最优化方法练习题答案

合集下载

最优化问题

最优化问题

最优化问题最优化问题(一)例1:一只平底锅上只能剪两只饼。

用它剪1只饼需要2分钟(正面、反面各1分钟)。

问剪3只饼需要几分钟?怎样剪?例2:6个人各拿一只水桶到水龙头接水。

水龙头注满6个人的水桶所需时间分别是5分钟、4分钟、3分钟、10分钟、7分钟、6分钟。

现在只有这一个水龙头可用,问怎样安排这6个人的打水次序,可使他们总的等候最短?这个最短时间是多少?例3:小红放学回家,想让爸爸、妈妈下班后就能吃上晚饭。

她准备做大米饭和炒鸡蛋。

小红家有两个炉灶。

估计一下,洗锅要用1分钟,淘米要用5分钟,做大米饭要用30分钟,打蛋要用1分钟,洗炒勺要用1分钟,烧油要1分钟,炒鸡蛋要3分钟。

你认为最合理的安排要几分钟能做好饭菜?例4:在公路上,每隔100千米有一个仓库,共有5个仓库。

1号仓库里有10吨货物,2号仓库里有20吨货物,5号仓库里有40吨货物,其余两个仓库都是空的。

现在想把所有的货物集中存放在一个仓库里,若每吨货物运输一千米要0.5元运输费,那么至少要花费多少元运费才行?例5:沿铁路有5个工厂,A,B,C,D,E(如图),各厂每天都有10吨货物要外运。

现在想建一座车站,使这5个工厂的货物运到车站的行程总和越小越好。

车站应建在何处?如果在E的右侧增加一个工厂,车站建在何处总行程最小呢?例6:在公路干线的附近,有5个工厂A,B,C,D,E(如图),各厂每天都有10吨货物要存库。

现在想在公路干线上建一座库房,使这5个工厂的货物运到库房的行程总和越小越好,库房应建在何处?例7:工地上有手推车20辆,其中10辆从A1到B1运垃圾,要60车次运完。

另外10辆从A2到B2运砖头,要40车次运完。

工地上的可行道路及路程如图(单位:米)所示。

有人说上面的安排不合理,因为跑空车的路程还可以更少些。

那么,怎样安排才算合理呢?【练习题】1、有7个满杯水、7个半杯水和7个空杯。

不许倒水,你能把这些东西平均分给3个人,使得每人有7只杯子和3杯半水吗?2、有8个人在交通事故中受伤,救援人员1人可以救护2人,而1辆救护车只可以坐4个人。

北航最优化方法最新最全答案2015版详解

北航最优化方法最新最全答案2015版详解
数学规划基础
部分习题参考解答
刘红英 编
北京航空航天大学数学与系统科学学院 2015 年 5 月
内容简介
本书是《数学规划基础》(刘红英,夏勇,周水生,北京航空航天大学出版社,2012.10)的 配套教学辅导材料,较详细地给出了该教材各章后部分习题的参考解答.
前言
本习题解答自 2008 年春季开始编写,当时由硕士研究生阎凤玉提供部分习题解答, 经讨论和确认后,由作者首次录入排版. 后来陆续参加习题解答修订的硕士研究生包括王 浩、欧林鑫、朱丽媛、易彩霞和杨茜,其中的数值结果由欧林鑫提供. 作者在此向他们的 辛勤劳动表示衷心的感谢.
本解答得到了?项目的资助,在此表示感谢. 由于这些参考解答尚未经过特别严格的校对,仅供参考. 任何意见、建议或其它反馈 都可以发送至liuhongying@,在此深表感谢.
刘红英 2015.5 于北京
目录
第一章 引言
1
第二章 线性规划: 基本理论与方法
3
第三章 线性规划:应用及扩展
maximize 200x + 60y + 206z
subject to 3x + y + 5z ≤ 8000000
5x + y + 3z ≤ 5000000
x, y, z ≥ 0, 且 x, y, z 是整数.
忽略掉整性要求后,调用 Matlab 中的 linprog.m 函数求解,得最优解 x = 0, y = 500000, z = 1500000,自动满足整性要求.
(x)(∇ri
(x))T
2A(x)T A(x).
1.6 考虑向量值函数 f (x) : Rn → Rm ,设 f 的每个分量函数 fi(x) 在 x′ 都可微. 写出 f 在 x′ 的Taylor展式,请用 A(x)T 表示 ∇f (x)T (= [∇f1(x), · · · , ∇fm(x)]).

最优化练习题一

最优化练习题一

最优化练习题1.设A 为m n ⨯阶矩阵,nb R ∈,试证集合{|,,0}n S x x R Ax b x =∈=≥为凸集。

2.试证平面上椭圆22221x y a b+=所包围的区域为凸集。

3.判断下列函数为凸函数或凹函数或严格凸函数或严格凹函数:(1)221212(,)23f x x x x =+;(2)2221231231231(,,)22712f x x x x x x x x x x =+++--+4.设()f x 为定义在凸集D 上的凸函数,试证()f x 的任何局部极小点同时也必为全局极小点。

5.设n 阶矩阵0T Q Q =>,非零向量12,,,()n n p p p R m n ∈≤为Q 共轭的,证明:(1)12,,,n p p p 线性无关;(2)若n 维向量x 和12,,,n p p p 为Q 共轭的,则x=0。

6.设()TTf x x Ax b x =-,2112A ⎡⎤=⎢⎥⎣⎦,(3,3)T b =,取1(0,0)Tx =,1(1,0)T p =,2(1,2)T p =-,试证由共轭方向法产生的3x 为()f x 的最优解。

7.设1()2TT f x x Qx b x c =++,0T Q Q =>,试证由精确线搜索的共轭梯度法中,有 T k k k T k kg dd Qd λ=-8.取初始点0(0,0)T x =,并且设定净度误差0.01ε=,试利用最速下降法求解下面的优化问题:222112212min 243x Rx x x x x x ∈-++-9.考虑极小化问题1min ()2nTT x Rf x x Ax b x ∈=+,其中0T A A =>,n b R ∈。

记函数()()g x f x Ax b =∇=+。

设从k x 点出发,利用精确搜索的最速下降法求出改进点1k x +,证明:(1)最速下降法的迭代公式形如1T k k k k k T k k g gx x g g Ag +=-,其中()k k g g x =;(2)一步迭代中引起目标函数的下降量为21()()()2T k k k k Tk kg g f x f x g Ag +-=。

2022年小升初数学总复习第17讲:最优化问题(附答案解析)

2022年小升初数学总复习第17讲:最优化问题(附答案解析)

2022年小升初数学总复习第17讲:最优化问题一.选择题(共48小题)1.一年级53人乘车去动物园,下列()种租车方法比较合适。

A.2辆大车B.2辆小车C.1辆大车和1辆小车2.用载重3吨和4吨的货车一次运走13吨水泥,下面哪种方案最合适。

()A.5辆载重3吨车B.2辆载重4吨车和2辆载重3吨车C.4辆载重4吨车D.3辆载重3吨车和1辆载重4吨车3.一位老师带46名学生去公园划船,大船限乘5人,每条船租金50元,小船限乘3人,每条船租金33元,租()最省钱。

A.10条大船B.16条小船C.8条大船和3条小船D.9条大船和1条小船4.甲、乙、丙三个商店同时销售一种原价为每袋6元的洗衣粉。

甲商店打八五折;乙商店“每满50元减10元”;丙商店“买4送1”。

学校要买10袋这种洗衣粉,想花钱最少,应该到()商店去买。

A.甲B.乙C.丙D.都一样5.甲、乙、丙三个超市都在搞促销活动。

同一品牌原价20元一袋的粽子,甲超市每袋降价15%,乙超市“买三送一”,丙超市每袋八折出售。

妈妈要买4袋粽子,从()超市购买更省钱。

A.甲B.乙C.丙6.同一种水果,每千克甲商店降价15%,乙商店买4送1,丙商店按八八折出售,妈妈想用最少的钱买5千克水果,应该去()商店。

A.甲B.乙C.丙7.江城一日游,旅行社推出A、B两种优惠方案.2个大人,4个小孩,选择哪种方案省钱?()A.江城一日游:大人每人150元,小孩每人50元B.江城一日游:每人100元,团体5人以上(含5人)优惠110C.两种方案同样优惠8.师生共32人去公园划船,大船租金30元,限乘6人,小船租金24元,限乘4人,下列()方案最省钱.A.6条大船B.5条大船,1条小船C.4条大船,2条小船9.四(1)班36人准备租船到湖上游玩,大船每条12元,限坐8人,小船每条10元,限坐6人。

租()种最省钱。

A.3条大船2条小船B.4条大船1条小船C.5条大船10.张大爷有一块长方形小菜园(如图),他想用篱笆围起来。

最优化练习题二

最优化练习题二

最优化练习题二一、解释下列概念:(1)线性规划的基本可行基,基本可行解。

(2)Q共轭向量组。

(3)无约束优化下降算法的基本思想。

H满足的三个性质。

(4)在DFP算法中要求矩阵k(5)凸集,凸规划。

二、(1)设问题(P )为⎩⎨⎧=≥∈mi x g t s R x x f i n,,2,1;0)(.);(min 若规划(P )是凸规划,证明:(P )的任何局部极小点都是全局极小点。

(2)判断函数312221211052)(x x x x x x x f -+--=为凸函数或凹函数或严格凸函数或严格凹函数(3)求函数2143)(221x x e x x x f +=的梯度和Hesse 矩阵。

三、写出一维搜索0.618法的基本思想和算法框图。

四、设A 为n 阶对称正定矩阵,C x b Ax x x f T T ++=21)(,若n p p p ,,,21 为非零A 共轭向量组,证明:由任意初始点1x 出发,按迭代格式)()(min 0k k k k k p x f p x f λλλ+=+≥; k k k k p x x λ+=+1 至多迭代n 次必达到最优点。

五、设C x b Ax x x f T T ++=21)(,其中⎪⎪⎭⎫ ⎝⎛--=1113A ,0=b ,14=c ,试任意选择最速下降法、牛顿法,共轭方向法或DFP 算法从初始点T x )1,1(=开始求)(x f 的最小值点和最小值。

六、用单纯形法求解下面线性规划的最优解和最优值⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≥≤++=0,21265.2max 21212121210x x x x x x x x t s x x x七、设有线性规划(P )12121212min 2.1200x x s t x x x x x x -+⎧⎪+≥⎪⎪-+≥⎨⎪≥⎪⎪≥⎩ 写出该线性规划的对偶规划(D ),任取一个基,写出单纯形表,并用图解法求出对偶规划(D )的最优解和最优值。

最优化方法研究生期末考试练习题答案

最优化方法研究生期末考试练习题答案

《最优化方法》(研究生)期末考试练习题答案二.简答题1.;0, ,843 ,2 2-,3 34 s.t. ,95- min 2121212121≤=--≥+≥++y y y y y y y y y y 2.,065 6143≥+x x (以1x 为源行生成的割平面方程) 注意:在1x 为整数的情况下,因为3x ,04≥x ,该方程自然满足,这是割平面的退化情形,2141 41 43≥+x x (以2x 为源行生成的割平面方程)3.6648.31854.1*2)854.1()(2131.01146.1*2)146.1()(854.13*618.00)(618.0146.13*382.00)(382.03,031311111111111=+-==+-==+=-+==+=-+===μϕλϕμλa b a a b a b a 0.927.21.8540]1.8540[854.1,0)()(,*2211=+===≤x b a 近似的最优解:。

,初始的保留区间为即:。

所以,不经计算也可以看出事实上μϕλϕ4.令1.01.0)(4.04.0)(11)(7.27.2)(222222221)2(*111)1(*111)0(*121)1(*11-=-=-=-=-=-=-=-=-------x x x x x x x e x e x x f ex ex x f x e x x f e x e x x f拟合问题等价于求解下列最小二乘问题:∑=412))((mini ix f三.计算题1.分别用最速下降方法和修正的牛顿法求解无约束问题 22214)(min x x x f +=。

取初始点()()Tx 2,21=,.1.0=ε()().1641642,2821121⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫⎝⎛=∇=⎪⎪⎭⎫⎝⎛=∇d f x x x f T方向为:从而最速下降法的搜索,在初始点,解:()()()()直至满足精度。

继续迭代方向为:从而最速下降法的搜索,,在从而求解得到:其中满足最优步长,.48/6565/19248/65-65/19265/6,65/96)65/6,65/96((-4,-16)*130/172,2 130,/17.)162(4)42()162,42()()(min )(122221)1(1)1(1*)1(*⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=∇-=-=+==-+-=--=++=+d f x x f d x f d x f d x f TTT Tλλλλλλλλλλ()()2-2- 1648/1002/1 8/1002/1,8002 2,21111⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=∇-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛==--f G d G G x T索方向为:从而修正的牛顿法的搜,在初始点()()()()即为所求的极小点。

最优化课后习题答案

最优化课后习题答案

最优化课后习题答案最优化课后习题答案最优化是一门重要的数学学科,它研究如何在给定的约束条件下,找到一个最优的解决方案。

在学习最优化课程时,我们通常会遇到一些习题,这些习题旨在帮助我们理解和应用最优化的原理和方法。

本文将为大家提供一些最优化课后习题的答案,以帮助大家更好地掌握这门学科。

1. 线性规划问题线性规划是最优化中的一个重要分支,它主要研究线性约束条件下的最优解。

下面是一个线性规划问题的示例:Maximize Z = 3x + 5ySubject to:x + y ≤ 62x + y ≤ 8x, y ≥ 0首先,我们需要将目标函数和约束条件转化为标准形式。

将不等式约束转化为等式约束,引入松弛变量,得到以下标准形式:Maximize Z = 3x + 5ySubject to:x + y + s1 = 62x + y + s2 = 8x, y, s1, s2 ≥ 0接下来,我们可以使用单纯形法求解该线性规划问题。

根据单纯形法的步骤,我们可以得到最优解为 Z = 22,x = 2,y = 4,s1 = 0,s2 = 0。

2. 非线性规划问题除了线性规划,最优化还涉及到非线性规划问题。

非线性规划是指目标函数或约束条件中存在非线性项的最优化问题。

下面是一个非线性规划问题的示例:Minimize f(x) = x^2 + 3x + 5Subject to:x ≥ 0对于这个问题,我们可以使用求导的方法来找到最优解。

首先,求目标函数的导数:f'(x) = 2x + 3将导数等于零,解得 x = -1.5。

由于约束条件x ≥ 0,所以最优解为 x = 0。

3. 整数规划问题整数规划是指在最优化问题中,决策变量必须取整数值的情况。

下面是一个整数规划问题的示例:Maximize Z = 2x + 3ySubject to:x + 2y ≤ 10x, y ≥ 0x, y 为整数对于这个问题,我们可以使用分支定界法来求解。

小学奥数全国推荐四年级奥数通用学案附带练习题解析答案37最优化问题(一)

小学奥数全国推荐四年级奥数通用学案附带练习题解析答案37最优化问题(一)

年级四年级学科奥数版本通用版课程标题最优化问题(一)在日常生活和生产中,我们经常会遇到下面的问题,完成一件事怎样合理安排才能做到用时最少,效果最佳,这类问题在数学中称为统筹问题,解决此类问题时,必须树立统筹思想,能同时做的事,尽量同时做。

有时我们还会遇到求“费用最省”、“面积最大”、“损耗最小”等问题,这些问题往往可以从极端情况去考虑它的最大(最小)值,在数学中称为极值问题,统筹问题和极值问题实际上都属于最优化问题。

解答最优化问题时,要注意联系实际,把题目里所说的“最优”、“最佳”或“最合理”的问题转化为相应的最大、最小问题。

经常要从以下三个方面来考虑:(1)要做哪些工作,(2)做每件事需要的最佳时间,(3)弄清所做工作的程序,最后在诸多方案中寻求一种最合理、最省事、最节约的最佳方案。

也就是说,在选择最佳方案时,要分析题意,明确要做哪些工作,分别做每项工作所需的时间等,同时安排好先做什么,后做什么,哪些工作可同时做,从而找到最佳方案。

例1用一只平底锅烙大饼,锅里只能同时放两块大饼,烙熟大饼的一面需要3分钟,现在要烙熟3块大饼,最少需要几分钟?分析与解:先将两块大饼同时放入锅中一起烙,3分钟两块都熟了一面,这时可将其中一块取出,另一块翻过来,再放第三块,又烙了3分钟,将两面都烙好的大饼取出,把第三块翻过来,再将第一次取出的那块换个面放入锅里面,再烙3分钟就全部烙好了。

所以烙熟3块饼最少需要9分钟。

例2妈妈让小明给客人烧水沏茶。

洗开水壶要用1分钟,烧开水需要15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟,为了使客人早点喝上茶,按照合理的安排,多少分钟就能沏好茶了?分析与解:经验表明,能同时做的事,尽量同时做,这样可以节省时间。

开水壶不洗,不能烧开水,因此,洗开水壶和烧开水不能同时进行,而洗茶壶、洗茶杯、拿茶叶这三步与烧开水可以同时进行。

从以上分析,可以这样安排:先洗开水壶用1分钟,接着烧开水要用15分钟,在烧开水的同时洗茶壶、洗茶杯、拿茶叶,水开了就沏茶,这样只要16分钟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习题一1、建立优化模型应考虑哪些要素? 答:决策变量、目标函数和约束条件。

2、讨论优化模型最优解的存在性、迭代算法的收敛性及停止准则。

答:针对一般优化模型()()min ()..0,1,2, 0,1,,i j f x s t g x i m h x j p≥===,讨论解的可行域D ,若存在一点*X D ∈,对于X D ∀∈ 均有*()()f X f X ≤则称*X 为优化模型最优解,最优解存在;迭代算法的收敛性是指迭代所得到的序列(1)(2)(),,,K X X X ,满足(1)()()()K K f X f X +≤,则迭代法收敛;收敛的停止准则有(1)()k k x x ε+-<,(1)()()k k k x x x ε+-<,()()(1)()k k f x f x ε+-<,()()()(1)()()k k k f x f x f x ε+-<,()()k f x ε∇<等等。

练习题二1、某公司看中了例2.1中厂家所拥有的3种资源R 1、R2、和R 3,欲出价收购(可能用于生产附加值更高的产品)。

如果你是该公司的决策者,对这3种资源的收购报价是多少?(该问题称为例2.1的对偶问题)。

解:确定决策变量 对3种资源报价123,,y y y 作为本问题的决策变量。

确定目标函数 问题的目标很清楚——“收购价最小”。

确定约束条件 资源的报价至少应该高于原生产产品的利润,这样原厂家才可能卖。

因此有如下线性规划问题:123min 170100150w y y y =++1231231235210..23518,,0y y y s t y y y y y y ++≥⎧⎪++≥⎨⎪≥⎩ *2、研究线性规划的对偶理论和方法(包括对偶规划模型形式、对偶理论和对偶单纯形法)。

答:略。

3、用单纯形法求解下列线性规划问题:(1)⎪⎪⎩⎪⎪⎨⎧≥≤+-≤++≤-++-=0,,43222..min32131321321321x x x x x x x x x x x t s x x x z ; (2)⎪⎪⎩⎪⎪⎨⎧=≥=++=+-=+-+-=)5,,2,1(052222..4min 53243232132 i x x x x x x x x x x t s x x z i解:(1)引入松弛变量x 4,x 5,x 6123456min 0*0*0*z x x x x x x =-++++12341232 =22 5 =3..13 6=41,2,3,4,5,60x x x x x x x x s t x x x x x x x x x +-+⎧⎪+++⎪⎨-++⎪⎪≥⎩因检验数σ2<0,故确定x 2为换入非基变量,以x 2的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x 4作为换出的基变量。

因检验数σ3<0,故确定x 3为换入非基变量,以x 3的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x 5作为换出的基变量。

因检验数σj >0,表明已求得最优解:*(0,8/3,1/3,0,0,11/3)X =,去除添加的松弛变量,原问题的最优解为:*(0,8/3,1/3)X =。

(2)根据题意选取x 1,x 4,x 5,为基变量:⎪⎪⎩⎪⎪⎨⎧=≥=++=+-=+-+-=)5,,2,1(052222..4min53243232132 i x x x x x x x x x x t s x x z i因检验数σ2<0最小,故确定x 2为换入非基变量,以x 2的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x 4作为换出的基变量。

因检验数σ3<0最小,故确定x 3为换入非基变量,以x 1的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x 5作为换出的基变量。

因检验数σj >0,表明已求得最优解:*(9,4,1,0,0)X =。

4、分别用大M 法、两阶段法和Matlab 软件求解下列线性规划问题:(1)⎪⎪⎩⎪⎪⎨⎧≥≤+≥+=++=0,3263933..4min2121212121x x x x x x x x t s x x z ; (2)⎪⎪⎩⎪⎪⎨⎧≥≥++≤++-≤++++=0,,52151565935..121510max 321321321321321x x x x x x x x x x x x t s x x x z解:(1)大M 法根据题意约束条件1和2可以合并为1,引入松弛变量x 3,x 4,构造新问题。

1234min z=4x +x +Mx +0*x123124143 3..2 3,0x x x s t x x x x x ++=⎧⎪++=⎨⎪≥⎩因检验数σj >0,表明已求得最优解:*(3/5,6/5)X =。

Matlab 调用代码: f=[4;1]; A=[-9,-3;1,2]; b=[-6;3]; Aeq=[3,1]; beq=3; lb=[0;0];[x,fval] = linprog(f,A,b,Aeq,beq,lb) 输出结果:Optimization terminated.x = 0.6000 1.2000 fval = 3.6000 (2)大M 法引入松弛变量x 4,x 5,x 6,x 7构造新问题。

1234567max 101512000z x x x x x x Mx =+++++-12341235123671753 95615 15..2 5,,0x x x x x x x x s t x x x x x x x +++=⎧⎪-+++=⎪⎨++-+=⎪⎪≥⎩ 单纯形表计算略;当所有非基变量为负数,人工变量7x =0.5,所以原问题无可行解。

请同学们自己求解。

Matlab 调用代码: f=[-10;-15;-12];A=[5,3,1;-5,6,15;-2,-1,-1]; b=[9;15;-5]; lb=[0;0;0];x = linprog(f,A,b,[],[],lb) 输出结果: 原题无可行解。

5、用内点法和Matlab 软件求解下列线性规划问题:⎪⎩⎪⎨⎧≥=+=++++=0,,52622..2min32121321321x x x x x x x x t s x x x z解:用内点法的过程自己书写,参考答案:最优解[4/3 7/3 0]X =;最优值5 Matlab 调用代码: f=[2;1;1]; Aeq=[1,2,2;2,1,0];beq=[6;5]; lb=[0;0;0];[x,fval] = linprog(f,[],[],Aeq,beq,lb) 输出结果:Optimization terminated. x = 1.3333 2.3333 0.0000 fval = 5.00006、用分支定界法求解下列问题:(1) ⎪⎩⎪⎨⎧≥≤+≤++=且均为整数0,45956..85max21212121x x x x x x t s x x z ; (2)⎪⎩⎪⎨⎧≥≤+≤+-+=为整数且1212121210,35763..97maxx x x x x x x t s x x z 解:(1)调用matlab 编译程序bbmethodf=[-5; -8];G=[1 1;5 9];h=[6; 45][x,y]=bbmethod(f,G ,h,[],[],[0;0],[],[1;1],1) x =3 3 y =-39最优解[3 3];最优值39(2)调用matlab 编译程序bbmethodf=[-7; -9];G=[-1 3; 7 1];h=[6; 35][x,y]=bbmethod(f,G ,h,[],[],[0;0],[],[1;0],1) x =5 0 y = -35最优解[5 0];最优值357、用隐枚举法和Matlab 软件求解下列问题:(1)⎪⎪⎩⎪⎪⎨⎧==≥+≥++≤+-++=)3,2,1(1013344352..234min32321321321j x x x x x x x x x t s x x x z j 或;(2)⎪⎪⎩⎪⎪⎨⎧==≥-+-≤+-+≤+++++--+=)5,,2,1(101336118343742..32523max542154315432154321 j x x x x x x x x x x x x x x t s x x x x x z j 或解: 隐枚举法:(1)将(0,0,0)(0,0,1)(0,1,0)(1,0,0)(0,1,1)(1,0,1)(1,1,0)(1,1,1)分别带入到约束条件中,可以得到:原问题的最优解是(0,0,1),目标函数最优值2.(2)将(0,0,0,0,0)(0,0,0,0,1)(0,0,0,1,0)(0,0,1,0,0)…. (1,1,1,1,1)分别带入到约束条件中,可以得到:原问题的最优解是(1,1,0,0,0),目标函数最优值-5。

Matlab 软件求解: (1)调用代码:f=[4; 3;2];% 价值向量fA=[2,-5,3; -4,-1,-3;0,-1,-1]; % 不等式约束系数矩阵A ,[ ]中的分号“;”% 为行分隔符 b=[4; -3;-1];% 不等式约束右端常数向量b[x, fval]=bintprog(f, A, b, [], []);%调用函数bintprog 。

注意两个空数组的占位作用。

输出结果x= 0 0 1 fval=2(2)调用代码:f=[-3; -2;5;2;3];% 价值向量fA=[1,1,1,2,1; 7,0,3,-4,3;-11, 6,0,-3, 3]; % 不等式约束系数矩阵A ,[ ]中的分号“;”% 为行分隔符 b=[4; 8;-1];% 不等式约束右端常数向量b[x, fval]=bintprog(f, A, b, [], []);%调用函数bintprog 。

注意两个空数组的占位作用。

输出结果x=1 10 0 0fval=-5最优值5。

8、某地区有A 、B 、C 三个化肥厂,供应本地甲、乙、丙、丁四个产粮区。

已知各化肥厂可供应化肥的数量和各产粮区对化肥的需要量,以及各厂到各区每吨化肥的运价如表2-28所示。

试制定一个使总运费最少的化肥调拨方案。

表2- 1解:设A 、B 、C 三个化肥厂为A 1、A 2、A 3,甲、乙、丙、丁四个产粮区为B 1、B 2、B 3、B 4;c ij 为由A i 运化肥至B j 的运价,单位是元/吨;x ij 为由A i 运往B j 的化肥数量(i=1,2,3;j=1,2,3,4)单位是吨;z 表示总运费,单位为元,依题意问题的数学模型为:3411min ij ij i j z c x ===∑∑112131122232132333142434111213142122232431323334663..3787x x x x x x x x x s t x x x x x x x x x x x x x x x ++=⎧⎪++=⎪⎪++=⎪++=⎨⎪+++=⎪⎪+++=⎪+++=⎩ 该题可以用单纯形法或matlab 自带工具箱命令(linprog )求解。

相关文档
最新文档