几何学悖论
数学悖论与谬误的区别与联系

叫谬误。一般的,谬误是用来形容思维上的错误,把不正确的事情说 成是正确的。在数学中,谬误可以看做是一种看似正确但经过检验可 证其为错误的论证类型, 也就是说经过一系列错误的推理而必然得到 的结果。例如,某学生使用以下方法对分数进行化简:
在这种情况下,这个学生得到的是正确答案,但是这种方法没有 逻辑根据,于是在一般的情况下这种方法将失效。 任何一个论证都是为了说明它的结果是真的, 但这两种情形下是 不可能的:一种是论证的前提是虚假命题的时候,无论如何推理、过 程如何的正确,也无法确证它的结论为真;另外一种是论证的前提是 真命题,但结论却是假的,那么说明其中间的推理过程出现了问题, 也就是错误推理。习惯上,人们将“谬误”这个词用在那些虽然不正 但却具有一定说服力的论证。有些论证的错误是非常明显的,不能 欺骗和说服任何人。但是,谬误有时也是危险的,因为大多时候会被 某些谬误所愚弄。然而研究这些错误论证是非常有益的,因为当明确 理解它们后,就可以最有效地避开它们布下的陷阱。 由上述可知,数学悖论和谬误都是一种矛盾命题,但两者之间也 有不同之处。悖论是理论知识达到一定高度后的产物,随着科学体系 的的不断充实和完善悖论也就随之消失。 谬误在学习的任何过程中都 有可能出现,但经过严密的推理可以找到其错误的根源。 2.1.2.2 数学悖论与谬误的联系 在数学的推理过程中,谬误和悖论有时是同时存在的。数学常常
被用来解释现实世界,然而有时经验会告诉我们,当推理和数学论证 的结果与现实经验不一致时,这其中就可能存在一些比较复杂的谬 误,这些谬误在无法用数学知识解释是什么的时候,就被认为是一种 悖论。有些情况是发生在纯数学的领域,还有些时候会发生在语言学 或现实生活的其他方面。对于数学的大量悖论来说,如果能删除那些 “别扭"的谬误,那么数学就成为了一块“净土” 。所以在某些谬误不 能被解释之前,大多数的谬误可以被看成是悖论。例如: 如果 x2=Y2 那么这就是说,下面等式中至少有一个是成立的 X = Y,X = -y,-X =-y,-x=Y 这些等式中有两个是等效的,因此它们可以减少为 X =Y,X = -y 除非 x=0,否则要么这两个等式中有一个是错误的, 要么就是这个等式有两个解。这个推导的过程中存在谬误,因为忽 略了取平方根的规则或者不熟悉负数,从而不知道它是怎么变成错 误的时候,就是一个悖论。 这在数学这门学科不断完善的过程中是经常会遇到的, 当0还 没被发现之前,某些运算,如被除中有 0 的运算中出现的谬误,就 是一个悖论,在 O 出现以后,这些还没被纠正的错误就是谬误。这 样的情形在取平方根、根式的运算、虚数的运算等均能被发现。 前面曾提到数学悖论的起源最早可以追溯到古希腊和我国的 先秦时期。在此之后的两千多年发展历史中,因为悖论的产生,以 严谨著称的数学经历了三次数学危机。以下的几节内容当中将对这
数学中的悖论

古希腊人曾为此大伤脑筋,怎么会一 句话看上去完美无缺,自身没有矛盾,却 既是真话又是假话呢!一个斯多噶派哲学 家,克利西帕斯写了六篇关于“说谎者悖 论”的论文,没有一篇成功。有一位希腊 诗人叫菲勒特斯,他的身体十分瘦弱,据 说他的鞋中常带着铅以免他被大风吹跑, 他常常担心自己会因思索这些悖论而过早 地丧命。在《新约》中,圣· 保罗在他给占 塔斯的书信中也引述过这段悖论(1:12 – 13)。
乔纳· 斯威夫特在一首诗中写了一段关于跳蚤的 无穷倒退,数学家奥古斯塔斯· 德摩根把它改写为: 大跳蚤有小跳蚤 在它们的背上咬, 小跳蚤又有小跳蚤, 如此下去 没完没了。 大跳蚤倒了个儿——变小 上面还有大跳蚤, 一个上面有一个, 总也找不到 谁的辈数老。
7.爱丽斯和红色国王
M:柏拉图—苏格拉底悖论有两个无穷 倒退。这正像在《透过镜子》中的爱丽 斯和红色国王一样。 爱丽斯:我在做梦,梦见了红色国王。 可是他睡着了,梦见我正做着关于他的 梦,在这儿他也在梦见我。啊,我的天! 这样梦下去哪有个完。
6.无穷的倒退
M:机器受到的难题就像人碰 到要解答 一个古老的谜?。 问题:鸡和鸡蛋,到底先有哪 个? M:先有鸡吗?不,它必须从 鸡蛋里孵 出来,那末先有鸡蛋?不,它 必须由鸡 生下。好!你陷入了无穷的倒 退之中。
鸡和鸡蛋这个古老的问题是逻辑学家称为“无 穷倒退”的最普通的例子。老人牌麦片往往装在一 个盒中,上面的画是一个老人举着一盒麦片,这个 盒上也有一张画有一个老人举着一盒麦片的小画片。 自然,那个小盒上又有同样的画片,如此以往就像 一个套一个的中国盒子的无穷连环套一样。《科学 美国人》1965 年 4月号有一个封面,画着—个人眼 中反映着这本杂志。你可以看到在反映出的杂志上, 也有一个小一点的眼睛,反映出一本更小的杂志, 自然这样一直小下去。在理发店里,对面的墙上有 很多相向的镜子,人们在这些镜子中可以看到反照 出的无穷倒退。
数学史上十个有趣的悖论

数学史上十个有趣的悖论数学史上十个有趣的悖论1. 贝尔曼-福特悖论:贝尔曼和福特提出了一个悖论,即在某些情况下,一个更短的路径可能比一个更长的路径需要更多的时间来到达。
这与我们直觉中的常识相悖,但在一些特殊的网络或图形结构中确实存在。
2. 贝利悖论:贝利悖论是一个关于概率的悖论。
它认为,如果一个事件在无穷次试验中发生的概率为1,那么在有限次试验中发生的概率也应该接近1。
然而,这个悖论表明,在某些情况下,有限次试验中事件发生的概率可以远远小于1。
3. 监狱悖论:监狱悖论是一个涉及概率和信息理论的悖论。
它认为,如果一个被告的定罪率很高,那么当一个新的证据出现时,这个被告的定罪率反而会降低。
这个悖论挑战了我们对证据和定罪率之间关系的直觉。
4. 伯罗利悖论:伯罗利悖论是概率论中的一个悖论。
它指出,在一个非常大的随机样本中,某个事件的概率与在一个较小的样本中的概率可能截然不同。
这个悖论揭示了我们在处理大样本和小样本时概率的表现方式的差异。
5. 孟克顿悖论:孟克顿悖论是一个关于集合论的悖论。
它指出,如果一个集合包含了所有不包含自身的集合,那么它既包含自身又不包含自身。
这个悖论揭示了集合论中的一些潜在的矛盾和难题。
6. 伊普西隆悖论:伊普西隆悖论是一个关于几何学的悖论。
它认为,在一个无限大的平面上,可以找到两个面积完全相等的形状,但一个形状的周长比另一个形状的周长更长。
这个悖论在无限性的背景下挑战了我们对形状和大小的直觉。
7. 赫尔曼悖论:赫尔曼悖论是一个关于游戏理论的悖论。
它指出,在一个竞争性的游戏中,一个玩家的最佳策略可能会使其处于劣势的局面。
这个悖论挑战了我们对最佳决策和优势策略的理解。
8. 麦克阿瑟悖论:麦克阿瑟悖论是一个关于进化生物学的悖论。
它认为,自私的个体在一个群体中可以获得更大的优势,但在整个群体中自私的个体却会导致整体效益较低。
这个悖论揭示了个体利益和群体利益之间的矛盾。
9. 巴塞尔悖论:巴塞尔悖论是一个关于级数求和的悖论。
弗格森机械悖论

弗格森机械悖论
弗格森机械悖论是一个著名的几何学悖论,涉及到运动和相对位置的问题。
具体来说,悖论描述的是:一个球体在无摩擦力的表面上做纯滚动,向前运动的同时自转。
根据常规理解,由于球体只受到来自其转动轴的力(自转的扭矩),因此它的前部和后部在相对位置上应该保持不变。
但这样,球体相对于地面的位置似乎会发生矛盾。
要解决这个悖论,需要考虑球体的自转实际上改变的是它与表面接触点的相对位置,也就是说,当球体滚动并自转时,与表面接触的部分(接触点)在不断变化。
这导致了一种错觉,即球体的前后位置似乎保持不变,但实际上接触点在不断变化。
因此,弗格森机械悖论强调了理解相对运动和相对位置的重要性,以及在分析运动时需要仔细考虑所有相关因素。
数学史上的经典悖论节选

悖论影响:罗素的这条悖论使集合论产生了危机。它非常浅显易懂,而且所涉及 的只是集合论中最基本的东西。所以,罗素悖论一提出就在当时的数学界与逻辑学 界内引起了极大震动。德国的著名逻辑学家弗雷格在他的关于集合的基础理论完稿 付印时,收到了罗素关于这一悖论的信。他立刻发现,自己忙了很久得出的一系列 结果却被这条悖论搅得一团糟。他只能在自己著作的末尾写道:“一个科学家所碰 到的最倒霉的事,莫过于是在他的工作即将完成时却发现所干的工作的基础崩溃 了。”罗素悖论的提出导致了数学的第三次危机。 悖论解决:罗素悖论提出后,数学家们纷纷提出自己的解决方案。人们希望能 够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需 要建立新的原则。“这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必 须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。”解决这一悖论 主要有两种选择,ZF公理系统和 NBG公理系统。
②一个人从A点走到B点,要先走完路程 的1/2,再走完剩下总路程的1/2,再走完剩下的 1/2……”如此循环下去,永远不能到终点。 另附:《庄子·天下篇》中也提到:“一尺之棰, 日取其半,万世不竭。”
三:希尔伯特悖论
• 人物生平:戴维·希尔伯特,又译大卫·希尔伯特,D.(David Hilbert,1862~1943),德国著名数学家。他于1900年8月8 日在巴黎第二届国际数学家大会上,提出了新世纪数学家应当努 力解决的23个数学问题,被认为是20世纪数学的至高点,对这些 问题的研究有力推动了20世纪数学的发展,在世界上产生了深远 的影响。希尔伯特领导的数学学派是19世纪末20世纪初数学界的 一面旗帜,希尔伯特被称为“数学界的无冕之王”,他是天才中 的天才。
16个悖论:我只知道一件事,那就是我一无所知!

16个悖论:我只知道一件事,那就是我一无所知!01、我知我无知02、二分法悖论(dichotomy paradox)03、飞矢不动(arrow paradox)04、忒修斯之船(Ship of Theseus paradox)05、上帝无所不能?06、托里拆利小号(Gabriel's Horn)07、理发师悖论(Russell's Paradox的别称)08、第二十二条军规(Catch-22)09、有趣数悖论(Interesting Number Paradox)10、饮酒悖论(drinking paradox)11、球与花瓶(Balls and Vase Problem)12、土豆悖论(potato paradox)13、生日悖论(birthday paradox)14、朋友悖论(friendship paradox)15、祖父悖论(bootstrap paradox)16、外星文明【1】我知我无知苏格拉底有句名言:“我只知道一件事,那就是我一无所知。
”这个说法本身就是悖论,展现了自我参照的表述(self-referential statement)的复杂性。
而这也是西方哲学先贤带给我们的重要启示:你得问你以为你知道的一切。
越是问东问西问长问短打破砂锅问到底,越会发现身边正有一大波悖论呼啸而过。
【2】二分法悖论(dichotomy paradox)概述:运动是不可能的。
你要到达终点,必须先到达全程的1/2处;要到达1/2处,必须先到1/4处……每当你想到达一个点,总有一个中点需要先到,因此你是永远也到不了终点的。
古希腊哲学家芝诺(Zeno)提出了一系列关于运动不可分性的哲学悖论,二分法悖论就是其中之一。
直到19世纪末,数学家们才为无限过程的问题给出了形式化的描述,类似于0.999……等于1的情境。
那么究竟我们是如何到达目的地的呢?二分法悖论只是空谷传音般放大了问题。
若想妥善解决这个问题,还得靠物质、时间和空间是否无限可分等等这些20世纪的衍生理论。
数学十大著名悖论

十大数学著名悖论1. 二分法悖论概述:运动的不可分性,由古希腊哲学家芝诺提出。
每次到达一个点都需要先到达中点,形成无限过程,直到19世纪数学家解决了无限过程的问题。
脑洞:无限二分16寸芝士乳酪蛋糕却不能吃的快感,探讨物质、时间和空间的无限可分性。
2. 飞矢不动概述:箭在瞬间位置不动,暗示了时间的瞬间性。
关联到量子力学和相对论,强调运动在特定时刻的相对性。
脑洞:看到漂亮妞心动3秒,上去要电话惨遭拒绝。
咳咳,飞矢不动,我没心动。
3. 忒修斯之船概述:船上的木头逐渐替换,引发同一性的哲学争议。
讨论木头替换后船是否仍然是原来的船。
脑洞:人体细胞每七年更新一次,七年后,镜子里是另一个你。
4. 托里拆利小号概述:体积有限的物体,表面积可以无限。
源自17世纪的几何悖论,涉及到平凡的几何图形和无限的概念。
脑洞:平胸不一定能为国家省布料的时候。
5. 有趣数悖论概述:将数字的特征定义为有趣或无趣,涉及质数、斐波那契数列等。
引出无趣数概念,研究整数的有趣属性。
脑洞:n只青蛙n张嘴,2n只眼睛4n条腿,你想起数列是个什么鬼了吗?6. 球与花瓶概述:无限个球和一个花瓶进行操作,放10个球再取出1个,引发花瓶内球的数量无限和可变的讨论。
脑洞:小学奥林匹克暗袋摸球概率题终极版。
7. 土豆悖论概述:土豆的含水量和干物质之间的矛盾,涉及百分比的计算。
展示了百分比在特定情境下的谬误。
脑洞:理科生们笑到内伤。
8. 饮酒悖论概述:酒吧里的人是否都在喝酒,引出实质条件的悖论。
通过逻辑演绎表明酒吧中的每个人都在喝酒。
脑洞:一人喝酒导致全场人喝酒,数学的实质条件逻辑。
9. 理发师悖论概述:小城理发师的承诺,引出对自己刮脸的矛盾。
赫赫有名的罗素悖论,影响了数学领域的发展。
脑洞:对于不刮胡子的女理发师不成立。
10. 祖父悖论概述:通过时光机回到过去,引发关于杀死祖父的时间旅行悖论。
涉及对时间和平行宇宙的思考。
脑洞:时间旅行中的命运操纵与平行宇宙的可能性。
数学四大悖论

数学四大悖论
1.费马大定理悖论:费马大定理是一个世界闻名的问题,它被认为是数学史上最伟大的问题之一。
然而,费马大定理也是数学史上最大的悖论之一。
费马大定理的证明一直是数学界的一个未解之谜,即使是最聪明的数学家也无法证明它。
虽然有许多人声称已经证明了费马大定理,但这些证明都被证明是不正确或存在错误。
2. 托勒密定理悖论:托勒密定理是一个基本的几何定理,它断言在一个凸四边形中,两对对立的角的积相等。
然而,在20世纪初期,一些数学家发现了一个托勒密定理的悖论。
他们发现了一个凸四边形,可以被划分成两个凸四边形,使得两个凸四边形的两对对立的角积都相等,但整个凸四边形的两对对立的角积不相等。
这个发现震惊了整个数学界,并引起了数学家对几何学的讨论和重新审视。
3. 无穷小悖论:无穷小是微积分中的一个基本概念。
一个数列如果极限为0,那么它被称作是无穷小。
然而,在数学中,出现了一些无穷小的悖论。
例如,当一个无穷小被乘以无穷大时,结果可以是任何值,这与我们通常的数学直觉相矛盾。
这些悖论引发了数学家的思考和讨论,并促进了微积分的发展。
4. 齐比奥悖论:齐比奥悖论是一个古老的悖论,它与集合论有关。
它的内容是:“如果所有的马都是有毛的,那么所有没有毛的动物都不是马”。
这个悖论的问题在于,它可以被应用于任何一个动物,而不仅仅是马。
因此,它导致了集合论中的悖论,这个悖论在数学中引发了一场集合论的危机。
数学家们不得不重新审视集合论的基础,
并开发了新的集合论,来避免这种悖论的出现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.月亮的不解之谜
月亮总是以同一面 朝向地球,当月球绕 着地球转一圈以后。 它绕自己的轴旋转了 吗?
月亮的不解之谜(续)
天文学家:作为一个 天文学家,我的回答是 肯定的。如果你站在火 星上,你就会看到每当 月球绕地球转一圈,它 就绕着自己的轴也转一 圈。
镜子的魔力(续)
你能猜出当两个镜 面垂直放置时会发生什 么现象吗?这时镜子里 的象将与平常镜中的象 不同,它是完全没有被 镜面颠倒的象!这位姑 娘此时所看到的她自己 正和别人所看到的她完 全一样 !
4.小立方块和女士
在这幅画中你 数到了多少个小立 方块?有六个? ……,有七个?
这画中画 的是个年青姑 娘吗?
当这个男孩绕着树 转圈寻找女孩的时候, 女孩也这样做,她绕着 树横走,鼻子总是朝着 树,所以那男孩始终看 不到她。
绕着一个姑娘转圈(续)
他们这样绕树转 一圈后,都回到了原来 位置。
这时,男孩绕女孩 转了一圈吗?
◆观点一:当然啰!他既然绕着树转了一圈,就必 然绕着姑娘也转了一圈。 ◆观点二:瞎说!即使那里没有树,他也一直未能 看到女孩的后背。既然是绕着一个物体转一圈怎么 能看不到它的所有各面呢?
几何学悖论
教学目的: 1.了解几何上的一些悖论; 2.对现代几何的内容有一些初步了解; 3.对形成悖论的原因有一定的认识。
1.绕着一个姑娘转圈
假如有两个小孩捉 迷藏,男孩在寻找女孩 藏身的地方。有一颗非 常粗大的树,足以遮挡 一个人的身体。 男孩:啊,梅蒂尔! 你在树后藏着吗?
绕着一个姑娘转圈(续)
一个伦敦的业余天文学家,叫做亨利·皮瑞加尔 的人在这场争论中真可谓孜孜不倦,他的讣告中有 这样一段话:“在整个一生中,他在天文学上的主要 目标,是使别人相信月球并没有绕轴旋转。皮瑞加 尔撰写小册子、构造模型甚至写诗来证明自己的论 点,愿以英雄的豪爽来承担一切努力都毫无所得而 引起的一个又一个的失望。”
你看到是一个 老太太吗?
你在这幅画中 看到了什么?一个小 立方块放在—个房间 的一角?一个小立方 块贴附在一个大块的 外面?或许是一个大 立方块在一角上有个 立方形的洞?
5.不可逃遁的点
帕特先生沿着一条小路 向山顶进发。他早晨七点 上 动身,当晚七点到达山顶。山
他在山顶做了一夜的考 察工作,第二天早晨七点 沿同一条小路下山。
镜子的魔力(续)
当你面对镜子站着的 时候,你在镜中的象的脑 袋仍是在上面,你的左面 仍是在左面,可是你却被 前后颠倒了。你的象中左 手的位置和你走到镜面后 再转过身来时左手的位置 正好相反,因此我们说你 被左右颠倒了。
镜子的魔力(续)
在这幅画面中有 两个英语字单词,为 什么镜子只把其中的 一个词颠倒了?实际 上并非如此!另一词 DIXIDE也同样被颠倒 了,只不过它的对称 性使它倒过来以后看 起来仍和原来一样。
镜子的魔力(续)
丽贝卡:多么奇怪的 镜子啊,梯姆!你看, 它把我的名字弄反了, 可是你的名字却一点 儿也没变!
镜子的魔力(续)
镜子好象只能使 左右颠倒,为什么它 不能使上下也颠倒呢? 这难道不是很奇怪吗?
镜子的魔力(续)
实际上,只有当 一条线垂直于镜面时, 镜子才使这条线颠倒 过来。正因为这三个 小球在一条与镜面成 直角的线上,所以它 们在镜中象的顺序就 倒过来了。
镜子的魔力(续)
如果你站在用镜 子做的地板上,你身 体的上下轴线垂直于 镜面。这时你在镜中 的象前面仍是前面, 后面仍是后面,但是 你却上下颠倒了。
镜子的魔力(续)
如果你侧着身子 对镜面站着,你身体 的左右轴线垂直于镜 面。这时你在镜中的 象脑袋还是在上面, 前面仍是在前面,但 是你却被左右颠倒了。
下 山
晚上七点钟,他到达山脚, 遇到了他的拓扑学老师克莱 因夫人。
克莱因:你好,帕特!你可 曾知道你今天下山时走过这 样一个地点,你通过这点的 时刻恰好与你昨天上山时通 过这点的时刻完全相同?
帕特:您有时还停下来吃 饭和休息。
有这样一个地点!
尽管这样,克莱因夫人还是对的。 克莱因:当你开始登山的时候,设想你有个替 身在同一时刻开始下山,你们必定会在小路上的某 一点相遇。 克莱因:我不能断定你们在哪一点相遇,但一 定会有这样一点。你和你的替身当然是在同一时刻 经过这一点。正因为这样,我才说在小路上一定有 这样一点,你上山和下山时经过这点的时刻完全相 同。
我们现在做一个与这个月球之谜紧密相关的 试验。
让我们准备两个大小相等的硬币, 让它们相 互外切地放在桌子上。一硬币沿着另一硬币的边缘 无滑动地滚动,滚动中保持边缘密切相切接触,这 样绕着不动的硬币转动一周以后,它本身旋转了几 圈?
这正像地球—月球那个问题一样,其答案也 依赖于观察者的位置。相对于固定的硬币来说,它 转了一圈,而相对于从上向下看的你来说,它旋转 了两圈。这也曾是个激烈争论的题目。《科学美国 人》杂志于一八六七年首次刊登这个问题,于是持 有两种尖锐对立观点的读者的信如洪水般地涌来。
月亮的不解之谜(续)
学生:它怎么旋转了 呢,教授?如果它旋 转了,我们就会看到 它不同的各面,可是 我们看到的却总是相 同的那一面。
一些很有知识的人都曾极认真地研究过这个简 单的问题,说起来这是很难使人相信的。奥古斯 都·德莫尔干所著的《悖论集》一书的第一卷中, 对十九世纪出版的探讨这个问题的小册子作了评述, 这些小册子都是反对“月球旋转了”这一观点的。
读者很快就认识到了硬币问题与月球问题之 间的关系。那些坚持认为硬币只旋转一圈的人也同 样认为月球根本没有绕轴旋转,一位读者以激烈的 口气写道:“如果你抡着一只猫在你头上转圈,那 么它的脑袋、眼睛和脊椎骨都在绕着自己的轴旋转 吗……?转到第九圈猫就会死去吗?”
3.镜子的魔力
镜子是个奇妙的 东西。现么梯姆斯 (TIMOTHY)和丽贝 卡(REBECCA)正在 一个晚会上做客,晚 会上每个人都戴个名 片。