4.2直线、射线、线段练习题及标准答案

合集下载

4.2 线段、射线、直线 能力培优训练(含答案)

4.2 线段、射线、直线 能力培优训练(含答案)

4.2 线段、射线、直线专题一与线段、射线、直线有关的操作问题1. 如图,把一条绳子折成3折,用剪刀从中剪断,得到绳子的条数是()A.3 B.4 C.5 D.62. 一根绳子弯曲成如图1所示的形状,当用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b平行a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n-2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+53. 由河源到广州的某一次列车,运行途中停靠的车站依次是:河源-惠州-东莞-广州,那么要为这次列车制作的火车票有()A.3种B.4种C.6种D.12种专题二线段、射线、直线有关的探究问题4.平面内有三点A、B、C,过其中任意两点画直线,有如下两种情况:(1)若平面内有四个点A、B、C、D,过其中任意两点画直线,有多少种情况?请画图说明;(2)若平面内有6个点,过其中任意两点画直线,最多可以画多少条直线?(3)若平面内有n个点,过其中任意两点画直线,最多可以画多少条直线?(直接写出结果)5.为了探究n条直线能把平面最多分成几部分,我们从最简单的情形入手.(1)一条直线把平面分成2部分;(2)两条直线最多可把平面分成4部分;(3)三条直线最多可把平面分成7部分…;把上述探究的结果进行整理,列表分析:(1)当直线条数为5时,把平面最多分成部分,写成和的形式;(2)当直线为10条时,把平面最多分成几部分?(3)当直线为n条时,把平面最多分成几部分?(不必说明理由)状元笔记【知识要点】1.像长方体的棱、长方形的边,这些图形都是线段;将线段向一个方向无限延长就得到了射线;将线段向两个方向无限延长就形成了直线.射线和线段都是直线的一部分. 2.经过两点有一条直线,并且只有一条直线,即两点确定一条直线.3.两条直线相交只有一个交点.【方法技巧】1. (1)从端点的个数看,直线没有端点,射线有一个端点,线段有两个端点.(2)从长度来讲,线段有确定的长度,可以度量,而直线、射线却不能度量其长度. (3)从表示方法上来说,尽管三者都可以用两个大写字母表示,但表示射线时表示端点的大写字母必须写在前面.2. “经过两点有一条直线,并且只有一条直线”包含两层意思:○1过两点存在一条直线;○2过两点的直线虽然存在,但只有唯一的一条.参考答案1. B解析:把一条绳子从中剪断,得到两条;折一次,从中剪断,得到三条,折两次,从中剪断得到四条.故选B.2.A解析:设段数为x,则依题意得:n=0时,x=1;n=1,x=5;n=2,x=9;n=3,x=13;…所以当n=n时,x=4n+1.故选A.3. D解析:画线段,动手操作,由河源要经过3个地方,所以要制作3种车票;由惠州要经过2个地方,所以要制作2种车票;由东莞要经过1个地方,所要制作1种车票,这次列车制作的火车票的总数=3+2+1=6(种).故选C.4. 解:(1)如图:(2)最多可画:1+2+3+4+5=15(条).(3)最多可画:1+2+3+…+n=(1)2n n-(条).5. 解:(1)根据表中规律,当直线条数为5时,把平面最多分成16部分,1+1+2+3+4+5=16;(2)根据表中规律,当直线为10条时,把平面最多分成56部分,为1+1+2+3+----+10=56;(3)设直线条数有n条,分成的平面最多有m个.有以下规律:n m2 13 1+1+24 1+1+2+3::n m=1+1+…+(n-1)+n=(1)12n n++.。

人教版数学七年级 上册 4.2直线、射线、 线段 同步练习(带答案)

人教版数学七年级 上册 4.2直线、射线、 线段 同步练习(带答案)

直线、射线、线段同步练习一、选择题1.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是A. 线段可以比较大小B. 线段有两个端点C. 两点之间线段最短D. 过两点有且只有一条直线【答案】C【解析】解:把一条弯曲的公路改成直道,可以缩短路程,其道理是两点之间线段最短,2.平面内四条直线最少有a个交点,最多有b个交点,则等于A. 6B. 4C. 2D. 0【答案】A【解答】解:交点个数最多时,,最少有0个.所以,,所以.故选A.3.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为A. 两点之间,线段最短B. 两点确定一条直线C. 过一点,有无数条直线D. 连接两点之间的线段叫做两点间的距离【答案】B【解析】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.4.线段,C为直线AB上的点,且,M、N分别是AC、BC的中点,则MN的长度是A. 6cmB. 5cm或7cmC. 5cmD. 5cm或6cm【答案】C【解析】解:是线段AC的中点,,是线段BC的中点,.以下分2种情况讨论,如图1,当C在线段AB上时,;;如图2,当C在线段AB的延长线上时,;;综上所述,MN的长为5cm.5.如图,从A到B有,,三条路线,最短的路线是,其理由是A. 因为它最直B. 两点确定一条直线C. 两点间的距离的概念D. 两点之间,线段最短【答案】D【解析】解:从A到B有,,三条路线,最短的路线是,其理由是:两点之间,线段最短,6.如图,已知线段,M是AB中点,点N在AB上,,那么线段MN的长为A. 5cmB. 4cmC. 3cmD. 2cm【答案】C【解析】解:因为,M是AB中点,所以,又因为,所以.7.如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是A. 两点之间,线段最短B. 两点确定一条直线C. 两点之间,直线最短D. 两点确定一条线段【答案】A【解析】解:因为两点之间线段最短,把弯曲的河道改直,能够缩短航程.8.如图,有四个图形和每一个图形相应的一句描述,所有图形都画在同一个平面上.线段AB与射线MN不相交;点C在线段AB上;直线a和直线b不相交;延长射线AB,则会通过点C,其中正确的语句的个数有.A. 0个B. 1个C. 2个D. 3个【答案】B【解析】解:线段AB与射线MN不相交,根据图象可得出此选项正确;根据图象点C不在线段AB上,故此选项错误;根据图象可得出直线a和直线b会相交,故此选项错误;根据图象可得出应为延长线段AB,到点C,故此选项错误,故正确的语句的个数是1个.9.数轴上A,B,C三点所表示的数分别为a,b,c,且C在AB上.若,,则下列b,c的关系式,正确的是A. B. C. D.【答案】A解:如图:在AB上,,,又,,.故选A.10.已知线段,C为AB的中点,D是AB上一点,,则线段BD的长为A. 1cmB. 5cmC. 1cm或5cmD. 4cm 【答案】C详解解:线段,C为AB的中点,.当点D在C点左侧,如图1所示时,;当点D在C点右侧,如图2所示时,.线段BD的长为1cm或5cm.故选C.11.如图:长度为12cm的线段AB的中点为M,点C将线段MB分成了MC::2,则线段AC的长为A. 2cmB. 4cmC. 6cmD. 8cm 【答案】D【解析】解:线段AB的中点为M,设,则,,解得即..12.一辆客车往返于A,B两地之间,中途有三个停靠站,那么在A、B两地之间最多需要印制不同的车票有A. 10种B. 15种C. 18种D. 20种【答案】D解:根据线段的定义:可知图中共有线段有AC,AD,AE,AB,CD、CE、CB、DE、DB、EB共10条,因车票需要考虑方向性,如,“”与“”票价相同,但车票不同,故需要准备20种车票.故选D.13.已知线段AB,C是直线AB上的一点,,,点M是线段AC的中点,则线段AM的长为A. 2cmB. 4cmC. 2cm或6cmD. 4cm或6cm【答案】C【解答】解:如图,当点C在线段AB上时,由线段的和差,得,点M是AC的中点,;点C在线段BC的延长线上,由线段的和差,得,点M是AC的中点,;综上可得:AM长为2cm或6cm.故选C.14.如图,图中的线段共有条.A. 5B. 6C. 7D. 8【答案】B【解答】解:图中线段有AB、AD、AC、BD、DC、BC共6条线段.故选B.二、填空题(本大题共4小题,共12.0分)15.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是______.【答案】两点之间线段最短【解析】解:把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是两点之间线段最短,16.火车往返于AB两个城市,中途经过4各站点共6个站点,不同的车站来往需要不同的车票,共有不同的车票______种.【答案】30【解析】解:如图:,车票:AC、CD、DE、EF、FB、AD、AE、AF、AB、CE、CF、CB、DF、DB、EB,BE、BD、FD、BC、FC、EC、BA、FA、EA、DA、BF、FE、ED、DC、CA.火车往返于A、B两个城市,中途经过4个站点共6个站点,不同的车站来往需要不同的车票,共有30种不同的车票.17.已知点O在直线AB上,且线段OA的长度为4 cm,线段OB的长度为6 cm,E、F分别为线段OA、OB的中点,则线段EF的长度为____cm.【答案】1或5【解答】解:当A,B在点O两侧时,如图,;当A,B在点O同侧时,如图,.故答案为1或5.18.如图所示,图中共有_________条直线,_________条射线,_________条线段.【答案】2,13,6.【解答】解:根据直线的定义及图形可得:图中共有2条直线,射线有13条,有6条线段,故答案为2,13,6.三、解答题19.如图,C是线段AB上一点,M是AC的中点,N是BC的中点.若,,求MN的长度;若,求MN的长度.【答案】解:是BC的中点,M是AC的中点,,,;是AC的中点,N是BC的中点,,.20.如图,平面上有四个点A、B、C、D,根据下列语句画图:画直线AB;作射线BC;画线段CD连接AD,并将线段AD反向延长至E,使;找到一点F,使点F到A、B、C、D四点的距离之和最短.【答案】解:直线AB、射线BC、线段CD如图所示;点E如图所示;连接AC、BD交于点F,点F即为所求.21.如图,已知三点A、B、C,请用尺规作图完成保留作图痕迹画直线AB;画射线AC;连接BC并延长BC到E,使得.【答案】解:画直线AB如图:;画射线AC如图;如图:CE即为所求.。

人教版七年级数学上册4.2直线射线线段的表示同步练习(word版含解析)

人教版七年级数学上册4.2直线射线线段的表示同步练习(word版含解析)

直线、射线、线段的表示一. 选择题1.下列表述中正确的是()A.直线A、B相交于点MB.过A、B、C三点画直线lC.直线、cd相交于点MD.直线a、b相交于点m2.下列说法正确的是( )A.过一点P只能作一条直线 B.直线AB和直线BA表示同一条直线C.射线AB和射线BA表示同一条射线 D.射线a比直线b短3.下列语句:①两条射线组成的图形叫做角②反向延长线段AB 得到射线BA,③延长射线 AB 到点C,使BC=AC;④若AB=BC,则点B是AC 中点⑤连接两点的线段叫做两点间的距离,⑥两点之间直线最短. 正确的个数是( )A.1 B.2 C.3 D.44.下列说法中,正确的是()A.画一条长3cm的射线B.直线、线段、射线中直线最长C.延长线段BA到C,使AC=BAD.延长射线OC到C5.直线AB,线段CD,射线EF的位置如图所示,下图中不可能相交的是()A. B. C. D.6.直线a上有5个不同的点A、B、C、D、E,则该直线上共有()条线段.A.8B.9C.12D.107.下列语句正确的是()A.线段AB是点A与点B的距离B.过n边形的每一个顶点有条对角线C.各边相等的多边形是正多边形D.两点之间的所有连线中,直线最短8.下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D.两点之间,线段最短9.预习了“线段、射线、直线”一节的内容后,乐乐所在的小组,对如图展开了激烈的讨论,下列说法不正确的是( )A.直线AB与直线BA是同一条直线B.射线OA与射线AB是同一条射线C.射线OA与射线OB是同一条射线D.线段AB与线段BA是同一条线段10.下列说法中正确的是()A.三条直线两两相交有三个交点 B.直线A与直线B相交于点MC.画一条5厘米长的线段 D.在线段、射线、直线中直线最长二. 填空题11.如图,棋盘上有黑、白两色棋子若干,若直线l经过3枚颜色相同的棋子,则这样的直线共有_____条.12.如图,A,B,C,D,E,P,Q,R,S,T是构成五角星的五条线段的交点,则图中共有线段________条.13.如果A站与B站之间还有C、D两个车站,那么往返于A站与B站之间的客车应安排_________种车票. 14.如图,能用字母表示的直线有_____________条;能用字母表示的线段有_________条;在直线EF上的射线有_______条。

4.2_直线、射线、线段_能力培优练习(含答案)

4.2_直线、射线、线段_能力培优练习(含答案)

4.2 直线、射线、线段专题一直线、射线、线段的概念与性质1.对于直线AB,线段CD,射线EF,在下列各图中能相交的是()2.下列语句正确的是()A. 画直线AB=5厘米B. 过任意三点A、B、C画直线ABC. 画射线OB=5厘米D.画线段AB=5cm3.平面上有四个点A、B、C、D,根据下列语句画图:(1)画直线AB、CD交于E点; (2)画线段AC、BD交于点F; (3) 作射线BC;(4)连结E、F交BC于点G; (5)取一点P,使P在直线AB上又在直线CD上.4.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”在射线上;(2)请任意写出三条射线上数字的排列规律;(3)“2013”在哪条射线上?5.通过阅读所得的启示来回答问题(阅读中的结论可直接用) 阅读:在直线上有n 个不同的点,则此图中共有多少条线段? 分析:通过画图尝试,得表格:问题:(1)某学校九年级共有8个班进行辩论赛,规定进行单循环赛(每两班之间赛一场),那么该校初三年级的辩论赛共有多少场次?(2)有一辆客车,往返两地,中途停靠三个车站,问有多少种不同的票价?要准备多少种车票?专题二 两点之间线段最短的应用 6.如图,从A 到B 最短的路线是( )A. A —G —E —BB. A —C —E —BC. A —D —G —E —BD. A —F —E —B6=1+2+3 直线上点的个数共有线段条数图形两者关系2 3 4 5 1 3 6 10 ......n......(1)2n n -=1+2+……+(n -1) (1)2n n -10=1+2+3+4 3=1+2 1=1 A 1 A 2 A 1 A 3 A 1 A 2 A 2 A 2 A 3 A 1 A 3 A 3 A 1 A 4 A 2 A 5 A 4A 4 A n……7.已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上.一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是( )8、知识是用来为人类服务的,我们应该把它们用于有意义的方.下面就两个情景请你作出评判.情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题。

4.2 线段、射线、直线 课后训练(含答案)

4.2 线段、射线、直线 课后训练(含答案)

课后训练基础巩固1.以下说法正确的是().A.直线l上有两个端点B.经过A,B两点的线段只有一条C.延长线段AB到C,使AC=BCD.反向延长线段BC至A,使AB=BC2.如图,线段AB与直线l必定相交的是().3.如图,下列说法不正确的是().A.直线AB与直线BA是同一条直线B.射线OA与射线OB是同一条射线C.射线OA与射线AB是同一条射线D.线段AB与线段BA是同一条线段4.下列说法正确的是().A.直线A,B相交于点MB.过A,B,C三点画直线LC.直线a,b相交于点MD.直线a,b相交于点n5.下列说法中正确的是().A.经过两点有且只有一条线段B.经过两点有且只有一条直线C.经过两点有且只有一条射线D.经过两点有无数条直线6.过两点可确定一条直线,过A,B,C三点可确定直线的条数是().A.1 B.3C.1或2 D.1或37.我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为________________________________________________________________________. 能力提升8.按照下面几何语句画出图形:(1)点D在直线a上;(2)点D在直线a外;(3)直线a交直线b于点D;(4)直线a,b,c两两相交,交点分别为点A,B,C.9.如图,如果直线l上依次有3个点A,B,C,那么(1)在直线l上共有多少条射线?多少条线段?(2)在直线l上增加一个点,共增加了多少条射线?多少条线段?(3)如果在直线l上增加到n个点,则共有多少条射线?多少条线段?10.已知数轴的原点为O,如图,点A表示2,点B表示1 2 -.(1)数轴是什么图形?(2)数轴在原点O右边的部分(包括原点)是什么图形?怎样表示?(3)数轴上不小于12-,且不大于2的部分是什么图形?怎样表示?参考答案1答案:D 点拨:直线上有点,但无端点,故A 错,以A ,B 为端点的线段只有一条,但经过A ,B 两点的线段有无数条,故B 错,延长AB 到C ,则AC 一定比BC 长,故C 错. 2答案:C 点拨:直线可以向两个方向无限延伸,射线可以向一个方向无限延伸,而线段不能延伸,结合图形,C 正确.3答案:C 点拨:直线、射线、线段表示方法混淆不清.在表示射线时,第一个字母必须是端点,而另一个字母决定了射线的延伸方向.4答案:C5答案:B6答案:D 点拨:本题需要考虑三点共线和三点不在同一直线上这两种情况,故选D. 7答案:经过两点有且只有一条直线8解:如图所示.(1)(2)(3)(4)解:(1)共有射线6条,共有线段3条.(2)共增加2条射线,增加3条线段.(3)共有2n 条射线,线段的总条数是1(1)2n n 条. 解:(1)直线;(2)射线,射线OA ;(3)线段,线段BA.。

人教版七年级数学上册《4.2直线、射线、线段》练习-带参考答案

人教版七年级数学上册《4.2直线、射线、线段》练习-带参考答案

人教版七年级数学上册《4.2直线、射线、线段》练习-带参考答案一、单选题1.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是()A.线段可以比较大小B.线段有两个端点C.两点之间线段最短D.过两点有且只有一条直线2.M、N两点的距离是20厘米,有一点P,如果PM+PN=30厘米,那么下面结论正确的是 ( ) A.点P必在线段MN上B.点P必在直线MN外C.点P必在直线MN上D.点P可能在直线MN上,也可能在直线 MN外3.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm4.如图,在数轴上,点A、B分别表示a、b,且,若,则点A表示的数为()A.B.0 C.3 D.5.杭衢高铁线上,要保证衢州、金华、义乌、诸暨、杭州每两个城市之间都有高铁可乘,需要印制不同的火车票()A.20种B.15种C.10种D.5种6.如图,点A、B在数轴上所表示的数分别是2和5,若点C与A、B在同一条数轴上且AC-AB=m(m >0),则点C所表示的数为()A.B.C.或D.或7.已知数轴上的三点A,B,C所对应的数a,b,c满足,和,那么线段AB与BC的大小关系是()A.B.C.D.不能确定8.数轴上,点对应的数是,点对应的数是,点对应的数是0.动点、从、同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是()A.B.C.D.二、填空题9.一条直线上有n个不同的点,则该直线上共有线段条.10.已知线段AB=3cm,点C在直线AB上,AC= AB,则BC的长为.11.数轴上,如果点 A所表示的数是 ,已知到点A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是.12.如图,点C,D为线段AB上两点,AC+BD=a,若AD+BC= AB,用含a代数式表示CD的长为.13.体育课上,小聪、小明、小智、小慧分别在点O处进行了一次铅球试投,若铅球分别落在图中的点A,B,C,D处,则他们四人中,成绩最好的是三、解答题14.已知,点A、B、C在同一直线上,且,点、分别是线段、的中点,求线段的长.15.如图,C,D两点将线段AB分成2:3:4三部分,E为线段AB的中点,AD=10cm.求:(1)线段AB的长;(2)线段DE的长.16.如图,点C在线段AB上,点M,N分别是AC,BC的中点.(1)若AC=24cm,CB=16cm,求线段MN的长.(2)若C为线段AB上任一点,且满足AC+BC=x(cm),其他条件不变,你能猜想MN的长度吗?请说明理由.(3)若点C在线段AB的延长线上,且满足AC﹣BC=y(cm),点M,N分别为AC,BC的中点,请画出图形,并求MN的长度.17.我们知道,若有理数、表示在数轴上得到点、且,则点点与点之间的距离为,现已知数轴上三点A、B、C,其中A表示的数为,B表示的数为3,C与A的距离等于m,C与B的距离等于n,请解答下列问题:(1)若点C在数轴上表示的数为,求的值(2)若,请你写出点C表示的数。

人教版七年级上数学第4章:4.2直线、射线、线段(含答案)

人教版七年级上数学第4章:4.2直线、射线、线段(含答案)

4.2直线、射线、线段知识要点:1.定义:一点在空间沿着一个方向及它的相反方向运动,所形成的图形就是直线.2.直线性质(1)经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.(2)经过一点的直线有无数条,过两点就唯一确定,过三点就不一定了3.定义:直线上的一点和它一旁的部分叫做射线.4.特征:是直的,有一个端点,不可以度量,不可以比较长短,无限长5.定义:直线上两个点和它们之间的部分叫做线段.6.特征:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短.一、单选题1.如图所示,已知线段AD>BC,则线段AC与BD的关系是()A.AC>BD B.AC=BD C.AC<BD D.不能确定2.下列说法:①过一点可以作无数条直线;②两点确定一条直线;③两直线相交,只有一个交点;④过平面内三点只能画一条直线.其中正确的个数是( )A.4个B.3个C.2个D.1个3.下列画图语句中正确的是()A.画射线OP=5cm B.画射线OA的反向延长线C.画出A、B两点的中点D.画出A、B两点的距离4.已知点P在直线a上,也在直线b上,但不在直线c上,且直线a,b,c两两相交.符合以上条件的图形是()A. B. C. D.5.若点B在直线AC上,AB=10,BC=5,则A、C两点间的距离是()A.5 B.15 C.5或15 D.不能确定6.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=7cm,那么BC的长为()A.3cm B.3.5cm C.4cm D.4.5cm7.下列说法错误的是()A.两点之间的所有连线中,线段最短B.经过一点有且只有一条直线与已知直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.同一个平面上,经过一点有且只有一条直线与已知直线垂直8.下列说法正确的是( )A.射线PA和射线AP是同一条射线B.射线OA的长度是12cmC.直线ab、cd相交于点MD.两点确定一条直线9.下列表示线段的方法中,正确的是( )A.线段A B.线段AB C.线段ab D.线段Ab10.在开会前,工作人员进行会场布置,如图为工作人员在主席台上由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线二、填空题11.如图,使用直尺作图,看图填空:延长线段______ 到______,使BC=2AB.12.已知线段AB与直线CD互相垂直,垂足为点O,且AO=5 cm,BO=3 cm,则线段AB 的长为______________.13.下列说法中①两点之间,直线最短;②经过直线外一点,能作一条直线与这条直线平行;③和已知直线垂直的直线有且只有一条;④在平面内过一点有且只有一条直线垂直于已知直线.正确的是__________.(只需填写序号)14.如图,线段AB的长为8厘米,C为线段AB上任意一点,若M为线段AC的中点,N 为线段CB的中点,则线段MN的长是________三、解答题15.已知:线段a、b.求作:线段AB,使AB=2b-a.16.已知∠1和线段a,b,如图(1)按下列步骤作图(不写作法,保留作图痕迹)①先作∠AOB,使∠AOB=∠1.②在OA边上截取OC,使OC=a.③在OB边上截取OD,使OD=b.(2)利用刻度尺比较OC+OD与CD的大小.17.如图.B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.18.如图,已知线段AB,反向延长AB到点C,使AC=12AB,D是AC的中点,若CD=2,求AB的长.答案1.A2.B3.B4.D5.C6.A7.B8.D9.B10.B11.AB, C.12.8 cm或2 cm.13.②、④.14.4cm15.解:在直线l上顺次截取AD=b,DC=b,在线段AC上截取CB=a,则线段AB为所求作的线段.16.解:(1)根据以上步骤可作图形,如图,(2)通过利用刻度尺测量可知OC+OD>CD.17.设AB=3x,则BC=2x,CD=5x,∵E、F分别是AB、CD的中点,∴BE=32x,CF=52x,∵BE+BC+CF=EF,且EF=24,∴32x+2x+52x=24,解得x=4,∴AB=12,BC=8,CD=20.18.∵D是AC的中点,∴AC=2CD,∵CD=2cm,∴AC=4cm,∵AC= 12 AB,∴AB=2AC,∴AB=2×4 cm =8cm。

人教版七年级数学上册第四章《直线、射线、线段》课时练习题(含答案)

人教版七年级数学上册第四章《直线、射线、线段》课时练习题(含答案)

人教版七年级数学上册第四章《4.2直线、射线、线段》课时练习题(含答案)一、单选题1.如图,在数轴上,若点,A B 表示的数分别是-2和10,点M 到,A B 距离相等,则M 表示的数为( )A .10B .8C .6D .42.下列说法中正确的个数为( )①射线OP 和射线PO 是同一条射线;②连接两点的线段叫两点间的距离;③两点确定一条直线;④若AC =BC ,则C 是线段AB 的中点. A .1个B .2个C .3个D .4个3.如图,小林利用圆规在线段CE 上截取线段CD ,使CD AB =.若点D 恰好为CE 的中点,则下列结论中错误..的是( )A .CD DE =B .AB DE =C .12CE CD =D .2CE AB =4.如图,直线l 上有A ,B ,C ,D 四点,点P 从点A 的左侧沿直线l 从左向右运动,当出现点P 与A ,B ,C ,D 四点中的至少两个点距离相等时,点P 就称为这两个点的黄金伴侣点,例:若P A =PB ,则在点P 从左向右运动的过程中,点P 成为黄金伴侣点的机会有( )A .4次B .5次C .6次D .7次5.数轴上,点A 对应的数是6-,点B 对应的数是2-,点O 对应的数是0.动点P 、Q 从A 、B 同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ =6.互不重合的A 、B 、C 三点在同一直线上,已知AC =2a +1,BC =a +4,AB =3a ,这三点的位置关系是( ) A .点A 在B 、C 两点之间 B .点B 在A 、C 两点之间 C .点C 在A 、B 两点之间D .无法确定7.如图,在数轴上有A ,B 两点(点B 在点A 的右边),点C 是数轴上不与A ,B 两点重合的一个动点,点M 、N 分别是线段AC ,BC 的中点,如果点A 表示数a ,点B 表示数b ,求线段MN 的长度.下列关于甲、乙、丙的说法判断正确的是( ) 甲说:若点C 在线段AB 上运动时,线段MN 的长度为1()2b a -;乙说:若点C 在射线AB 上运动时,线段MN 的长度为1()2a b -;丙说:若点C 在射线BA 上运动时,线段MN 的长度为1()2a b +.A .只有甲正确B .只有乙正确C .只有丙正确D .三人均不正确8.下列说法中正确的有( ).(1)线段有两个端点,直线有一个端点; (2)由两条射线组成的图形叫角(3)角的大小与我们画出的角的两边的长短无关; (4)线段上有无数个点;(5)两个锐角的和必定是直角或钝角;(6)若AOC ∠与AOB ∠有公共顶点,且AOC ∠的一边落在AOB ∠的内部,则AOB AOC ∠>∠.A .1个B .2个C .3个D .4个二、填空题9.如图所示,图中共有______条直线,______条射线,______线段.10.如图,木匠师傅经过刨平的木板上的A,B两个点,可以弹出一条笔直的墨线,能解释这一实际应用的数学基本事实是___________________.11.同一平面内三条线直线两两相交,最少有_____个交点,最多有____个交点.12.如图,点C是线段AB上一点,点M、N、P分别是线段AC,BC,AB的中点.AC=3cm,CP=1cm,线段PN=__cm.13.在直线AB上,AB=10,AC=16,那么AB的中点与AC的中点的距离为__________.14.平面内有n个点A、B、C、D…,其中点A、B、C在同一条直线上,过其中任意两点画直线,最多可以画_____________________条.三、解决问题15.已知:如图,AB=18cm,点M是线段AB的中点,点C把线段MB分成MC:CB=2:1的两部分,求线段AC的长.请补充完成下列解答:解:∵M是线段AB的中点,AB=18cm,∴AM=MB=AB=cm.∵MC:CB=2:1,∴MC=MB=cm.∴AC=AM+=+=cm.16.如图,点A C 、、B 依次在直线l 上,AC CB a ==,点D 也在直线l 上,且13BD AD =,若M 为BD 的中点,求线段CM 的长(用含a 的代数式表示).17.已知平面上有四个村庄,用四个点A 、B 、C 、D 表示.(1)连接AB ; (2)作射线AD ;(3)作直线BC 与射线AD 交于点E ;(4)若要建一供电所M ,向四个村庄供电,要使所用电线最短,则供电所M 应建在何处?请画出点M 的位置并说明理由.18.如图,C 为线段AD 上一点,点B 为CD 的中点,且9AD =cm ,2BC =cm .(1)图中共有______条线段? (2)求AC 的长;(3)若点E 在直线AD 上,且3EA =cm ,求BE 的长.19.已知:如图1,M 是定长线段AB 上一定点,C 、D 两点分别从M 、B 出发以1cm/s 、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=11cm,当点C、D运动了1s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=BM.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求2MN3AB的值.20.(理解新知)如图①,点M在线段AB上,图中共有三条线段AB、AM和BM,若其中有一条线段的长度是另外一条线段长度的2倍,则称点M是线段AB的“奇妙点”,(1)线段的中点这条线段的“奇妙点”(填“是”或“不是”)(2)(初步应用)如图②,若24cmCD=,点N是线段CD的“奇妙点”,则CN=cm;(3)(解决问题)如图③,已知24cmAB=,动点P从点A出发,以2cm/s速度沿AB向点B匀速移动,点Q 从点B出发,以3cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止.设移动的时间为t,请求出为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的“奇妙点”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.2直线、射线、线段测试卷
一、选择题
1. 下列说法错误的是( )
A. 平面内过一点有且只有一条直线与已知直线垂直
B. 两点之间的所有连线中,线段最短
C.经过两点有且只有一条直线
D. 过一点有且只有一条直线与已知直线平行 2.平面上的三条直线最多可将平面分成()部分 A .3 B .6 C . 7 D .9
3.如果A BC 三点在同一直线上,且线段AB=4CM ,BC=2CM ,那么AC 两点之间的距离为()
A .2CM
B . 6CM
C .2 或6CM
D .无法确定 4.下列说法正确的是( )
A .延长直线A
B 到
C ; B .延长射线OA 到C ; C .平角是一条直线;
D .延长线段AB 到C
5.如果你想将一根细木条固定在墙上,至少需要几个钉子( ) A .一个 B .两个 C .三个 D .无数个 6.点P 在线段EF 上,现有四个等式①PE=PF 。

②PE=12EF 。

③1
2
EF=2PE 。

④2PE=EF 。

其中能表示点P 是EF 中点的有( ) A .4个 B .3个 C .2个 D .1个 7. 如图所示,从A 地到达B 地,最短的路线是( ). A .A →C →E →B B .A →F →E →B C .A →D →E →B D .A →C →G →E →B
8..如右图所示,B 、C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 中点,若MN=a ,BC=b , 则线段AD 的长是( )
A .2()a b -
B .2a b -
C .a b +
D .a b -
9..在直线l 上顺次取A 、B 、C 三点,使得AB=5㎝,BC=3㎝,如果O 是线段AC 的中点,那么线段OB 的长度是( )
A .2㎝
B .0.5㎝
C .1.5㎝
D .1㎝ 10.如果AB=8,AC=5,BC=3,则( )
A . 点C 在线段A
B 上 B . 点B 在线段AB 的延长线上
C . 点C 在直线AB 外
D .点C 可能在直线AB 上,也可能在直线AB 外 二、填空题
1.若线段AB=a ,C 是线段AB 上的任意一点,M 、N 分别是AC 和CB 的中点,则MN=_______.
2.经过1点可作________条直线;如果有3个点,经过其中任意两点作直线,可以作______条直线;
经过四点最多能确定条直线。

3.图中共有线段________条。

4.如图,学生要去博物馆参观,从学校A 处到博物馆B 处的路径共有⑴、⑵、⑶三条,为了节约时间,尽快从A 处赶到B 处,假设行走的速度不变,你认为应该走第________条线路(只填番号)最快,理由是___________________。

5.若AB=BC=CD 那么AD=AB AC=AD
6.直线上8点可以形成_______条线段;若n 个点可以形成_____条线段。

7.如图,点C 是线段AB 上一点,点D 、E 分别是线段AC 、BC 的中点. 如果AB=a,AD=b,
其中2a b >,那么CE= 。

8.如图,若CB = 4 cm ,DB = 7 cm ,且D 是AC 的中点,则AC =_________________.
9.下面由火柴杆拼出的一列图形中,第n 个图形由几根火柴组成.(4分)
通过观察可以发现:第4
个图形中,火柴杆有_______根,第n 个图形中,火柴杆有________根. 10.已知:A 、B 、C 三点在一条直线上,且线段AB=15cm ,BC=5cm ,则线段AC=_______。

三、解答题
1.如图,已知C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,求AD 的长度。

2.线段AD=6cm ,线段AC=BD=4cm ,E 、F 分别是线段AB 、CD 中点,求EF 。

3.如图所示一只蚂蚁在A 处,想到C 处的最短路线是请画出简图,并说明理由。

4.观察图①,由点A 和点B 可确定条直线;
观察图②,由不在同一直线上的三点A 、B 和C 最多能确定条直线;
(1)动手画一画图③中经过A 、B 、C 、D 四点的所有直线,最多共可作条直线;
(2)在同一平面内任三点不在同一直线的五个点最多能确定条 直线、n 个点(n ≥2)最多能确定条直线。

5.如图,点C 在线段AB 上,AC = 8 cm ,CB = 6
cm ,点M 、N 分别是AC 、BC 的中点。

(1)求线段MN 的
长;
(2)若C 为线段AB 上任一点,满足AB CB acm +=,其它条件不变,你能猜
想MN 的长度吗?并说明理由。

(3)若C 在线段AB 的延长线上,且满足AC CB bcm -=,M 、N 分别为AC 、
BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由。

参考答案
一.选择题
1.D
2.C
3.C
4.D
5.B
6.A
7.B
8.B
9.D 10.A 二。

填空题
1.
1
2
a ; 2.无数、1或3 、6; 3.31; 4.(2)、两点之间的所有连线中,线段最短; 5.3、2
3
6.28、(1)2n n -;
7.22
a b -; 8.6cm ; 9.13、(31)n +; 10.20cm 或10cm
三。

解答题 1.解:如图
∵C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ∴1
52AC CB AB cm ==
= ∴1
2.52
CD BC cm ==
∴5 2.57.5AD AC CD cm =+=+=
答:AD 的长度为7.5cm 。

2.解:如图
∵线段AD=6cm ,线段AC=BD=4cm ∴4462BC AC BD AD cm =+-=+-= ∴624AB CD AD BC cm +=-=-= 又∵E 、F 分别是线段AB 、CD 中点
∴11
,22
EB AB CF CD =
= ∴111
()2222
EB CF AB CD AB CD cm +=+=+=
∴224EF EB BC CF cm =++=+=
答:线段EF 的长为4cm 。

3.如图所示一只蚂蚁在A 处,想到C 处的最短路线如图所示,
理由是:两点之间,线段最短。

(圆柱的侧面展开图是长方形,是一个平面)
4.由点A 和点B 可确定 1 条直线;
由不在同一直线上的三点A 、B 和C 最多能确定 3 条直线; 经过A 、B 、C 、D 四点最多能确定 6 条直线;
在同一平面内任三点不在同一直线的五个点最多能确定 10 条 直线、n 个点(n ≥2)最多能确定
(1)
2
n n -条直线。

5.解:(1)如图
∵AC = 8 cm ,CB = 6 cm
∴8614AB AC CB cm =+=+= 又∵点M 、N 分别是AC 、BC 的中点 ∴11,22
MC AC CN BC =
= ∴1111
()72222
MN AC CB AC CB AB cm =+=+==
答:MN 的长为7cm 。

(2)若C 为线段AB 上任一点,满足AB CB acm +=AC + CB = a cm ,其它条件不变,则1
2
MN acm =
理由是:∵点M 、N 分别是AC 、BC 的中点 ∴11,22MC AC CN BC =
= ∵AB CB acm +=
∴1111
()2222
MN AC CB AC CB acm =+=+=
(3)解:如图
∵点M 、N 分别是AC 、BC 的中点
∴11,22MC AC NC BC =
= ∵AC CB bcm -=
∴1111
()2222
MN MC NC AC CB AC CB bcm =-=
-=-=。

相关文档
最新文档