参数方程完全解析(非原创)

合集下载

参数方程_精品文档

参数方程_精品文档

参数方程参数方程是一种数学中常用的表示曲线的方法,它是通过一组参数来描述曲线上的点的位置。

与直角坐标系中的函数表示方式不同,参数方程给出的是曲线上每一个点在某个参数下的坐标值。

参数方程的一般形式为:x = f(t) y = g(t)其中,x 和 y 是曲线上某一点的坐标,t 是参数。

通过改变参数 t 的取值,可以得到曲线上的不同点坐标,从而描绘出整个曲线。

参数方程的表示形式参数方程的表示形式可以有多种,常见的包括:•二维参数方程:x = f(t), y = g(t)•三维参数方程:x = f(t), y = g(t), z = h(t)以二维参数方程为例,可以通过给定不同的参数 t 的取值范围,来绘制出对应的曲线。

参数 t 通常是一个连续的变化的数值,可以是时间、角度或其他物理量。

通过改变参数t,我们可以得到曲线上的点的坐标变化情况,从而得到曲线的形状。

参数方程的应用参数方程在数学和物理中有广泛的应用,特别是在几何学、物理学和计算机图形学中。

在几何学中,参数方程可以用来表示各种曲线,例如抛物线、椭圆、双曲线等,通过调整参数的取值范围,可以绘制出不同形状的曲线。

参数方程还可以用来表示曲线的长度、曲率等几何性质。

在物理学中,参数方程可以用来描述物体的运动轨迹。

例如,一个抛出的物体在空中的运动可以用参数方程来表示。

通过改变参数 t 的取值,可以得到物体在不同时刻的位置坐标,从而得到物体的运动轨迹。

在计算机图形学中,参数方程可以用来生成各种图形。

通过给定不同的参数t,可以计算出曲线上的点的坐标,然后将这些点连接起来,就可以生成各种精美的图形,如曲线、曲面等。

参数方程的优缺点参数方程相较于直角坐标系的表示方法,有一些明显的优点和缺点。

优点:•对于复杂的曲线,参数方程可以更加简洁地描述其形状。

•参数方程可以处理直角坐标系中无法表示的曲线,如极坐标系下的曲线。

缺点:•参数方程需要额外的参数 t,增加了计算的复杂度。

高中数学函数参数方程解析

高中数学函数参数方程解析

高中数学函数参数方程解析一、引言在高中数学学习中,函数参数方程是一个重要的知识点。

本文将从基础概念出发,通过具体题目的举例,分析解题思路和考点,并给出一些解题技巧,帮助读者更好地理解和应用函数参数方程。

二、函数参数方程的基本概念函数参数方程是指用参数表示的函数方程。

一般形式为:y = f(x, a),其中a为参数。

参数可以是任意实数,通过改变参数的取值,可以得到不同的函数图像。

三、函数参数方程的应用举例1. 例题一:求参数方程y = a^2 - x^2的图像。

解析:将参数方程转化为直角坐标系下的函数方程。

令y = f(x, a) = a^2 - x^2,其中a为参数。

通过改变参数a的取值,可以得到不同的图像。

当a = 1时,函数图像为一个单位圆;当a = 2时,函数图像为一个半径为2的圆。

可以通过改变参数a的取值,观察图像的变化规律。

2. 例题二:求参数方程x = a + t,y = a - t的图像。

解析:将参数方程转化为直角坐标系下的函数方程。

令x = f(t, a) = a + t,y = g(t, a) = a - t,其中a为参数。

通过改变参数a的取值,可以得到不同的图像。

当a = 0时,函数图像为直线y = -x;当a = 1时,函数图像为直线y = 1 - x。

可以通过改变参数a的取值,观察图像的变化规律。

四、函数参数方程的考点分析1. 参数的取值范围:在解题过程中,需要注意参数的取值范围,以保证函数有意义。

例如,在例题一中,参数a不能取负值,否则函数图像将不存在。

2. 函数图像的特点:通过观察函数图像的特点,可以发现一些规律。

例如,在例题一中,当参数a取不同的值时,函数图像的形状和大小都会发生变化。

这表明参数a对函数图像具有一定的控制作用。

3. 函数图像的对称性:在解题过程中,可以通过观察函数图像的对称性来简化问题。

例如,在例题一中,函数图像y = a^2 - x^2关于y轴对称,这可以帮助我们更好地理解和绘制函数图像。

参数方程知识讲解及典型例题

参数方程知识讲解及典型例题

参数方程一、定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个参数t 的函数,即 ⎩⎨⎧==)()(t f y t f x ,其中,t 为参数,并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数t 叫做参变数,简称参数.注意:参数方程没有直接体现曲线上点的横纵坐标之间的关系,而是分别体现了点的横纵坐标与参数间的关系。

二、二次曲线的参数方程 1、圆的参数方程:特殊:圆心是(0,0),半径为r 的圆:θθsin cos r y r x ==一般:圆心在(x 0,y 0),半径等于r 的圆:θθsin cos 00r y y r x x +=+= (θ为参数,θ的几何意义为圆心角),Eg1:已知点P (x ,y )是圆x 2+y 2-6x-4y+12=0上的动点,求:(1)x 2+y 2的最值;(2)x+y 的最值;(3)点P 到直线x+y-1=0的距离d 的最值。

Eg2:将下列参数方程化为普通方程(1) x=2+3cos θ (2) x=sin θ (3) x=t+t1y=3sin θ y=cos θ y=t 2+21t总结:参数方程化为普通方程步骤:(1)消参(2)求定义域 2、椭圆的参数方程:中心在原点,焦点在x 轴上的椭圆:θθsin cos b y a x == (θ为参数,θ的几何意义是离心角,如图角AON 是离心角)注意:离心率和离心角没关系,如图,分别以椭圆的长轴和短轴为半径画两个同心圆,M 点的轨迹是椭圆,中心在(x 0,y 0)椭圆的参数方程: θθsin cos 00b y y a x x +=+=Eg :求椭圆203622y x +=1上的点到M (2,0)的最小值。

3、双曲线的参数方程:中心在原点,焦点在x 轴上的双曲线:θθtan sec b y a x == (θ为参数,代表离心角),中心在(x 0,y 0),焦点在x 轴上的双曲线: θθtan sec 00b y y a x x +=+=4、抛物线的参数方程:顶点在原点,焦点在x 轴正半轴上的抛物线:pt y pt x 222== (t 为参数,p >0,t 的几何意义为过圆点的直线的斜率的倒数) 直线方程与抛物线方程联立即可得到。

(word版)高中数学参数方程知识点大全,文档

(word版)高中数学参数方程知识点大全,文档

高考复习之参数方程 一、考纲要求1.理解参数方程的概念, 了解某些常用参数方程中参数的几何意义或物理意义, 掌握参 数方程与普通方程的互化方法 .会根据所给出的参数,依据条件建立参数方程.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数方程或极坐标方程求两条曲线的交点. 二、知识结构 直线的参数方程 (1)标准式过点Po(x0,y0),倾斜角为α的直线 l(如图)的参数方程是xxtcosa为参数)(ty y 0tsina(2)一般式过定点P0(x0,y0)斜率k=tg α=b 的直线的参数方程是ax x 0at (t 不参数)②y y 0 bt在一般式②中,参数t 不具备标准式中 t 的几何意义,假设a 2+b 2=1,②即为标准式,此 时,|t |表示直线上动点 P 到定点P0的距离;假设 a 2+b 2≠1,那么动点P 到定点P0的距离是a 2b 2|t |.直线参数方程的应用 设过点P(x,y),倾斜角为α的直线l 的参数方程是0 0 0x x 0 tcosa〔t 为参数〕y y 0tsina假设P 、P是l 上的两点,它们所对应的参数分别为 t,t ,那么121 2(1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); |P 1P 2|=|t 1-t 2|;线段P 1P 2的中点P 所对应的参数为t ,那么t= t 1 t 22中点t1t2|P到定点P的距离|PP|=|t|=|002假设P0为线段P1P2的中点,那么t1+t2=0.圆锥曲线的参数方程(1)圆x a rcos圆心在(a,b),半径为r的圆的参数方程是b(φ是参数)y rsinφ是动半径所在的直线与x轴正向的夹角,φ∈[0,2π](见图)(2)椭圆椭圆x2y21(a>b>0)的参数方程是a2b2x acosy bsin(φ为参数)椭圆y2y2(a>b>0)的参数方程是a12b2x bcos(φ为参数)asin极坐标极坐标系在平面内取一个定点O,从O引一条射线Ox,选定一个单位长度以及计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O点叫做极点,射线Ox叫做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标设M点是平面内任意一点,用ρ表示线段OM的长度,θ表示射线Ox到OM的角度,那么ρ叫做M点的极径,θ叫做M点的极角,有序数对(ρ,θ)叫做M点的极坐标.(见图)极坐标和直角坐标的互化互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x轴的正半轴重合③两种坐标系中取相同的长度单位.互化公式x cos2x2y2 y(xy sin'tg0)x三、知识点、能力点提示(一)曲线的参数方程,参数方程与普通方程的互化例1在圆x2+y2-4x-2y-20=0上求两点A和B,使它们到直线4x+3y+19=0的距离分别最短和最长.解:将圆的方程化为参数方程:x 2 5cos〔 为参数〕y1 5sin那么圆上点P 坐标为(2+5cos ,1+5sin ),它到所给直线之距离120cos15sin 30d=4232故当cos(φ-θ)=1,即φ=θ时,d 最长,这时,点A 坐标为(6,4);当cos(φ-θ)=-1,即θ=φ-π时,d 最短,这时,点B 坐标为(-2,2).(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化说明 这局部内容自1986 年以来每年都有一个小题,而且都以选择填空题出现.例2极坐标方程ρ=1所确定的图形是〔 〕2 3sincosA.直线B.椭圆C.双曲D.抛物线11 1解:ρ=231cos2[1()] 1 sin()2 26(三)综合例题赏析例3x3cos(是参数)的两个焦点坐标是椭圆1〔 〕y5sinA.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)解:化为普通方程得(x3) 2 (y 1)21925a 2=25,b 2=9,得c 2=16,c=4.∴F(x-3,y+1)=F(0,±4)∴在xOy 坐标系中,两焦点坐标是 (3,3)和(3,-5).应选B.例4参数方程xcos sin22(02)表示y1(1sin)2A.双曲线的一支,这支过点(1,1)B.抛物线的一局部,这局部过(1,21 )2C.双曲线的一支,这支过 (-1,1)D.抛物线的一局部,这局部过 (-1,21 )2解:由参数式得 x 2=1+sin θ=2y(x >0) 即y=1x 2(x >0).2∴应选B.例5x sin ()在方程(θ为参数)所表示的曲线一个点的坐标是ycosA.(2,-7)B.〔1,2〕C.(1,1)D.(1,0)3 322解:y=cos2=1-2sin2=1-2x 2将x=1 代入,得y=12 2∴应选C.例6 以下参数方程(t 为参数)与普通方程x 2-y=0表示同一曲线的方程是 ( )x t x cost xtgtC.A.B.ycos 2t1 cos2t yty1 cos2ttgtD.1cos2ty 1cos2t解:普通方程 x 2-y 中的x ∈R ,y ≥0,A.中x=|t |≥0,B.中x=cost ∈〔-1,1〕,故排除A.和B.2cos 2t2t=11 2C.中y=2t =ctg 2tx 2 =,即xy=1,故排除C.2sintg∴应选D.例7曲线的极坐标方程ρ =4sin θ化成直角坐标方程为()2+(y+2)2=42+(y-2)2=4C.(x-2)2+y 2=4D.(x+2)2 +y 2=4解:将ρ=x 2y 2,sin θ=y 代入ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y-2)2=4.x 2 y 2∴应选B.例8 极坐标ρ=cos( )表示的曲线是 ()4A.双曲线B.椭圆C.抛物线D.圆解:原极坐标方程化为ρ =12(cos θ+sin θ) 22=ρcos θ+ρsin θ,∴普通方程为 2(x 2+y 2)=x+y ,表示圆. 应选D. 例9 在极坐标系中,与圆ρ =4sin θ相切的条直线的方程是 ( ) A.ρsin θ=2 B. ρcos θ=2 C.ρcos θ=-2 D. ρcos θ=-4 例9图 解:如图. ⊙C 的极坐标方程为ρ =4sin θ,CO ⊥OX,OA 为直径,|OA |=4,l 和圆相切,交极轴于B(2,0)点P(ρ,θ)为l 上任意一点,那么有cos θ=OB2,得ρcos θ=2,OP∴应选B.例10 4ρsin 22=5表示的曲线是()A.圆B. 椭圆C.双曲线的一支D.抛物线解:4ρsin 22=54ρ·cos2 122 cos5.把ρ= x 2y 2ρcos θ=x ,代入上式,得2x 2 y 2 =2x-5.平方整理得y 2=-5x+25..它表示抛物线.4∴应选D.例11极坐标方程4sin 2θ=3表示曲线是()A.两条射线B.两条相交直线C.圆D.抛物线2y 2223x ,它表示两相交直线.解:由4sin θ=3,得4·x 2y 2 =3, 即y=3x,y=±∴应选B.四、能力训练 (一)选择题1.极坐标方程ρcos θ=4表示( )3A.一条平行于 x 轴的直线B.一条垂直于 x 轴的直线C.一个圆D.一条抛物线2.直线:3x-4y-9=0与圆:x 2cos (为参数)的位置关系是() y 2sin,A.相切B.相离C.直线过圆心D.相交但直线不过圆心3.假设(x ,y)与(ρ,θ)(ρ∈R)分别是点M 的直角坐标和极坐标,t 表示参数,那么以下各组曲线:①θ=和sin θ=1;②θ=和tg θ=3,③ρ2-9=0和ρ=3;④6263x22t2和x2 2t y1y3 t3t2其中表示相同曲线的组数为()4.设M(ρ1,θ1),N(ρ2,θ2)两点的极坐标同时满足以下关系:ρ1+ρ2=0,θ1+θ2=0,那么M ,N 两点位置关系是()A.重合B.关于极点对称C.关于直线θ=D.关于极轴2对称极坐标方程ρ=sin θ+2cos θ所表示的曲线是()A.直线B.圆C.双曲线D.抛物线6.经过点M(1,5)且倾斜角为的直线,以定点M 到动点P 的位移t 为参数的参数方程3是()x11tx11tx11tA .2 B.2 C.23 3 3yt t t5y5y5222y1 3tD.2 x51t2m22m将参数方xam 22m2yb2m 2 m 2 2m2(m 是参数,ab ≠0)化为普通方程是 ( )x 2 y 2 1(xa)x 2 y 2 1(xa) A.b 2B.b 2a 2a 2C.x 2y 21( x)x 2 y 2 1(xa)a 2b 2aD.b 2a 28.圆的极坐标方程ρ=2sin(θ+),那么圆心的极坐标和半径分别为()6A.(1,),r=2 B.(1,),r=1C.(1,),r=1 D.(1,363-),r=23xt19.参数方程t (t为参数)所表示的曲线是()y2A.一条射线B.两条射线C.一条直线D.两条直线x 2tg 双曲线(θ为参数)的渐近线方程为()y 12secA.y-1=1(x2)B.y=1x C.y-1=2(x 2)22D.y+1=2(x2)11.假设直线x 4 at((t 为参数)与圆x 2+y 2-4x+1=0相切,那么直线的倾斜角为( )y btA.B.2C.或2D.333 3 3或53x 2pt 2 为参数)上的点M ,N 对应的参数分别为t 1,t 2,且t 1+t 2=0,12.曲线(ty2pt那么M ,N 间的距离为( )A.2p(t 1+t 2)B.2p(t22 C.│2p(t 1-t 2)│1+t 2)D.2p(t 1-t 2)213.假设点P(x ,y)在单位圆上以角速度ω按逆时针方向运动,点M(-2xy ,y 2-x 2)也在单位圆上运动,其运动规律是()A.角速度ω,顺时针方向B.角速度ω,逆时针方向C.角速度2ω,顺时针方向D.角速度2ω,逆时针方向14.抛物线y=x 2-10xcos θ+25+3sin θ-25sin2θ与x 轴两个交点距离的最大值是 ( )315.直线ρ=3与直线l关于直线θ=(ρ∈R)对称,那么l的方程是()2cossin4A.3B.3sin2cos cos2cosC.3D.32sin cos2sincos(二)填空题x34t16.假设直线l的参数方程为5(t为参数),那么过点(4,-1)且与l平行的直线3ty25在y轴上的截距为.x coscos17.参数方程1〔为参数〕化成普通方程为.sinycos118.极坐标方程ρ=tgθsecθ表示的曲线是.19.x13t(t为参数)的倾斜角为;直线上一点P(x,y)与点M(-1,直线23ty2)的距离为.(三)解答题20.设椭圆x4cos(θ为参数)上一点P,假设点P在第一象限,且∠xOP=,求y23sin3点P的坐标.21.曲线C的方程为x2pt2y (p>0,t为参数),当t∈[-1,2]时,曲线C的端2pt点为A,B,设F是曲线C的焦点,且S=14,求P的值.△AFB22.椭圆x2y2=1及点B(0,-2),过点B作直线BD,与椭圆的左半局部交于C、2D两点,又过椭圆的右焦点F2作平行于BD的直线,交椭圆于G,H两点.(1)试判断满足│2BD是否存在?并说明理BC│·│BD│=3│GF│·│F2H│成立的直线由.假设点M为弦CD的中点,S△BMF2=2,试求直线BD的方程.x 8 4sec23.如果椭圆的右焦点和右顶点的分别是双曲线(θ为参数)的左焦点y 3tg和左顶点,且焦点到相应的准线的距离为9,求这椭圆上的点到双曲线渐近线的最短距离. 4,B为椭圆x2y2上的两点,且OA⊥OB,求△AOB的面积的最大a2b2=1,(a>b>0)值和最小值.25.椭圆x2y2=1,直线l∶xy=1,P是l上一点,射线OP交椭圆于点R,24161282又点Q在OP上且满足│OQ│·│OP│=│OR│,当点P在l上移动时,求点Q的轨迹方程.(word 版)高中数学参数方程知识点大全,文档11 / 1111参考答案 (一 (二;2=-2(x-1),(x≤1);18.抛物线;°,|32t|22(三)20.(85,415);21. 2 3;55322.(1) 不存在,(2)x+y+2=0;23.1(27-341);max=ab,s max =a 2b 2;5 2a 2b 2(x 1)2(y1)2不同时为零)25.=1(x,y)5 5 22。

参数方程完全解析(非原创)

参数方程完全解析(非原创)

知识点二:常见曲线的参数方程 1.直线的参数方程
(1)经过定点
,倾斜角为 的直线 的参数方程为:
( 为参数);
其中参数 的几何意义:
,有
在 下方时,
)。
,即 表示直线上任一点 M 到定点 的距离。(当 在 上方时, ,
(2)过定点
,且其斜率为 的直线 的参数方程为:
( 为参数, 为为常数,
);
其中 的几何意义为:若 是直线上一点,则
(t 为参数) ; (2)
(t 为参数).
【答案】:(1)由

,代入
化简得
.

,∴
,
.
故所求方程为



4
(2)两个式子相除得 ∵
,代入

,故所求方程为
,即
.
(
).
【变式 2】(1)圆
的半径为_________ ;
(2)参数方程 A、双曲线一支,且过点 C、双曲线一支,且过点 【答案】: (1)
其中 (2)
(2)若 为参数, 为常数,求此曲线的离心率。
【答案】:(1)方程可化为
消去 ,得:
∴曲线是抛物线,焦点到准线距离即为

(2)方程化为 消去 ,得 ∴曲线为椭圆,其中
类型二:圆渐开线以及摆线
4.已知圆渐开线的参数方程是
解析:
, 面积为 16




,从而

,则基圆面积是_______。
7
举一反三: 【变式 1】半径为 10 的基圆的渐开线方程是___________;
.
总结升华:
1. 消参的方法主要有代入消参,加减消参,比值消参,平方消参,利用恒等式消参等。

高中数学参数方程知识点详解(讲义+过关检测+详细答案)

高中数学参数方程知识点详解(讲义+过关检测+详细答案)

5.【答案】D
【解析】 x2 t, y2 1 t 1 x2, x2 y2 1,而t 0, 0 1 t 1,得0 y 2 .
4
4
6.【答案】D
【解析】圆
x=2 cos,
的圆心为原点,半径为
y =2 sin
2,
则圆心到直线 3x-4y-9=0 的距离为 9 ,小于半径 2,故直线与圆相交. 5
D.(1, 3)
2.已知某曲线的参数方程为 xy==ccooss2, +1,则该曲线是(

A.直线
B.圆
C.双曲线
3.若一直线的参数方程为
x
x0
1 2
t
(t 为参数),则此直线的倾斜Байду номын сангаас为(
y
y0
3t 2
A.30º
B. 60º
C.120º
4.若点
P(4,a)在曲线
x=
t 2
(t 为参数)上,点 F(2,0),则|PF|等于(
)
y=2 t
A.4
B.5
C.6
D.抛物线 ) D.150º
D.7
5.与参数方程为
x
t
(t为参数) 等价的普通方程为( )
y 2 1 t
A. x2 y2 1 4
B. x2 y2 1(0 x 1) 4
C. x2 y2 1(0 y 2) 4
D. x2 y2 1(0 x 1, 0 y 2) 4
y2 b2
1( a
0 , b 0 )的参数方程为:
x a sec
y
b
tan

为参数,
[0, 2 ) 且
, 2
3 2

2018届高考数学理大一轮复习教师用书:选修4-4第二节

2018届高考数学理大一轮复习教师用书:选修4-4第二节

第二节参数方程突破点(一) 参数方程1.参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数:⎩⎪⎨⎪⎧ x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组⎩⎪⎨⎪⎧x =f (t ),y =g (t )所确定的点M (x ,y )都在这条曲线上,那么方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )就叫做这条曲线的参数方程,变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数).1.基本思路是消去参数,常用的消参方法有:①代入消元法;②加减消元法;③恒等式(三角的或代数的)消元法;④平方后再加减消元法等.其中代入消元法、加减消元法一般是利用解方程的技巧,三角恒等式消元法常利用公式sin 2θ+cos 2θ=1等.2.普通方程化为参数方程 (1)选择参数的一般原则曲线上任意一点的坐标与参数的关系比较明显且关系相对简单;当参数取某一值时,可以唯一确定x ,y 的值;(2)具体步骤本节主要包括2个知识点: 1.参数方程;参数方程与极坐标方程的综合问题.第一步,引入参数,但要选定合适的参数t ;第二步,确定参数t 与变量x 或y 的一个关系式x =f (t )(或y =φ(t ));第三步,把确定的参数与一个变量的关系式代入普通方程F (x ,y )=0,求得另一关系y =g (t )(或x =ψ(t )),问题得解.[例1] 将下列参数方程化为普通方程.(1)⎩⎨⎧x =1t,y =1tt 2-1(t 为参数);(2)⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数). [解] (1)∵⎝⎛⎭⎫1t 2+⎝⎛⎭⎫1t t 2-12=1, ∴x 2+y 2=1.∵t 2-1≥0,∴t ≥1或t ≤-1. 又x =1t ,∴x ≠0. 当t ≥1时,0<x ≤1, 当t ≤-1时,-1≤x <0,∴所求普通方程为x 2+y 2=1,其中⎩⎪⎨⎪⎧ 0<x ≤1,0≤y <1或⎩⎪⎨⎪⎧-1≤x <0,-1<y ≤0.(2)∵y =-1+cos 2θ=-1+1-2sin 2θ=-2sin 2θ,sin 2θ=x -2, ∴y =-2x +4,∴2x +y -4=0. ∵0≤sin 2θ≤1,∴0≤x -2≤1,∴2≤x ≤3,∴所求的普通方程为2x +y -4=0(2≤x ≤3). [易错提醒](1)将曲线的参数方程化为普通方程时务必要注意x ,y 的取值范围,保证消参前后的方程的一致性.(2)将参数方程化为普通方程时,要注意参数的取值范围对普通方程中x ,y 的取值范围的影响.直线与圆锥曲线的参数方程及应用1第一步,把直线和圆锥曲线的参数方程都化为普通方程;第二步,根据直线与圆锥曲线的位置关系解决问题.2.当直线经过点P (x 0,y 0),且直线的倾斜角为α,求直线与圆锥曲线的交点、弦长问题时,可以把直线的参数方程设成⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),交点A ,B 对应的参数分别为t 1,t 2,计算时把直线的参数方程代入圆锥曲线的直角坐标方程,求出t 1+t 2,t 1·t 2,得到|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1·t 2.[例2] (2017·豫南九校联考)在直角坐标系xOy 中,设倾斜角为α的直线l :⎩⎨⎧ x =2+t cos α,y =3+t sin α(t 为参数)与曲线C :⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数)相交于不同的两点A ,B .(1)若α=π3,求线段AB 的中点M 的坐标;(2)若|PA |·|PB |=|OP |2,其中P (2,3),求直线l 的斜率. [解] (1)将曲线C 的参数方程化为普通方程是x 24+y 2=1.当α=π3时,设点M 对应的参数为t 0.直线l 的方程为⎩⎨⎧x =2+12t ,y =3+32t (t 为参数),代入曲线C 的普通方程x 24+y 2=1,得13t 2+56t +48=0,设直线l 上的点A ,B 对应参数分别为t 1,t 2. 则t 0=t 1+t 22=-2813,所以点M 的坐标为⎝⎛⎭⎫1213,-313. (2)将⎩⎨⎧x =2+t cos α,y =3+t sin α代入曲线C 的普通方程x 24+y 2=1,得(cos 2α+4sin 2α)t 2+(83sin α+4cos α)t +12=0, 因为|PA |·|PB |=|t 1t 2|=12cos 2α+4sin 2α,|OP |2=7, 所以12cos 2α+4sin 2α=7,得tan 2α=516. 由于Δ=32cos α(23sin α-cos α)>0, 故tan α=54.所以直线l 的斜率为54.[方法技巧]1.解决直线与圆的参数方程的应用问题时一般是先化为普通方程再根据直线与圆的位置关系来解决问题.2.对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt(t 为参数)的直线的参数方程,当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.能力练通 抓应用体验的“得”与“失”1.[考点一]将下列参数方程化为普通方程.(1)⎩⎨⎧x =3k1+k 2,y =6k21+k2(k 为参数);(2)⎩⎪⎨⎪⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参数). 解:(1)两式相除,得k =y 2x ,将其代入x =3k 1+k 2得x =3·y2x 1+⎝⎛⎭⎫y 2x 2,化简得4x 2+y 2-6y =0,因为y =6k 21+k 2=6-11+k 2,所以0<y <6, 所以所求的普通方程是4x 2+y 2-6y =0(0<y <6). (2)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ) 得y 2=2-x .又x =1-sin 2θ∈[0,2], 得所求的普通方程为y 2=2-x ,x ∈[0,2].2.[考点二](2017·唐山模拟)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =6cos θ,y =4sin θ(θ为参数),在同一平面直角坐标系中,将曲线C 上的点按坐标变换⎩⎨⎧x ′=13x ,y ′=14y得到曲线C ′.(1)求曲线C ′的普通方程;(2)若点A 在曲线C ′上,点D (1,3).当点A 在曲线C ′上运动时,求AD 中点P 的轨迹方程.解:(1)将⎩⎪⎨⎪⎧x =6cos θ,y =4sin θ代入⎩⎨⎧x ′=13x ,y ′=14y ,得曲线C ′的参数方程为⎩⎪⎨⎪⎧x ′=2cos θ,y ′=sin θ,∴曲线C ′的普通方程为x 24+y 2=1.(2)设点P (x ,y ),A (x 0,y 0),又D (1,3)且AD 的中点为P ,∴⎩⎪⎨⎪⎧x 0=2x -1,y 0=2y -3.又点A 在曲线C ′上,∴将A 点坐标代入C ′的普通方程x 24+y 2=1,得(2x -1)2+4(2y-3)2=4,∴动点P 的轨迹方程为(2x -1)2+4(2y -3)2=4.3.[考点二](2017·郑州模拟)将曲线C 1:x 2+y 2=1上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到曲线C 2,A 为C 1与x 轴正半轴的交点,直线l 经过点A 且倾斜角为30°,记l 与曲线C 1的另一个交点为B ,与曲线C 2在第一、三象限的交点分别为C ,D .(1)写出曲线C 2的普通方程及直线l 的参数方程; (2)求|AC |-|BD |.解:(1)由题意可得C 2:x22+y 2=1,对曲线C 1,令y =0,得x =1,所以l :⎩⎨⎧x =1+32t ,y =12t(t 为参数).(2)将⎩⎨⎧x =1+3t 2,y =12t代入x 22+y 2=1,整理得5t 2+43t -4=0.设点C ,D 对应的参数分别为t 1,t 2,则t 1+t 2=-435,且|AC |=t 1,|AD |=-t 2.又|AB |=2|OA |cos 30°=3,故|AC |-|BD |=|AC |-(|AD |-|AB |)=|AC |-|AD |+|AB |=t 1+t 2+3=35. 4.[考点二]设直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),圆C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ(θ为参数).(1)若直线l 经过圆C 的圆心,求直线l 的斜率;(2)若直线l 与圆C 交于两个不同的点,求直线l 的斜率的取值范围.解:(1)由已知得直线l 经过的定点是P (3,4),而圆C 的圆心是C (1,-1),所以,当直线l 经过圆C 的圆心时,直线l 的斜率为k =52.(2)将圆C 的参数方程⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ,化成普通方程为(x -1)2+(y +1)2=4,① 将直线l 的参数方程代入①式,得 t 2+2(2cos α+5sin α)t +25=0.②当直线l 与圆C 交于两个不同的点时,方程②有两个不相等的实根,即Δ=4(2cos α+5sin α)2-100>0,即20sin αcos α>21cos 2α,两边同除以cos 2α, 由此解得tan α>2120,即直线l 的斜率的取值范围为⎝⎛⎭⎫2120,+∞.突破点(二) 参数方程与极坐标方程的综合问题将极坐标方程与参数方程、普通方程交织在一起,考查极坐标方程与参数方程的综合应用.将各类方程相互转化是求解该类问题的前提.,解决问题时要注意:(1)解题时,易将直线与圆的极坐标方程混淆.要熟练掌握特殊直线、圆的极坐标方程的形式.(2)应用解析法解决实际问题时,要注意选取直角坐标系还是极坐标系,建立极坐标系要注意极点、极轴位置的选择,注意点和极坐标之间的“一对多”关系.(3)求曲线方程,常设曲线上任意一点P (ρ,θ),利用解三角形的知识,列出等量关系式,特别是正弦、余弦定理的应用.圆的参数方程常和三角恒等变换结合在一起,解决取值范围或最值问题.(4)参数方程和普通方程表示同一个曲线时,要注意其中x ,y 的取值范围,即注意两者的等价性.考点贯通 抓高考命题的“形”与“神”参数方程与极坐标方程的综合问题[典例] 1参数方程为⎩⎪⎨⎪⎧x =-1+cos α,y =sin α(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,直线l 的极坐标方程为ρ(cos θ+k sin θ)=-2(k 为实数).(1)判断曲线C 1与直线l 的位置关系,并说明理由;(2)若曲线C 1和直线l 相交于A ,B 两点,且|AB |=2,求直线l 的斜率.[解] (1)由曲线C 1的参数方程⎩⎪⎨⎪⎧x =-1+cos α,y =sin α可得其普通方程为(x +1)2+y 2=1.由ρ(cos θ+k sin θ)=-2可得直线l 的直角坐标方程为x +ky +2=0. 因为圆心(-1,0)到直线l 的距离d =11+k 2≤1, 所以直线与圆相交或相切,当k =0时,d =1,直线l 与曲线C 1相切; 当k ≠0时,d <1,直线l 与曲线C 1相交. (2)由于曲线C 1和直线l 相交于A ,B 两点, 且|AB |=2,故圆心到直线l 的距离d =11+k 2= 1-⎝⎛⎭⎫222=22, 解得k =±1,所以直线l 的斜率为±1. [方法技巧]处理极坐标、参数方程综合问题的方法(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.能力练通 抓应用体验的“得”与“失”1.已知曲线C 的参数方程为⎩⎨⎧x =3+10cos α,y =1+10sin α(α为参数),以直角坐标系原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程,并说明其表示什么轨迹;(2)若直线的极坐标方程为sin θ-cos θ=1ρ,求直线被曲线C 截得的弦长.解:(1)∵曲线C 的参数方程为⎩⎨⎧x =3+10cos α,y =1+10sin α(α为参数),∴曲线C 的普通方程为(x -3)2+(y -1)2=10,①曲线C 表示以(3,1)为圆心,10为半径的圆.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入①并化简,得ρ=6cos θ+2sin θ, 即曲线C 的极坐标方程为ρ=6cos θ+2sin θ. (2)∵直线的直角坐标方程为y -x =1, ∴圆心C 到直线的距离为d =322, ∴弦长为210-92=22.2.在极坐标系中,圆C 的方程为ρ=2a cos θ(a ≠0),以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系,设直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +1,y =4t +3(t 为参数).(1)求圆C 的标准方程和直线l 的普通方程;(2)若直线l 与圆C 恒有公共点,求实数a 的取值范围.解:(1)由ρ=2a cos θ,ρ2=2aρcos θ,又ρ2=x 2+y 2,ρcos θ=x ,所以圆C 的标准方程为(x -a )2+y 2=a 2.由⎩⎪⎨⎪⎧x =3t +1,y =4t +3,得⎩⎨⎧x -13=t ,y -34=t ,因此x -13=y -34,所以直线l 的普通方程为4x -3y +5=0.(2)因为直线l 与圆C 恒有公共点,所以|4a +5|42+(-3)2≤|a |,两边平方得9a 2-40a -25≥0,所以(9a +5)(a -5)≥0,解得a ≤-59或a ≥5,所以a 的取值范围是⎝⎛⎦⎤-∞,-59∪[)5,+∞.[全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0. (2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2 =144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以直线l 的斜率为153或-153. 2.(2016·全国丙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 解:(1)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值, d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2, 当且仅当α=2k π+π6(k ∈Z)时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝⎛⎭⎫32,12. 3.(2015·新课标全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值. 解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0, 曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧ x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4. 4.(2014·新课标全国卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|.则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255.当sin(θ+α)=1时,|PA |取得最小值,最小值为255.5.(2014·新课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32. 6.(2013·新课标全国卷Ⅰ)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t ,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ .(1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解:(1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t 消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0 得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧ x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得⎩⎪⎨⎪⎧ x =1,y =1,或⎩⎪⎨⎪⎧x =0,y =2. 所以C 1与C 2交点的极坐标分别为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,π2. [课时达标检测] 基础送分题——高考就考那几点,练通就能把分捡1.(2017·郑州模拟)已知曲线C 1的参数方程为⎩⎨⎧x =-2-32t ,y =12t ,曲线C 2的极坐标方程为ρ=22cos θ-π4,以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系.(1)求曲线C 2的直角坐标方程;(2)求曲线C 2上的动点M 到曲线C 1的距离的最大值. 解:(1)ρ=22cos ⎝⎛⎭⎫θ-π4=2(cos θ+sin θ), 即ρ2=2(ρcos θ+ρsin θ),可得x 2+y 2-2x -2y =0, 故C 2的直角坐标方程为(x -1)2+(y -1)2=2.(2)C 1的普通方程为x +3y +2=0,由(1)知曲线C 2是以(1,1)为圆心,以2为半径的圆,且圆心到直线C 1的距离d =|1+3+2|12+(3)2=3+32,所以动点M 到曲线C 1的距离的最大值为3+3+222.2.在极坐标系中,已知三点O (0,0),A ⎝⎛⎭⎫2,π2,B ⎝⎛⎭⎫22,π4. (1)求经过点O ,A ,B 的圆C 1的极坐标方程;(2)以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,圆C 2的参数方程为⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ是参数),若圆C 1与圆C 2外切,求实数a 的值. 解:(1)O (0,0),A ⎝⎛⎭⎫2,π2,B ⎝⎛⎭⎫22,π4对应的直角坐标分别为O (0,0),A (0,2),B (2,2),则过点O ,A ,B 的圆的普通方程为x 2+y 2-2x -2y =0,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入可求得经过点O ,A ,B 的圆C 1的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ-π4. (2)圆C 2:⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ是参数)对应的普通方程为(x +1)2+(y +1)2=a 2,圆心为(-1,-1),半径为|a |,而圆C 1的圆心为(1,1),半径为2,所以当圆C 1与圆C 2外切时,有2+|a |=(-1-1)2+(-1-1)2,解得a =±2.3.(2017·太原模拟)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立的极坐标系中,直线l 的极坐标方程为θ=π4(ρ∈R),曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =sin θ.(1)写出直线l 的直角坐标方程及曲线C 的普通方程;(2)过点M 且平行于直线l 的直线与曲线C 交于A ,B 两点,若|MA |·|MB |=83,求点M轨迹的直角坐标方程.解:(1)直线l 的直角坐标方程为y =x ,曲线C 的普通方程为x 22+y 2=1.(2)设点M (x 0,y 0),过点M 的直线为l 1:⎩⎨⎧x =x 0+22t ,y =y 0+22t (t 为参数),由直线l 1与曲线C 相交可得:3t 22+2tx 0+22ty 0+x 20+2y 20-2=0,由|MA |·|MB |=83,得t 1t 2=⎪⎪⎪⎪⎪⎪⎪⎪x 20+2y 20-232=83,即x 20+2y 20=6,x 2+2y 2=6表示一椭圆,设直线l 1为y =x +m ,将y =x +m 代入x 22+y 2=1得,3x 2+4mx +2m 2-2=0,由Δ>0得-3<m <3,故点M 的轨迹是椭圆x 2+2y 2=6夹在平行直线y =x ±3之间的两段椭圆弧.4.(2017·江西百校联盟模拟)在平面直角坐标系xOy 中,C 1:⎩⎪⎨⎪⎧x =t ,y =k (t -1)(t 为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 2:ρ2+10ρcos θ-6ρsin θ+33=0.(1)求C 1的普通方程及C 2的直角坐标方程,并说明它们分别表示什么曲线;(2)若P ,Q 分别为C 1,C 2上的动点,且|PQ |的最小值为2,求k 的值.解:(1)由⎩⎪⎨⎪⎧x =t ,y =k (t -1)可得其普通方程为y =k (x -1),它表示过定点(1,0),斜率为k 的直线.由ρ2+10ρcos θ-6ρsin θ+33=0可得其直角坐标方程为x 2+y 2+10x -6y +33=0,整理得(x +5)2+(y -3)2=1,它表示圆心为(-5,3),半径为1的圆.(2)因为圆心(-5,3)到直线y =k (x -1)的距离d =|-6k -3|1+k 2=|6k +3|1+k 2,故|PQ |的最小值为|6k +3|1+k2-1,故|6k +3|1+k 2-1=2,得3k 2+4k =0,解得k =0或k =-43.5.在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.已知点P 的直角坐标为⎝⎛⎭⎫-3,-32,曲线C 的极坐标方程为ρ=5,直线l 过点P 且与曲线C 相交于A ,B 两点.(1)求曲线C 的直角坐标方程;(2)若|AB |=8,求直线l 的直角坐标方程. 解:(1)由ρ=5 知ρ2=25,所以x 2+y 2=25, 即曲线C 的直角坐标方程为x 2+y 2=25.(2)设直线l 的参数方程为⎩⎪⎨⎪⎧x =-3+t cos α,y =-32+t sin α(t 为参数),① 将参数方程①代入圆的方程x 2+y 2=25, 得4t 2-12(2cos α+sin α)t -55=0,∴Δ=16[9(2cos α+sin α)2+55]>0,上述方程有两个相异的实数根,设为t 1,t 2, ∴|AB |=|t 1-t 2|=9(2cos α+sin α)2+55=8, 化简有3cos 2α+4sin αcos α=0, 解得cos α=0或tan α=-34,从而可得直线l 的直角坐标方程为x +3=0或3x +4y +15=0.6.已知动点P ,Q 都在曲线C :⎩⎪⎨⎪⎧x =2cos t ,y =2sin t (t 为参数)上,对应参数分别为t =α与t=2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解:(1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α), 因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2α,y =sin α+sin 2α(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π).当α=π时,d =0,故M 的轨迹过坐标原点.7.(2017·河南六市第一次联考)在平面直角坐标系中,直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t ,y =t -3(t 为参数),在以直角坐标系的原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ=2cos θsin 2θ相交于A ,B 两点. (1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)若直线l 与曲线C 相交于A ,B 两点,求△AOB 的面积.解:(1)由曲线C 的极坐标方程ρ=2cos θsin 2θ,得ρ2sin 2θ=2ρcos θ,所以曲线C 的直角坐标方程是y 2=2x (x ≠0).由直线l 的参数方程⎩⎪⎨⎪⎧x =1+t ,y =t -3,得t =3+y ,代入x =1+t 中,消去t 得x -y -4=0,所以直线l 的普通方程为x -y -4=0.(2)将直线l 的参数方程代入曲线C 的直角坐标方程y 2=2x ,得t 2-8t +7=0,设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=8,t 1t 2=7,所以|AB |=2|t 1-t 2|=2×(t 1+t 2)2-4t 1t 2=2×82-4×7=62,因为原点到直线x -y -4=0的距离d =|-4|1+1=22,所以△AOB 的面积是12|AB |·d =12×62×22=12.8.极坐标系与直角坐标系xOy 取相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos α,y =t sin α(t 为参数).曲线C 的极坐标方程为ρsin 2θ=8cos θ.(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,与x 轴的交点为F ,求1|AF |+1|BF |的值. 解:(1)由ρsin 2θ=8cos θ得,ρ2sin 2θ=8ρcos θ, ∴曲线C 的直角坐标方程为y 2=8x .(2)易得直线l 与x 轴的交点为F (2,0),将直线l 的方程代入y 2=8x ,得(t sin α)2=8(2+t cos α),整理得sin 2α·t 2-8cos α·t -16=0.由已知sin α≠0,Δ=(-8cos α)2-4×(-16)sin 2α=64>0,∴t 1+t 2=8cos αsin 2α,t 1t 2=-16sin 2α<0,故1|AF |+1|BF |=1|t 1|+1|t 2|=⎪⎪⎪⎪1t 1-1t 2=⎪⎪⎪⎪t 1-t 2t 1t 2=(t1+t2)2-4t1t2|t1t2|=⎝⎛⎭⎫8cos αsin2α2+64sin2α16sin2α=12.。

高中数学知识点精讲精析 参数方程

高中数学知识点精讲精析 参数方程

3.4参数方程1、定义一般地,在直角坐标系中如果曲线C 上任一点P 的坐标x 和y 都可以表示为某个变量t 的函数,反过来,对于t 的每个允许值,由函数式所确定的点P 都在曲线上,那么方程叫做曲线C 的参数方程.t 叫参变量. 2. 直线参数方程的标准式(1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)P 0P=t ∣P 0P ∣=t 为直线上任意一点.此时2||cos 1v α==,0||||||P P tv t ∴==,因而||t 恰好为线段0PP 的长度。

事实上,若规定了直线l 的方向,则t 的几何意义如下:当0t >时,0P P 与l 有相同的方向,且0||t P P =;当0t <时,0P P 与l 有相反的方向,且0||t PP =-;当0t =时,P 与0P 的重合.由此可见,直线的参数方程的标准式是直线的参数方程的特殊形式,它的特点是参数t 的几何意义非常明显,在解决有关线段长度的问题时显得十分简便. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2,则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣(3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221tt + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 3.直线参数方程的一般式 过点P 0(00,y x ),斜率为abk =的直线的参数方程是 ⎩⎨⎧+=+=bt y y atx x 00 (t 为参数)4.圆的参数方程1)圆的参数方程的推导(1)设圆O 的圆心在原点,半径是r ,圆O 与x 轴的正半轴的交点是0P ,设点在圆O 上从0P 开始按逆时针方向运动到达点P ,0POP θ∠=,则点P 的位置与旋转角θ有密切的关系:当θ确定时,点P 在圆上的位置也随着确定; 当θ变化时,点P 在圆上的位置也随着变化. 这说明,点P 的坐标随着θ的变化而变化. 设点P 的坐标是(,)x y ,你能否将x 、y 分别表示 成以θ为自变量的函数?根据三角函数的定义,cos sin x r y r θθ=⎧⎨=⎩, ①显然,对于θ的每一个允许值,由方程组①所确定的点(,)P x y 都在圆O 上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

参数方程目标认知学习目标:1.了解参数方程,了解参数的意义,能选择适当的参数写出直线、圆和圆锥曲线的参数方程;2.了解平摆线、渐开线的生成过程,并能推导出它们的参数方程,了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用。

重点、难点:理解参数方程的概念及转化方法,重点掌握直线和圆的参数方程及椭圆的参数方程,并能利用它们解决一些应用问题;以及利用参数建立点的轨迹方程。

知识要点梳理:知识点一:参数方程1. 1. 概念:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数:,并且对于的每一个允许值,方程所确定的点都在这条曲线上,那么方程就叫做这条曲线的参数方程,联系间的关系的变数叫做参变数(简称参数).相对于参数方程来说,前面学过的直接给出曲线上点的坐标关系的方程,叫做曲线的普通方程。

2. 把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法. 常见的消参方法有:代入消法;加减消参;平方和(差)消参法;乘法消参法;混合消参法等.把曲线的普通方程化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性,注意方程中的参数的变化围。

互化时,必须使坐标x, y的取值围在互化前后保持不变,否则,互化就是不等价的。

知识点二:常见曲线的参数方程1.直线的参数方程(1)经过定点,倾斜角为的直线的参数方程为:(为参数);其中参数的几何意义:,有,即表示直线上任一点M到定点的距离。

(当在上方时,,在下方时,)。

(2)过定点,且其斜率为的直线的参数方程为:(为参数,为为常数,);其中的几何意义为:若是直线上一点,则。

(3)若直线l的倾角a=0时,直线l的参数方程为.2.圆的参数方程(1)已知圆心为,半径为的圆的参数方程为:(是参数,);特别地当圆心在原点时,其参数方程为(是参数)。

(2)参数的几何意义为:由轴的正方向到连接圆心和圆上任意一点的半径所成的角。

(3)圆的标准方程明确地指出圆心和半径,圆的一般方程突出方程形式上的特点,圆的参数方程则直接指出圆上点的横、纵坐标的特点。

3. 椭圆的参数方程(1)椭圆()的参数方程(为参数)。

(2)参数的几何意义是椭圆上某一点的离心角。

如图中,点对应的角为(过作轴,交大圆即以为直径的圆于),切不可认为是。

(3)从数的角度理解,椭圆的参数方程实际上是关于椭圆的一组三角代换。

椭圆上任意一点可设成,为解决有关椭圆问题提供了一条新的途径。

4. 双曲线的参数方程双曲线(,)的参数方程为(为参数)。

5. 抛物线的参数方程抛物线()的参数方程为(是参数)。

参数的几何意义为:抛物线上一点与其顶点连线的斜率的倒数,即。

6. 圆的渐开线与摆线的参数方程:(1)圆的渐开线的参数方程(是参数);(2)摆线的参数方程(是参数)。

规律方法指导1.参数方程作为选考容,试题容涉及参数方程与普通方程的互化,直线、圆和圆锥曲线的参数方程以及在解题中的应用中。

由于该容在高考试题的特殊位置,仅以填空题的形式出现一般为容易题或中等题。

以考察基础知识,基本运算为主。

2. 加强消参的技巧性学习,注意等价性,消参常用的方法有代入法、三角法、加减法等。

3.从数的角度理解,圆与椭圆的参数方程实际上是一组三角代换,为解决有关圆、椭圆问题提供了一条新的途径.经典例题精析类型一:参数方程与普通方程互化1.已知圆的方程是,将它表示为圆的参数方程形式。

思路点拨:将圆的方程配方得圆的标准方程,然后利用平方和公式进行三角代换转化为参数方程。

解析:配方得圆的标准方程令,得圆的参数方程为(q为参数).总结升华:圆与椭圆的普通方程转化为圆与椭圆的参数方程一般都是利用进行三角代换。

举一反三:【变式】化普通方程为参数方程。

(1)(2)【答案】:(1)配方得圆的标准方程,令,得圆的参数方程为(q为参数).(2)变形得,令,得椭圆的参数方程为(q为参数).2.把参数方程化为普通方程(1) (,为参数);(2)(,为参数);(3) (,为参数);(4)(为参数).思路点拨:(1)将第二个式子变形后,把第一个式子代入消参;(2)利用三角恒等式进行消参;(3)观察式子的结构,注意到两式中分子分母的结构特点,因而可以采取加减消参的办法;或把用表示,反解出后再代入另一表达式即可消参;(4)此题是(3)题的变式,仅仅是把换成而已,因而消参方法依旧,但需要注意、的围。

解析:(1)∵,把代入得;又∵,, ∴,,∴所求方程为:(,)(2)∵,把代入得.又∵,∴,. ∴所求方程为(,).(3)(法一):,又,,∴所求方程为(,).(法二):由得,代入,∴(余略).(4)由得, ∴,由得,当时,;当时,,从而.法一:,即(),故所求方程为()法二: 由得,代入得,即∴再将代入得,化简得.总结升华:1. 消参的方法主要有代入消参,加减消参,比值消参,平方消参,利用恒等式消参等。

2.消参过程中应注意等价性,即应考虑变量的取值围,一般来说应分别给出、的围.在这过程中实际上是求函数值域的过程,因而可以综合运用求值域的各种方法.举一反三:【变式1】化参数方程为普通方程。

(1)(t为参数) ;(2)(t为参数).【答案】:(1)由得,代入化简得.∵, ∴,.故所求方程为(,)(2)两个式子相除得,代入得,即.∵,故所求方程为().【变式2】(1)圆的半径为_________ ;(2)参数方程(表示的曲线为()。

A、双曲线一支,且过点B、抛物线的一部分,且过点C、双曲线一支,且过点D、抛物线的一部分,且过点【答案】:(1)其中,,∴半径为5。

(2),且,因而选B。

【变式3】(1)直线: (t为参数)的倾斜角为()。

A、B、C、D、(2)为锐角,直线的倾斜角()。

A、B、C、D、【答案】:(1),相除得,∴倾斜角为,选C。

(2),相除得,∵,∴倾角为,选C。

3.已知曲线的参数方程(、为常数)。

(1)当为常数(),为参数()时,说明曲线的类型;(2)当为常数且,为参数时,说明曲线的类型。

思路点拨:通过消参,化为普通方程,再做判断。

解析:(1)方程可变形为(为参数,为常数)取两式的平方和,得曲线是以为圆心,为半径的圆。

(2)方程变形为(为参数,为常数),两式相除,可得,即,曲线是过点且斜率的直线。

总结升华:从本例可以看出:某曲线的参数方程形式完全相同,但选定不同的字母为参数,则表示的意义也不相同,表示不同曲线。

因此在表示曲线的参数方程时,一般应标明选定的字母参数。

举一反三:【变式1】已知椭圆的参数方程为(为参数),求出此椭圆的长轴长,短轴长,焦点坐标,离心率和准线方程.【答案】:由题意得:,, 得. ∴, .即:椭圆的长轴长为26,短轴长为10,焦点坐标为(0,-12)和(0,12),离心率为,准线方程为:和.【变式2】已知曲线C的参数方程为(t为参数)(1)判断点P1(1,2),P2(0,1)与曲线C的位置关系(2)点Q(2,a)在曲线l上,求a的值.(3)化为普通方程,并作图(4)若t≥0,化为普通方程,并作图.【答案】:(1)若点P在曲线上,则可以用参数t表示出x, y,即可以求出相应t值.所以,令,∴t无解,∴点P1不在曲线C上.同理,令,∴点P2在曲线C上.(2)∵Q在曲线C上,∴.(3)将代入y=3t2+1,如图.(4)∵t≥0, ∴ x=2t≥0, y=3t2+1≥1, 消去t,,∴ t≥0时,曲线C的普通方程为(x≥0, y≥1).点评:在(4)中,曲线C的普通方程的围也可以只写出x≥0, 但不能写成y≥1,这是因为是关于x的自变量,y为因变量的函数,由x的围可以确定y的取值围,但反过来不行.即:所得曲线方程为y=f(x)或x=g(y)形式时,可以只写出自变量的围,但对于非函数形式的方程,即F(x,y)=0,一般来说,x,y的围都应标注出来.【变式3】已知圆锥曲线方程为。

(1)若为参数,为常数,求此曲线的焦点到准线距离。

(2)若为参数,为常数,求此曲线的离心率。

【答案】:(1)方程可化为消去,得:∴曲线是抛物线,焦点到准线距离即为。

(2)方程化为,消去,得,∴曲线为椭圆,其中,,,从而。

类型二:圆渐开线以及摆线4.已知圆渐开线的参数方程是,则基圆面积是_______。

解析:,面积为16举一反三:【变式1】半径为10的基圆的渐开线方程是___________;【答案】:(为参数)[变式2]摆线的参数方程为,则一个拱的宽度是_________,高度是_________。

【答案】:半径,一个拱宽度为一个圆的周长为16,高度为直径16类型三:求最值5.P是椭圆上的点,求P到直线的距离的最大值与最小值,并求出达到最值时P点的坐标.思路点拨:利用参数方程求最值。

解析:∵点P是椭圆上的点,∴可设,q?[0,2p].P到l的距离.当时,即时,,此时P点坐标为.当即时,,此时P点坐标为.总结升华:利用参数方程求最值是很常见的一种方法,利用参数方程结合三角函数知识可以较简洁地解决问题。

举一反三:【变式1】求椭圆上的点到直线:的最小距离及相应的点的坐标。

【答案】:设到的距离为,则(当且仅当即时取等号)。

∴点到直线的最小距离为,此时点,即。

【变式2】圆上到直线的距离为的点共有_______个. 【答案】:已知圆方程为,设其参数方程为()则圆上的点到直线的距离为,即,∴或又,∴,从而满足要求的点一共有三个.【变式3】椭圆接矩形面积的最大值为_____________.【答案】:设椭圆上第一象限的点,则当且仅当时,取最大值,此时点.【变式4】已知实数x, y满足,求:(1)x2+y2的最大值(2)x+y的最小值.【答案】:原方程配方得,表示以为圆心,2为半径的圆.用参数方程表示为:(q为参数,0≤q≤2p).(1)∴当,即时,(x2+y2)max=16.(2)∴当,即时,.选校网.xuanxiao.高考频道专业大全历年分数线上万大学图片大学视频院校库(按ctrl 点击打开)。

相关文档
最新文档