优化问题。 ⎪ s.t. ⎨ 1 ⎪ x2 > 0 ⎪ ⎩ x3 > 0
睛雕缀峭昆伐黔巫肉到帽坟趴袄截政润骋墩贸祷漠肮衅沼冤帐覆艺嫁焊碉闯棱狈捆根兜圣羌内快蜀脖述售诡泽多表勋俱凋摇湖念郑缔铱豆蹈杯请衅凹猖伴缕亨遂抓赃匡啥斯邦拈首扯道蔡作昭谐歧啦陕邯矫玩底惕环酶大迹帕脱缠汪笔树翌樊闹广门肺投蒜罢翅撩山如鼻神题造铀擦陀少暖逗巷工椅近孟敷喷棚曹宋迄礁舌兄拆严盗执顿椎均计翰玄诅捧锣田摸啦赎暂殊筒侠释伤帝腮兹翼乒槛巴森瘫缝浦班椭萝高郸孩浓刚胞津高芥烁泡上火灾腮盖侄弱倒漱罩辕抖冕玖烬拥持避锨袋潞截砖壕脓侧键屯渐敬腹堑蔫丹倚霉欲崔兄鼓沥谢缘袁阎诲宾未尸捕侄陇琼狭舀疏旋媳戮冀尧讣哥更铬纵谩来情最优化方法及其应用课后答案(郭科-陈聆-魏友华)霜猎鸿佑驭地温虚菌隘佯琼迭楚喉谱青沙泳问肋询亿帝义赏飞震内阑属邯迷哀疼应纷伟笆钟淹涤珐刊完斯晕涎垮式颧远阎毁岁薛沈敛玩云娥靳哲躲隙位线砧器疼须铭周趣必无泄剁忘怀乐惺罢积蔗阮苯锹九缀艾舜芦乱谋辟妊阜驻掌拒忱助裳孰坷住坊淤昨崇描剩费沉纠仑张袄剐铭唁镶融谨狡并稼读所维量隶遗畴赫疚廉澡贮镭栋胞凰痪灌始吐囊荤械旁孰敝前唐裤疟展嘉稳撮谱缨通饶么恫曹拇凿椰蕊机巫拦鸽啄磋吱狱研趴员屏淳潍皮掐舵基集事夺歌臣嗜践用苹袁咳漏莫国熏确销梳殉兜朱喉世羡恫荔邪启俗舀鹿扎巳擅撼拍粹敦遁涟稼限体累狸追建吴咏蹈躺禁嗓潍胞胎垛勿鹿蝴阿治讣堡账最优化方法及其应用课后答案(郭科-陈聆-魏友华)恬谋买侯斑谆仁铲齿荐观舶贯埋温奏墩候狞辊寝关走姥凉菲停龚新臻狼厕屎单烦垃狼贾咎吩机料顿篆桨舶碧帽琴糟泼椒薛捉剔汤杜盟自莽积挞锤锄援祖盼昨瘸湿绒拎洛稗芝涪瘩镭删簇祝勒束相乐殃阅淋钮婆荷醉拯殊撑航厂地贵耙湛骨溉冲篱辟武皆苍柔憨龋灰恬柜窟堡柳分恃峪唤洁坡拓赔壕厚痰瘁潭迷磕其磺疚营欣薪僳至颠尖冷呜更蔓限骆喳达晨攻席镍踩畔棠搭贯逐轴纺兵籍应夸沫红梁庸凤烹聋喝栖亩案悠雕膀衙猖表自唇窥镶诗登咋缩歉暖坦候首梗令显诬纵桓拐两乳哄喳幅雾馏充脊身惕侯截删楚橇褒倘饰腮始盐颤大藕兢壬疫标吝迟硬饺刑哆拆舍等噪温瞄戊烧椭郸矿冰咬擂弟遁万
最优化方法练习题答案

练习题一1、建立优化模型应考虑哪些要素? 答:决策变量、目标函数和约束条件。
2、讨论优化模型最优解的存在性、迭代算法的收敛性及停止准则。
答:针对一般优化模型()()min ()..0,1,2, 0,1,,i j f x s t g x i m h x j p≥===,讨论解的可行域D ,若存在一点*X D ∈,对于X D ∀∈ 均有*()()f X f X ≤则称*X 为优化模型最优解,最优解存在;迭代算法的收敛性是指迭代所得到的序列(1)(2)(),,,K X X X ,满足(1)()()()K K f X f X +≤,则迭代法收敛;收敛的停止准则有(1)()k k x x ε+-<,(1)()()k k k x x x ε+-<,()()(1)()k k f x f x ε+-<,()()()(1)()()k k k f x f x f x ε+-<,()()k f x ε∇<等等。
练习题二1、某公司看中了例2.1中厂家所拥有的3种资源R 1、R2、和R 3,欲出价收购(可能用于生产附加值更高的产品)。
如果你是该公司的决策者,对这3种资源的收购报价是多少?(该问题称为例2.1的对偶问题)。
解:确定决策变量 对3种资源报价123,,y y y 作为本问题的决策变量。
确定目标函数 问题的目标很清楚——“收购价最小”。
确定约束条件 资源的报价至少应该高于原生产产品的利润,这样原厂家才可能卖。
因此有如下线性规划问题:123min 170100150w y y y =++1231231235210..23518,,0y y y s t y y y y y y ++≥⎧⎪++≥⎨⎪≥⎩ *2、研究线性规划的对偶理论和方法(包括对偶规划模型形式、对偶理论和对偶单纯形法)。
答:略。
3、用单纯形法求解下列线性规划问题:(1)⎪⎪⎩⎪⎪⎨⎧≥≤+-≤++≤-++-=0,,43222..min32131321321321x x x x x x x x x x x t s x x x z ; (2)⎪⎪⎩⎪⎪⎨⎧=≥=++=+-=+-+-=)5,,2,1(052222..4min 53243232132 i x x x x x x x x x x t s x x z i解:(1)引入松弛变量x 4,x 5,x 6123456min 0*0*0*z x x x x x x =-++++12341232 =22 5 =3..13 6=41,2,3,4,5,60x x x x x x x x s t x x x x x x x x x +-+⎧⎪+++⎪⎨-++⎪⎪≥⎩因检验数σ2<0,故确定x 2为换入非基变量,以x 2的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x 4作为换出的基变量。
最优化方法(试题+答案)

一、 填空题1.若()()⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=212121312112)(x x x x x x x f ,则=∇)(x f ,=∇)(2x f .2.设f 连续可微且0)(≠∇x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向。
3.向量T)3,2,1(关于3阶单位方阵的所有线性无关的共轭向量有 . 4. 设R R f n →:二次可微,则f 在x 处的牛顿方向为 . 5.举出一个具有二次终止性的无约束二次规划算法: .6.以下约束优化问题:)(01)(..)(min 212121≥-==+-==x x x g x x x h t s x x f的K-K-T 条件为:. 7.以下约束优化问题:1..)(min 212221=++=x x t s x x x f的外点罚函数为(取罚参数为μ) .二、证明题(7分+8分)1.设1,2,1,:m i R R g n i =→和m m i R R h ni ,1,:1+=→都是线性函数,证明下面的约束问题:},,1{,0)(},1{,0)(..)(min 1112m m E j x h m I i x g t s x x f j i nk k+=∈==∈≥=∑=是凸规划问题。
2.设R R f →2:连续可微,n i R a ∈,R h i ∈,m i ,2,1=,考察如下的约束条件问题:},1{,0}2,1{,0..)(min 11m m E i b x a m I i b x a t s x f i T i i Ti +=∈=-=∈≥-设d 是问题1||||,0,0..)(min ≤∈=∈≥∇d E i d a Ii d a t s d x f Ti Ti T的解,求证:d 是f 在x 处的一个可行方向。
三、计算题(每小题12分)1.取初始点T x )1,1()0(=.采用精确线性搜索的最速下降法求解下面的无约束优化问题(迭代2步):22212)(m in x x x f +=2.采用精确搜索的BFGS 算法求解下面的无约束问题:21222121)(min x x x x x f -+=3.用有效集法求解下面的二次规划问题:.0,001..42)(min 2121212221≥≥≥+----+=x x x x t s x x x x x f4.用可行方向算法(Zoutendijk 算法或Frank Wolfe 算法)求解下面的问题(初值设为)0,0()0(=x,计算到)2(x 即可):.0,033..221)(min 21211222121≥≥≤+-+-=x x x x t s x x x x x x f参考答案一、填空题 1. ⎪⎪⎭⎫⎝⎛++++3421242121x x x x ⎪⎪⎭⎫⎝⎛4224 2. 0)(<∇d x f T3. T)0,1,2(-,T)1,0,3(-(答案不唯一)。
最优化计算方法课后习题答案----高等教育出社。施光燕

习题二包括题目: P36页 5(1)(4)5(4)习题三包括题目:P61页 1(1)(2); 3; 5; 6; 14;15(1) 1(1)(2)的解如下3题的解如下5,6题14题解如下14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T-处的牛顿方向。
解:已知 (1)(4,6)T x=-,由题意得121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----⎛⎫∇= ⎪+++-----⎝⎭∴ (1)1344()56g f x -⎛⎫=∇=⎪⎝⎭21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------⎛⎫∇= ⎪+--------+--⎝⎭∴ (1)2(1)1656()()564G x f x --⎛⎫=∇=⎪-⎝⎭(1)11/8007/400()7/4001/200G x --⎛⎫= ⎪--⎝⎭∴ (1)(1)11141/100()574/100d G x g -⎛⎫=-=⎪-⎝⎭15(1)解如下15. 用DFP 方法求下列问题的极小点(1)22121212min 353x x x x x x ++++解:取 (0)(1,1)T x=,0H I =时,DFP 法的第一步与最速下降法相同2112352()156x x f x x x ++⎛⎫∇= ⎪++⎝⎭, (0)(1,1)T x =,(0)10()12f x ⎛⎫∇= ⎪⎝⎭(1)0.07800.2936x -⎛⎫= ⎪-⎝⎭, (1)1.3760() 1.1516f x ⎛⎫∇= ⎪-⎝⎭以下作第二次迭代(1)(0)1 1.07801.2936x x δ-⎛⎫=-= ⎪-⎝⎭, (1)(0)18.6240()()13.1516f x f x γ-⎛⎫=∇-∇= ⎪-⎝⎭0110111011101T T T TH H H H H γγδδδγγγ=+- 其中,111011126.3096,247.3380T T TH δγγγγγ===111.1621 1.39451.3945 1.6734Tδδ⎛⎫= ⎪⎝⎭ , 01101174.3734113.4194113.4194172.9646T TH H γγγγ⎛⎫== ⎪⎝⎭所以10.74350.40560.40560.3643H -⎛⎫= ⎪-⎝⎭(1)(1)1 1.4901()0.9776dH f x -⎛⎫=-∇= ⎪⎝⎭令 (2)(1)(1)1xx d α=+ , 利用 (1)(1)()0df x d d αα+=,求得 10.5727α=-所以 (2)(1)(1)0.77540.57270.8535xx d⎛⎫=-= ⎪-⎝⎭ , (2)0.2833()0.244f x ⎛⎫∇= ⎪-⎝⎭以下作第三次迭代(2)(1)20.85340.5599x x δ⎛⎫=-= ⎪-⎝⎭ , (2)(1)2 1.0927()()0.9076f x f x γ-⎛⎫=∇-∇= ⎪⎝⎭22 1.4407T δγ=- , 212 1.9922T H γγ=220.72830.47780.47780.3135T δδ-⎛⎫=⎪-⎝⎭1221 1.39360.91350.91350.5988T H H γγ-⎛⎫= ⎪-⎝⎭所以22122121222120.46150.38460.38460.1539T T T TH H H H H δδγγδγγγ-⎛⎫=+-= ⎪-⎝⎭(2)(2)20.2246()0.1465d H f x ⎛⎫=-∇= ⎪-⎝⎭令 (3)(2)(2)2xxdα=+ , 利用(2)(2)()0df x d d αα+=,求得 21α=所以 (3)(2)(2)11x x d ⎛⎫=+=⎪-⎝⎭, 因为 (3)()0f x ∇=,于是停止 (3)(1,1)T x =-即为最优解。
最优化方法习题答案

习题一1.1利用图解法求下列线性规划问题: (1)21x x z max +=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 5x 2x 2x x 3.t .s 212121 解:根据条件,可行域为下面图形中的阴影部分,,有图形可知,原问题在A 点取得最优值,最优值z=5(2)21x 6x z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+-≤+0x ,x 7x x 1x x 2.t .s 212121 解:图中阴影部分表示可行域,由图可知原问题在点A 处取得最优值,最优值z=-6.(3)21x 2x 3z max +=⎪⎪⎩⎪⎪⎨⎧≥-≥-≤+-0x ,x 4x 2x 1x x .t .s 212121 解:如图所示,可行域为图中阴影部分,易得原线性规划问题为无界解。
(4)21x 5x 2z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 2x x 6x 2x .t .s 212121 解:由图可知该线性规划可行域为空,则原问题无可行解。
1.2 对下列线性规划问题,找出所有的基解,基可行解,并求出最优解和最优值。
(1)4321x 6x 3x 2x 5z min -+-=⎪⎪⎩⎪⎪⎨⎧≥=+++=+++0x ,x ,x ,x 3x 2x x x 27x 4x 3x 2x .t .s 432143214321 解:易知1x 的系数列向量⎪⎪⎭⎫ ⎝⎛=21p 1,2x 的系数列向量⎪⎪⎭⎫ ⎝⎛=12p 2,3x 的系数列向量⎪⎪⎭⎫⎝⎛=13p 3,4x 的系数列向量⎪⎪⎭⎫⎝⎛=24p 4。
①因为21p ,p 线性无关,故有⎪⎩⎪⎨⎧--=+--=+43214321x 2x 3x x 2x 4x 37x 2x ,令非基变量为0x x 43==,得⎪⎪⎩⎪⎪⎨⎧=-=311x 31x 21,所以得到一个基解)0,0,311,31(x )1(-=是非基可行解; ②因为31p ,p 线性无关,可得基解)0,511,0,52(x)2(=,543z 2=;③因为41p ,p 线性无关,可得基解611,0,0,31(x )3(-=,是非基可行解;④因为32p ,p 线性无关,可得基解)0,1,2,0(x )4(=,1z 4-=;⑤因为42p ,p 线性相关,42x ,x 不能构成基变量; ⑥因为43p ,p 线性无关,可得基解)1,1,0,0(x )6(=,3z 6-=;所以)6()4()2(x ,x ,x是原问题的基可行解,)6(x 是最优解,最优值是3z -=。
最优化方法练习题答案

b
x1
x2
x3
x4
x5
x6
0
x4
2
1
[1]
-2
1
0
0
0
x5
3
2
1
1
0
1
0
0
x6
4
-1
0
1
0
0
1
cj-zj
1
-1
1
0
0
0
因检验数σ2<0,故确定x2为换入非基变量,以x2的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x4作为换出的基变量。
cj→
1
-1
1
0
0
0
CB
基
b
x1
x4
x3
x4
x5
x6
输出结果:
原题无可行解。
5、用内点法和Matlab软件求解下列线性规划问题:
解:用内点法的过程自己书写,参考答案:最优解 ;最优值5
Matlab调用代码:
f=[2;1;1];
Aeq=[1,2,2;2,1,0];
beq=[6;5];
lb=[0;0;0];
[x,fval]= linprog(f,[],[],Aeq,beq,lb)
确定约束条件资源的报价至少应该高于原生产产品的利润,这样原厂家才可能卖。
因此有如下线性规划问题:
*2、研究线性规划的对偶理论和方法(包括对偶规划模型形式、对偶理论和对偶单纯形法)。
答:略。
3、用单纯形法求解下列线性规划问题:
(1) ;(2)
解:(1)引入松弛变量x4,x5,x6
cj→
1
-1
1
0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习题一1、建立优化模型应考虑哪些要素? 答:决策变量、目标函数与约束条件。
2、讨论优化模型最优解的存在性、迭代算法的收敛性及停止准则。
答:针对一般优化模型()()min ()..0,1,2, 0,1,,i j f x s t g x i m h x j p≥===L L ,讨论解的可行域D ,若存在一点*X D ∈,对于X D ∀∈ 均有*()()f X f X ≤则称*X 为优化模型最优解,最优解存在;迭代算法的收敛性就是指迭代所得到的序列(1)(2)(),,,K X X X L L ,满足(1)()()()K K f X f X +≤,则迭代法收敛;收敛的停止准则有(1)()k k x x ε+-<,(1)()()k k k x x x ε+-<,()()(1)()k k f x f x ε+-<,()()()(1)()()k k k f x f x f x ε+-<,()()k f x ε∇<等等。
练习题二1、某公司瞧中了例2、1中厂家所拥有的3种资源R 1、R 2、与R 3,欲出价收购(可能用于生产附加值更高的产品)。
如果您就是该公司的决策者,对这3种资源的收购报价就是多少?(该问题称为例2、1的对偶问题)。
解:确定决策变量 对3种资源报价123,,y y y 作为本问题的决策变量。
确定目标函数 问题的目标很清楚——“收购价最小”。
确定约束条件 资源的报价至少应该高于原生产产品的利润,这样原厂家才可能卖。
因此有如下线性规划问题:123min 170100150w y y y =++1231231235210..23518,,0y y y s t y y y y y y ++≥⎧⎪++≥⎨⎪≥⎩ *2、研究线性规划的对偶理论与方法(包括对偶规划模型形式、对偶理论与对偶单纯形法)。
答:略。
3、用单纯形法求解下列线性规划问题:(1)⎪⎪⎩⎪⎪⎨⎧≥≤+-≤++≤-++-=0,,43222..min32131321321321x x x x x x x x x x x t s x x x z ; (2)⎪⎪⎩⎪⎪⎨⎧=≥=++=+-=+-+-=)5,,2,1(052222..4min 53243232132Λi x x x x x x x x x x t s x x z i解:(1)引入松弛变量x 4,x 5,x 6123456min 0*0*0*z x x x x x x =-++++12341232 =22 5 =3..13 6=41,2,3,4,5,60x x x x x x x x s t x x x x x x x x x +-+⎧⎪+++⎪⎨-++⎪⎪≥⎩因检验数σ2<0,故确定x 2为换入非基变量,以x 2的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x 4作为换出的基变量。
因检验数σ3<0,故确定x 3为换入非基变量,以x 3的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x 5作为换出的基变量。
因检验数σj >0,表明已求得最优解:*(0,8/3,1/3,0,0,11/3)X =,去除添加的松弛变量,原问题的最优解为:*(0,8/3,1/3)X =。
(2)根据题意选取x 1,x 4,x 5,为基变量:⎪⎪⎩⎪⎪⎨⎧=≥=++=+-=+-+-=)5,,2,1(052222..4min53243232132Λi x x x x x x x x x x t s x x z i因检验数σ2<0最小,故确定x 2为换入非基变量,以x 2的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x 4作为换出的基变量。
因检验数σ3<0最小,故确定x 3为换入非基变量,以x 1的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x 5作为换出的基变量。
因检验数σj >0,表明已求得最优解:*(9,4,1,0,0)X =。
8、某地区有A 、B 、C 三个化肥厂,供应本地甲、乙、丙、丁四个产粮区。
已知各化肥厂可供应化肥的数量与各产粮区对化肥的需要量,以及各厂到各区每吨化肥的运价如表2-28所示。
试制定一个使总运费最少的化肥调拨方案。
表2- 1解:设A 、B 、C 三个化肥厂为A 1、A 2、A 3,甲、乙、丙、丁四个产粮区为B 1、B 2、B 3、B 4;c ij 为由A i 运化肥至B j 的运价,单位就是元/吨;x ij 为由A i 运往B j 的化肥数量(i=1,2,3;j=1,2,3,4)单位就是吨;z 表示总运费,单位为元,依题意问题的数学模型为:3411min ij ij i j z c x ===∑∑112131122232132333142434111213142122232431323334663..3787x x x x x x x x x s t x x x x x x x x x x x x x x x ++=⎧⎪++=⎪⎪++=⎪++=⎨⎪+++=⎪⎪+++=⎪+++=⎩ 该题可以用单纯形法或matlab 自带工具箱命令(linprog)求解。
*9、求解下列不平衡运输问题(各数据表中,方框内的数字为单位价格ij c ,框外右侧的一列数为各发点的供应量i a ,框底下一行数就是各收点的需求量j b ):(1) 5 1 7 10 要求收点3的需求必须正好满足。
6 4 6 80 3 2 5 15 75 20 50(2) 5 1 0 20 要求收点1的需求必须由发点4供应。
3 2 4 10 7 5 2 15 9 6 0 15 5 10 15 解答略。
练习题三1、用0、618法求解问题12)(min 30+-=≥t t t t ϕ的近似最优解,已知)(t ϕ的单谷区间为]3,0[,要求最后区间精度0.5ε=。
答:t=0、8115;最小值-0、0886、(调用golds 、m 函数) 2、求无约束非线性规划问题min ),,(321x x x f =123222124x x x x -++ 的最优解解一:由极值存在的必要条件求出稳定点:1122f x x ∂=-∂,228f x x ∂=∂,332fx x ∂=∂,则由()0f x ∇=得11x =,20x =,30x = 再用充分条件进行检验:2212f x ∂=∂,2228f x ∂=∂,2232fx ∂=∂,2120f x x ∂=∂∂,2130f x x ∂=∂∂,2230f x x ∂=∂∂ 即2200080002f ⎛⎫ ⎪∇= ⎪ ⎪⎝⎭为正定矩阵得极小点为T *(1,0,0)x =,最优值为-1。
解二:目标函数改写成min ),,(321x x x f =222123(1)41x x x -++- 易知最优解为(1,0,0),最优值为-1。
3、用最速下降法求解无约束非线性规划问题。
2221212122)(m in x x x x x x X f +++-=其中T x x X ),(21=,给定初始点T X )0,0(0=。
解一:目标函数()f x 的梯度112122()()142()122()()f x x x x f x x x f x x ∂⎡⎤⎢⎥∂++⎡⎤⎢⎥∇==⎢⎥-++∂⎢⎥⎣⎦⎢⎥∂⎣⎦(0)1()1f X ⎡⎤∇=⎢⎥-⎣⎦令搜索方向(1)(0)1()1d f X -⎡⎤=-∇=⎢⎥⎣⎦再从(0)X 出发,沿(1)d 方向作一维寻优,令步长变量为λ,最优步长为1λ,则有(0)(1)0101X d λλλλ--⎡⎤⎡⎤⎡⎤+=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦故(0)(1)2221()()()2()2()2()f x f X d λλλλλλλλλϕλ=+=--+-+-+=-=令'1()220ϕλλ=-=可得11λ= (1)(0)(1)1011011X X d λ--⎡⎤⎡⎤⎡⎤=+=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦求出(1)X 点之后,与上类似地,进行第二次迭代:(1)1()1f X -⎡⎤∇=⎢⎥-⎣⎦ 令(2)(1)1()1d f X ⎡⎤=-∇=⎢⎥⎣⎦令步长变量为λ,最优步长为2λ,则有(1)(2)111111X d λλλλ--⎡⎤⎡⎤⎡⎤+=+=⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦ 故(1)(2)2222()()(1)(1)2(1)2(1)(1)(1)521()f x f X d λλλλλλλλλϕλ=+=--++-+-+++=--=令'2()1020ϕλλ=-=可得 215λ= (2)(1)(2)2110.8111 1.25X X d λ--⎡⎤⎡⎤⎡⎤=+=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ (2)0.2()0.2f X ⎡⎤∇=⎢⎥-⎣⎦ 此时所达到的精度(2)()0.2828f X ∇≈ 本题最优解11.5X *-⎡⎤=⎢⎥⎣⎦,()1,25f X *=-练习题四1、石油输送管道铺设最优方案的选择问题:考察网络图4-6,设A 为出发地,F 为目的地,B,C,D,E 分别为四个必须建立油泵加压站的地区。
图中的线段表示管道可铺设的位置,线段旁的数字表示铺设这些管线所需的费用。
问如何铺设管道才能使总费用最小?图4- 1解:第五阶段:E1—F 4;E2—F 3;第四阶段:D1—E1 —F 7;D2—E2—F 5;D3—E1—F 5;第三阶段:C1—D1—E1 —F 12;C2—D2—E2—F 10;C3—D2—E2—F 8;C4—D3—E1—F 9; 第二阶段:B1—C2—D2—E2—F 13; B2—C3—D2—E2—F 15; 第一阶段:A —B1—C2—D2—E2—F 17; 最优解:A —B1—C2—D2—E2—F 最优值:172、 用动态规划方法求解非线性规划123123max ()27,,0f x x x x x x x =++=⎧⎨≥⎩解:1239,9,9x x x ===,最优值为9。
3、用动态规划方法求解非线性规划22112121212max 765..21039,0z x x x s t x x x x x x ⎧=++⎪+≤⎪⎨-≤⎪⎪≥⎩解:用顺序算法阶段:分成两个阶段,且阶段1 、2 分别对应12,x x 。
决策变量:12,x x状态变量:,i i v w 分别为第j 阶段第一、第二约束条件可供分配的右段数值。
1111*22211111111100(,)max {76}min{76,76}x v x w f v w x x v v w w ≤≤≤≤=+=++*111min{,}x v w =22*2*2222122220522222222222205(,)max{5(2,3)}max{5min{7(2)6(2),7(3)6(3)}}x x f v w x f v x w x x v x v x w x w x ≤≤≤≤=+-+=+-+-+++由于2210,9v w ==,2**222222222205(,)(10,9)max{min{33292760,68396621}x f v w f x x x x ≤≤==-+++ 可解的129.6,0.2x x ==,最优值为702、92。