最优化方法参考答案
重庆大学最优化方法习题答案

s.t.x1 + 2x2 ≤ 5 x1, x2 ≥ 0
解:根据条件,可行域为下面图形中的阴影部分,,有图形可知,原问题在 A 点取得最优值, 最优值 z=5
(2) min z = x1 − 6x2 2x1 + x2 ≤ 1
s.t.− x1 + x2 ≤ 7 x1, x2 ≥ 0
解:图中阴影部分表示可行域,由图可知原问题在点 A 处取得最优值,最优值 z=-6.
(3) max z = 3x1 + 2x2
− x1 + x2 ≤ 1 s.t.x1 − 2x2 ≥ −4
x1, x2 ≥ 0
解:如图 所示,可行域为图 中阴影部 分,易得 原线性规 划问题 为无界 解。
所以 x(2) , x(4) , x(6) 是原问题的基可行解, x(6) 是最优解,最优值是 z = −3 。
(2) max z = x1 + x2 − 2x3 + x 4 − x5
x1 + x2 + x3 + x4 = 1 s.t.− x1 + 2x2 + x5 = 4
xi ≥ 0,i = 1,2,3,4,5
解:易知
x1
的系数列向
量
p1
= 1− 1
,
x2
的系数列向
量
p2
=
1
2
,
x3
的系
数列向量
1
1
0
p3
=
0
,
x4
的系数列向量
p4
=
0
,
x5
的系数列向量
最优化方法及其应用课后答案

1 2( ( ⎨最优化方法部分课后习题解答1.一直优化问题的数学模型为:习题一min f (x ) = (x − 3)2 + (x − 4)2⎧g (x ) = x − x − 5 ≥ 0 ⎪ 11 2 2 ⎪试用图解法求出:s .t . ⎨g 2 (x ) = −x 1 − x 2 + 5 ≥ 0 ⎪g (x ) = x ≥ 0 ⎪ 3 1 ⎪⎩g 4 (x ) = x 2 ≥ 0(1) 无约束最优点,并求出最优值。
(2) 约束最优点,并求出其最优值。
(3) 如果加一个等式约束 h (x ) = x 1 −x 2 = 0 ,其约束最优解是什么? *解 :(1)在无约束条件下, f (x ) 的可行域在整个 x 1 0x 2 平面上,不难看出,当 x =(3,4) 时, f (x ) 取最小值,即,最优点为 x * =(3,4):且最优值为: f (x * ) =0(2)在约束条件下, f (x ) 的可行域为图中阴影部分所示,此时,求该问题的最优点就是在约束集合即可行域中找一点 (x 1 ,x 2 ) ,使其落在半径最小的同心圆上,显然,从图示中可以看出,当 x *=15 , 5 ) 时, f (x ) 所在的圆的半径最小。
4 4⎧g (x ) = x −x − 5 = 0⎧ 15 ⎪x 1 = 其中:点为 g 1 (x) 和 g 2 (x ) 的交点,令 ⎪ 1 1 2 ⎨2 求解得到: ⎨ 45即最优点为 x *= ⎪⎩g 2 (x ) = −x 1 −x 2 + 5 = 015 , 5 ) :最优值为: f(x * ) = 65 ⎪x =⎪⎩ 2 44 48(3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。
2.一个矩形无盖油箱的外部总面积限定为 S ,怎样设计可使油箱的容量最大?试列出这个优化问题的数学模型,并回答这属于几维的优化问题. 解:列出这个优化问题的数学模型为:max f (x ) = x 1x 2 x 3⎧x 1x 2 + 2x 2 x 3 + 2x 1x 3 ≤ S ⎪ s .t . ⎪x 1 > 0⎪x 2 > 0 ⎪⎩x 3 > 0该优化问题属于三维的优化问题。
最优化方法习题答案

最优化方法习题答案最优化方法习题答案最优化方法是数学中一门重要的学科,它研究如何找到使函数取得最大值或最小值的方法。
在实际问题中,最优化方法被广泛应用于经济学、工程学、管理学等领域。
本文将为读者提供一些最优化方法习题的答案,希望能够帮助读者更好地理解和应用这一学科。
一、单变量函数的最优化问题1. 求函数f(x) = x^2 - 2x + 1在区间[0, 3]上的最小值。
解:首先,我们需要找到函数f(x)的驻点。
计算f'(x) = 2x - 2,并令其等于零,得到x = 1。
然后,我们计算f''(x) = 2,发现在x = 1处,f''(x)大于零,说明该点是函数的极小值点。
接下来,我们需要检查区间的端点和驻点,找到函数f(x)在这些点的函数值。
f(0) = 1,f(1) = 0,f(3) = 4。
由于f(1)是最小的函数值,因此函数f(x)在区间[0, 3]上的最小值为0。
2. 求函数f(x) = e^x - 2x在整个实数轴上的最小值。
解:首先,我们计算f'(x) = e^x - 2,并令其等于零,得到x = ln(2)。
然后,我们计算f''(x) = e^x,发现在x = ln(2)处,f''(x)大于零,说明该点是函数的极小值点。
接下来,我们需要检查整个实数轴上的函数值。
由于函数f(x)在x趋近负无穷大时趋于负无穷大,而在x趋近正无穷大时趋于正无穷大,因此函数f(x)在整个实数轴上没有最小值。
二、多变量函数的最优化问题1. 求函数f(x, y) = x^2 + y^2 - 2x - 4y在闭区域D={(x, y)|0≤x≤2, 0≤y≤3}上的最小值。
解:首先,我们需要找到函数f(x, y)的驻点。
计算f_x(x, y) = 2x - 2和f_y(x, y) = 2y - 4,并令它们同时等于零,得到x = 1和y = 2。
最优化方法部分课后习题解答(1-7)

最优化方法部分课后习题解答习题一1.一直优化问题的数学模型为:22121122123142min ()(3)(4)5()02()50..()0()0f x x xg x x x g x x x s t g x x g x x =−+−⎧=−−≥⎪⎪⎪=−−+≥⎨⎪=≥⎪=≥⎪⎩试用图解法求出:(1)无约束最优点,并求出最优值。
(2)约束最优点,并求出其最优值。
(3)如果加一个等式约束,其约束最优解是什么?12()0h x x x =−=解:(1)在无约束条件下,的可行域在整个平面上,不难看出,当=(3,4)()f x 120x x *x 时,取最小值,即,最优点为=(3,4):且最优值为:=0()f x *x *()f x (2)在约束条件下,的可行域为图中阴影部分所示,此时,求该问题的最优点就是()f x 在约束集合即可行域中找一点,使其落在半径最小的同心圆上,显然,从图示中可12(,)x x 以看出,当时,所在的圆的半径最小。
*155(,)44x =()f x 其中:点为和的交点,令求解得到:1()g x 2()g x 1122125()02()50g x x x g x x x ⎧=−−=⎪⎨⎪=−−+=⎩1215454x x ⎧=⎪⎪⎨⎪=⎪⎩即最优点为:最优值为:=*155(,)44x =*()f x 658(3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。
2.一个矩形无盖油箱的外部总面积限定为S,怎样设计可使油箱的容量最大?试列出这个优化问题的数学模型,并回答这属于几维的优化问题.解:列出这个优化问题的数学模型为:该优化问题属于三维的优化问题。
123122313123max ()220..00f x x x x x x x x x x S x s t x x =++≤⎧⎪>⎪⎨>⎪⎪>⎩32123sx y z v⎛⎞=====⎜⎟⎝⎠习题二3.计算一般二次函数的梯度。
最优化计算方法课后习题答案----高等教育出版社。施光燕

习题二包括题目: P36页5(1)(4)5(4)习题三包括题目:P61页1(1)(2); 3; 5; 6;14;15(1)1(1)(2)的解如下3题的解如下5,6题14题解如下14。
设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T -处的牛顿方向。
解:已知 (1)(4,6)T x =-,由题意得121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----⎛⎫∇= ⎪+++-----⎝⎭∴ (1)1344()56g f x -⎛⎫=∇=⎪⎝⎭21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------⎛⎫∇= ⎪+--------+--⎝⎭∴ (1)2(1)1656()()564G x f x --⎛⎫=∇=⎪-⎝⎭(1)11/8007/400()7/4001/200G x --⎛⎫= ⎪--⎝⎭∴ (1)(1)11141/100()574/100d G x g -⎛⎫=-=⎪-⎝⎭15(1)解如下15。
用DFP 方法求下列问题的极小点(1)22121212min353x x x x x x ++++ 解:取 (0)(1,1)T x=,0H I =时,DFP 法的第一步与最速下降法相同2112352()156x x f x x x ++⎛⎫∇= ⎪++⎝⎭, (0)(1,1)T x =,(0)10()12f x ⎛⎫∇= ⎪⎝⎭(1)0.07800.2936x -⎛⎫= ⎪-⎝⎭, (1)1.3760() 1.1516f x ⎛⎫∇= ⎪-⎝⎭以下作第二次迭代(1)(0)1 1.07801.2936x xδ-⎛⎫=-= ⎪-⎝⎭, (1)(0)18.6240()()13.1516f x f x γ-⎛⎫=∇-∇= ⎪-⎝⎭0110111011101T T T TH H H H H γγδδδγγγ=+-其中,111011126.3096,247.3380T T T H δγγγγγ===11 1.1621 1.39451.3945 1.6734T δδ⎛⎫= ⎪⎝⎭ , 01101174.3734113.4194113.4194172.9646T TH H γγγγ⎛⎫== ⎪⎝⎭所以10.74350.40560.40560.3643H -⎛⎫= ⎪-⎝⎭(1)(1)1 1.4901()0.9776d H f x -⎛⎫=-∇= ⎪⎝⎭令 (2)(1)(1)1xx d α=+ , 利用(1)(1)()0df x d d αα+=,求得 10.5727α=- 所以 (2)(1)(1)0.77540.57270.8535x x d ⎛⎫=-= ⎪-⎝⎭ , (2)0.2833()0.244f x ⎛⎫∇= ⎪-⎝⎭以下作第三次迭代(2)(1)20.85340.5599xx δ⎛⎫=-= ⎪-⎝⎭ , (2)(1)2 1.0927()()0.9076f x f x γ-⎛⎫=∇-∇= ⎪⎝⎭22 1.4407T δγ=- , 212 1.9922T H γγ= 220.72830.47780.47780.3135T δδ-⎛⎫=⎪-⎝⎭1221 1.39360.91350.91350.5988T H H γγ-⎛⎫= ⎪-⎝⎭所以22122121222120.46150.38460.38460.1539T T T T H H H H H δδγγδγγγ-⎛⎫=+-= ⎪-⎝⎭(2)(2)20.2246()0.1465d H f x ⎛⎫=-∇= ⎪-⎝⎭令 (3)(2)(2)2xxdα=+ , 利用(2)(2)()0df x d d αα+=,求得 21α= 所以 (3)(2)(2)11xx d ⎛⎫=+= ⎪-⎝⎭, 因为 (3)()0f x ∇=,于是停止(3)(1,1)T x =-即为最优解。
最优化方法孙文瑜课后答案

最优化方法孙文瑜课后答案【篇一:81010218《最优化算法》教学大纲】xt>课程编号: 81010218课程名称:最优化算法英文名称:optimization algorithm 总学时:32 学分:2适用对象: 信息与计算科学本科专业先修课程:数学分析(1-3),高等代数(1-2),运筹学一、课程性质、目的和任务《最优化算法》课程是信息与计算科学专业的一门主要专业选修课。
本课程的目的是使学生理解最优化理论与方法的基本概念,掌握最优化的基本理论和常见的优化算法,为学习后继课程和解决实际问题打下扎实的基础,培养学生用数学知识解决实际问题的兴趣、意识,以及分析问题和解决问题的能力。
二、教学内容、方法及基本要求1.非线性规划基本概念教学内容:多元函数极值理论。
基本要求:理解非线性规划问题概念,一般形式,最优解的情况。
理解梯度、海赛矩阵等概念,掌握极值点的必要条件,充分条件。
理解凸函数概念,掌握凸函数的判定条件和方法。
理解凸规划概念。
2. 一维搜索教学内容:一维搜索。
基本要求:掌握求解非线性规划问题搜索法的基本思想。
掌握一维搜索的斐波那契方法和0.618法。
3.求解无约束非线性规划问题的解析法教学内容:梯度法,广义牛顿法,共轭梯度法,变度量法。
基本要求:理解梯度法,广义牛顿法,共轭梯度法,变度量法的基本思想,掌握四种方法的迭代步骤,了解四种方法的收敛定理。
4. 求解无约束非线性规划问题的直接法教学内容:步长加速法,方向加速法,单纯形法。
基本要求:理解步长加速法,方向加速法,单纯形法的基本思想,掌握三种方法的迭代步骤,了解三种方法的收敛准则。
了解解析法与直接法的优缺点。
5. 求解约束非线性规划问题的逐步线性逼近法教学内容:逐步线性逼近法。
基本要求:理解约束非线性规划问题一般模型。
理解逐步线性逼近法基本思想,掌握逐步线性逼近法的求解步骤。
6. 求解约束非线性规划问题的拉格朗日乘子法教学内容:拉格朗日乘子法。
最优化方法试卷及答案5套.docx

《最优化方法》1一、填空题:1. _______________________________________________________ 最优化问题的数学模型一般为:_____________________________________________ ,其中___________ 称为目标函数,___________ 称为约束函数,可行域D可以表示为_______________________________ ,若 ________________________________ ,称/为问题的局部最优解,若为问题的全局最优解。
2.设f(x)= 2斤+2“2-兀|+5花,则其梯度为__________ ^x = (l,2)r?6/ = (l,0)r,则f(x)在壬处沿方向d的一阶方向导数为___________ ,几何意义为_____________________________________ ,二阶方向导数为____________________ ,几何意义为_____________________________3.设严格凸二次规划形式为:min /(%) = 2兀]2 + 2x; - 2兀]-x2s.t. 2%! 4- x2 < 1> 0x2 > 0则其对偶规划为_______________________________________________min%(d ) = f (x k +ad k )的最优步长为务=—叫)F.d kT Gd k2. (10分)证明凸规划min/(x ),x G D (其中子(兀)为严格凸函数,D 是凸集)的最优解是唯一的3. (13分)考虑不等式约束问题min /(x )s.t. c i (x ) < 0, Z G / = {1,2,…,加}其中/(x ),6 (兀)a e /)具有连续的偏导数,设X 是约束问题的可行点,若在元处 d 满足巧(计<0,VC,(元)(可则d 是元处的可行下降方向。
最优化方法习题答案

月份 4 5 6
买进单价/(元/件) 17 16.5 17
售出单价/(元/件) 18 18 19
解:设 xi 表示每个月进货量, yi 表示相应月份售货量,其中 i 1,2,3 ,则有数学模型:
max z 18y1 18y2 19y3 17x1 16.5x2 17x3
x1 600 200
x1 y1 x2 600 200
x1
x2
x3
x4
x5 x6
x7
10+2M
15+M
12+M
0
0 -M 0
z
x4
5
3
1
1
00
09
x5
-5
6
15
0
10
0 15
x7
2
1
1
0
0 -1
15
以 x1 为换入变量, x 4 为换出变量
x1
x2
x3
x4
x5 x6
x7
0
z
x1 1
9 M 5
0.6
x5 0
9
x7 0
-0.2
10 3M 5
0.2
2 2M 5
(3) min z 2x1 3x2 x3 x1 4x2 2x3 8
s.t.3x1 2x2 6 x1, x2 , x3 0
解:引入剩余变量 x 4 , x5 和人工变量 x6 , x7 ,利用两阶段法得到辅助线性规划 max w x6 x7 max z' 2x1 3x2 x3
x1
x2
x3
x4
x5
x6
x7
z'
5
0
1