直线、射线、线段测试题及答案

合集下载

人教版数学四年级上册《线段、直线、射线》练习卷(含答案)

人教版数学四年级上册《线段、直线、射线》练习卷(含答案)

人教版四年级上册3.1 线段、直线、射线练习卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.一条_____长200米.()A.直线B.射线C.线段D.垂线2.在4时整的时候,钟面上时针与分针组成的角是()度.A.100°B.120°C.150°3.下面说法正确的有()①线段比射线短,射线比直线短。

①把写有1至9各数的九张卡片打乱后反扣在桌上,从中任意摸出一张,卡片上的数小于5算小强赢,否则算小林赢。

这个游戏规则不公平。

①如果被除数末尾有2个0,那么商的末尾至少有1个0。

①四(1)25名男生平均身高151厘米,那么不可能有男生的身高低于151厘米。

A.1句B.2句C.3句二、填空题4.图中有( )个角,( )个直角,( )个锐角,( )个钝角。

5.下面的图形中哪些是线段?在其下面的()里画“○”。

()()()()()()()()6.下图中有______条线段。

7.线段是直直的,有( )个端点,长度( )(填能或不能)度量.三、判断题8.长方形和正方形的四个角都是直角。

( )9.放风筝时的风筝线可以看成是一条直线。

( )10.把半圆等分成180份,每份所对的角就是1°的角._____ (判断对错)11.小刚画了一条6厘米长的直线。

( )12.两个直角就是一个平角。

()13.将圆平均分成360份,将其中1份所对的角作为度量角的单位,它的大小就是1度,记作1°。

根据这一原理人们制作了度量角的工具——量角器。

( ) 14.一条直线长10米.( )15.线段能测量长短,直线和射线不能测量长短。

( )四、作图题16.下面有五个点,每两点之间画一条线段,可以画多少条线段?先画一画,再填一填.( )条17.我会画。

画一条比1分米短1厘米的线段。

18.画一条比3厘米长15毫米的线段,并标出长度。

数学四年级上册《线段直线射线》练习题(含答案)

数学四年级上册《线段直线射线》练习题(含答案)

3.1线段、直线、射线(基础应用篇)一、单选题(共10题)1.过一点可以画出( )条直线.A. 1B. 2C. 无数D. 无法判断2.下面( )是线段.A. B. C. D.3.下面( )是射线。

A. 米尺B. 手电筒的光C. 竹棍D.卷尺4.一条直线长( )A. 5厘米B. 35厘米C. 70厘米D. 无法测量5.一只由几条线段组成的小鱼经过平移后,它( )平行。

A. 只有一组线段B. 有两组对应线段C. 所有线段都D. 所有对应线段都不6.把线段向一端无限延长,就得到一条( )A. 线B. 线段C. 射线D. 直线7.下图中共有( )线段。

A. 4条B. 5条C. 6条D.8条8.左图中有( )线段。

A. 2条B. 3条C. 4条D.10条9.下面说法中,正确的是( )A. 小明画了一条5厘米的射线B. 用二倍放大镜看45°的角,看到的角是90°C. 两个完全相同的梯形可以拼成一个平行四边形D. 教室的面积约是50公顷10.三条直线相交最多有( )个交点.A. 1B. 2C. 3D.4二、填空题(共10题)11.量一量下面各角的度数,再写出它们的名称.________________12.线段有________个端点,射线有________个端点,直线________个端点。

13.把线段的________端无限延长,就得到一条直线.14.________线、________线都可以无限延伸,其中________线没有端点,________只有一个端点。

15.画线段,量距离.以A、B为线段的两个端点,画出一条线段,并测量出它们的距离.(精确到毫米)这条线段的长度是________.16.过一个圆的圆心可画________条射线?17.________是直线,________是射线,________是线段,________是直角,________是锐角,________是平角,________是周角,________是钝角。

初中数学直线射线线段综合练习题(附答案)

初中数学直线射线线段综合练习题(附答案)

初中数学直线射线线段综合练习题一、单选题1.下列说法正确的是( )A.画射线3cm OA =B.线段AB 和线段BA 不是同一条线段C.点A 和直线l 的位置关系有两种D.三条直线相交一定有3个交点 2.从重庆站乘火车到北京站,沿途经过5个车站方可到达北京站,那么在重庆与北京两站之间需要安排不同的车票___________种.3.若平面内有点,,A B C ,过其中任意两点画直线,则最多可以画的条数是( )A.3B.4C.5D.64.如图,点O 与射线AB 的位置关系是( )A.点O 一定在射线AB 上B.点O 一定不在射线AB 上C.点O 可能在射线AB 上,也可能不在射线AB 上D.射线AB 可能会经过点O5.下列图示中,直线表示方法正确的有( )A.①②③④B.①②C.②④D.①④6.已知线段10cm AB =,点C 是直线AB 上一点,4cm BC =,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( )A.7 cmB.3 cmC.7cm 或3cmD.5 cm7.如图,,C B 是线段AD 上的两点,若,2AB CD BC AC ==,那么AC 与CD 的关系为( )A.2CD AC =B.3CD AC =C.4CD AC =D.不能确定二、解答题8.如图,P 是线段AB 上任意一点,12cm,,AB C D =两点分别从,P B 同时向A 点运动,且C 点的运动速度为2cm/s,D 点的运动速度为3cm/s ,运动的时间为s t .(1)若8cm AP =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2s,1cm t CD ==,试探索AP 的值.9.如图,,B C 两点把线段AD 分成2:5:3三部分,M 为AD 的中点,6cm BM =,求CM 和AD 的长.10.如图,点C 是线段AB 上一点,点,,M N P 分别是线段,,AC BC AB 的中点.(1)若12cm AB =,求线段MN 的长度;(2)若3cm,1cm AC CP ==,求线段PN 的长度.11.如图,在一条不完整的数轴上从左到右有,,A B C 三点,其中2,1AB BC ==.设点,,A B C 所对应的数的和是p .(1)若以B 为原点,写出点,A C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .12.如图,已知线段6AD =cm ,线段4AC BD ==cm,EF 分别是线段,AB CD 的中点,求线段EF 的长.13.如图,已知点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点.(1)若20,8AB BC ==,求MN 的长;(2)若,8AB a BC ==,求MN 的长;(3)若,AB a BC b ==,求MN 的长;(4)从(1)(2)(3)的结果中能得到什么结论?14.已知线段10cm AB =,直线AB 上有一点,6cm,C BC M =为线段AB 的中点,N 为线段BC 的中点,求线段MN 的长.15.如图,平面上有,,,A B C D 四个村庄,为了丰富人们的生活,政府准备投资修建一个文化活动中心H ,使它到四个村庄的距离之和最小,你认为文化活动中心应建在哪里?并说明理由.16.如图(1),直线AB 上有一点P ,点,M N 分别为线段,PA PB 的中点,14AB =.(1)若点P 在线段AB 上,且8PA =,求线段MN 的长度;(2)若点P 在直线AB 上运动,设,PA x PB y ==,请分别计算下面情况时MN 的长度; ①当P 在,A B 之间(含A 或B );②当P 在A 左边;③当P 在B 右边.你发现了什么规律?(3)如图(2),若点C 为线段AB 的中点,点P 在线段AB 的延长线上,下列结论:①PA PB PC-的值不变;②PA PB PC +的值不变.请选择一个正确的结论并求其值. 三、填空题17.给出下列说法:①两条不同的直线可能有无数个公共点;②两条不同的射线可能有无数个公共点;③两条不同的线段可能有无数个公共点;④一条直线和一条线段可能有无数个公共点.其中正确说法的序号为___________.18.平面内有3条直线,它们的交点个数是_________.19.如图,画的是一条直线和两个点的位置关系,现有4种叙述:①直线AB 在点C 上;②点C 在直线AB 上;③点O 不经过直线AB ;④直线a 经过点C .其中叙述正确的有(填序号):__________.参考答案1.答案:C解析:射线没有长度,故A 错误;线段AB 和线段BA 是同条线段,故B 错误;点A 和直线l 的位置关系有两种:点A 在直线上或在直线外,故C 正确;三条直线相交可能有1个或2个或3个交点,故D 错误.2.答案:42解析:因为共有(52)+个车站,把它们看作直线上的7个点,则直线上线段的条数为7(71)212⨯-=(条),而每条线段对应两种不同的车票,故需要安排不同的车票共42种. 3.答案:A解析:平面内有点,,A B C ,过其中任意两点画直线,最多可以画的直线条数是3.4.答案:B解析:射线AB 是有方向的,是从“A ”到“B ”的方向,图中的射线AB 是向右无限延伸的,向左到端点A 终止,故点O 一定不在射线AB 上.5.答案:D解析:用两个点表示直线时,这两个点必须是大写字母,故②③错误,①正确;用一个字母表示直线时,这个字母必须是小写的,且不能在直线上标点,④正确.6.答案:D解析:当点C 在线段AB 上时,则1115cm 222MN AC BC AB =+==;当点C 在线段AB 的延长线上时,则11725(cm)22MN AC BC =-=-=.综合上述情况,线段MN 的长度是5cm . 7.答案:B解析:因为AB CD =,所以AC BC BC BD +=+,即AC BD =.又因为2BC AC =,所以2BC BD =.所以33CD BD AC ==.8.答案:(1)①由题意可知:212(cm),313(cm)CP DB =⨯==⨯=.因为8cm,12cm AP AB ==,所以1284(cm)PB AB AP =-=-=.所以2433(cm)CD CP PB DB =+-=+--.②因为8cm,12cm AP AB ==,所以1284(cm),(82)(cm)PB AC AP CP t =-==-=-.所以(43)(cm)DP PB DB t =-=-.所以243(4)(cm)CD CP DP t t t =+=+-=-.因为822(4)t t -=-,所以2AC CD =.(2)当2s t =时,224(cm),326(cm)CP DB =⨯==⨯=.当点D 在C 的右边时,如图所示:由于1cm CD =,所以167(cm)CB CD DB =+=+=.所以1275(cm)AC AB CB =-=-=,所以549(cm)AP AC CP =+=+=.当点D 在C 的左边时,如图所示;1266(cm)AD AB DB =-=-=.所以61411(cm)AP AD CD CP =++=++=.综上所述,9cm AP =或11cm .解析:9.答案:【解】设2cm,5cm,3cm AB x BC x CD x ===.所以10cm AD AB BC CD =++=.因为M 是AD 的中点, 所以15cm 2AM MD AD x ===. 所以523cm BM AM AB x x x =-=-=.因为6cm BM =,所以36,2x x ==.故532224(cm)CM MD CD x x x =-=-==⨯=.1010220(cm)AD x ==⨯-.解析:10.答案:(1)因为,M N 分别是,AC BC 的中点,所以11,22MC AC CN BC ==. 所以1111()6cm 2222MN MC CN AC BC AC BC AB =+=+=+==. (2)因为3cm,1cm AC CP ==,所以4cm AP AC CP =+=.因为P 是线段AB 的中点,所以28cm AB AP ==.所以5cm CB AB AC =-=.因为N 是线段CB 的中点,1 2.5cm 2CN CB ==. 所以 1.5cm PN CN CP =-=.解析:(1)根据,M N 分别是线段,AC BC 的中点及AB 的长度,可求出MN .(2)先求出AP ,再利用P 是AB 的中点,求出AB .进而利用BC AB AC =-求出BC .根据N 为BC 的中点又可求出12CN BC =.最后利用PN CN CP =-求出结果. 11.答案:解:(1)若以B 为原点,则C 表示1,A 表示-2,所以1021p =+-=-.若以C 为原点,则A 表示-3,B 表示一I ,所以3104p =--+=-.(2)若原点O 在图中数轴上点C 的右边,28CO =,则C 表示-28,B 表示-29,A 表示-31, 所以31292888p =---=-.解析:12.答案:解:因为2AB AD BD =-=cm,2CD AD AC =-=cm , 所以112EB AB ==cm ,112CF CD == cm 所以6222BC AD AB CD =--=--=(cm ),所以1214EF EB BC CF =++=++= (cm).解析:13.答案:(1)因为20,8AB BC ==,所以28AC AB BC =+=,因为点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点, 所以1114,422MC AC NC BC ====, 所以14410MN MC NC =-=-=.(2)根据(1)得111()222MN AC BC AB a =-==. (3)根据(1)得111()222MN AC BC AB a =-==.(4)从(1)(2)(3)的结果中能得到线段MN的长度始终等于线段AB的一半,与C点的位置无关.解析:14.答案:【解】第一种情况:若为图(1)情形,因为M为AB的中点,所以5cmMB MA==.因为N为BC的中点,所以3cmNB NC==.所以2cmMN MB NB=-=.第二种情况:若为图(2)情形,因为M为AB的中点,所以5cmMB MA==.因为N为BC的中点,所以3cmNB NC==.所以8cmMN MB BN=+=.解析:15.答案:【解】文化活动中心应建在,AC BD连线的交点处.理由如下:若把文化活动中心建在,AC BD连线的交点处,则中心到四个村庄的距离之和等于,AC BD两条线段的长度之和,而两点之间,线段最短,故这个位置符合要求.解析:16.答案:(1)因为8PA=,所以6BP AB PA=-=.因为点M是AP中点,所以142PM AP==.又因为点N是PB中点,所以132PN PB==.所以7MN PM PN=+=.(2)①当点P在,A B之间时,17222x yMN AB=+==;②当点P在BA的延长线上,11()72222y xMN PN PM y x AB =-=-=-==;③当点P在AB的延长线上时,11()72222x yMN PM PN x y AB =-=-=-==.规律:不管P在什么位置,MN的长度不变,都为7. (3)选择②.设PB x =.由题意,知7AC BC ==, ①1477PA PB AB PC x x -==++(在变化); ②21427PA PB x PC x ++==+(定值). 解析:(1)根据线段中点的定义及线段的和差,可求得结果.(2)根据线段中点的定义可求得,MP NP ,再根据线段的和差,可求得结果.(3)根据线段的和差可得,PA PB PA PC +-,进而可得所求的结论.17.答案:②③④解析:①错误,因为两条不同的直线不能重合,若两直线有两个或两个以上公共点,这两直线就是同一条直线;而两条不同的射线、两条不同的线段、一条直线和一条线段都可以有部分重合,因此它们都可以有无数个公共点,故②③④正确.18.答案:0或1或2或3解析:如图,若平面内有3条直线,则它们的交点个数有如下四种情况:19.答案:②④解析:只能说点在(或不在)直线上,而不能说直线在(或不在)点上,故①错;只能说直线经过(或不经过)点,而不能说点经过(或不经过)直线,故③错,②④正确.。

人教版数学七年级上册4.2直线 射线 线段测试带答案解析

人教版数学七年级上册4.2直线 射线 线段测试带答案解析

4.2直线、射线、线段小测验007(满分60)姓名:分数:一、客观题(每题3分,共33分)1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画直线.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有个交点,最少有个交点.6.平面上有任意三点,过其中两点画直线,共可以画条直线.7.如图1,图中共有条线段,它们是.如图2,图中共有条射线,指出其中的两条.8.要在墙上固定一根木条,至少要个钉子,根据的原理是.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有个.二、解答题(共27分)12.(8分)点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.13.(9分)(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.14.(10分)如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.参考答案与试题解析1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个【分析】根据题意画出图形,根据中点的特点即可得出结论.【解答】解:如图所示:①∵AP=BP,∴点P是线段AB的中点,故本小题正确;②点P可能在AB的延长线上时不成立,故本小题错误;③P可能在BA的延长线上时不成立,故本小题错误;④∵AP+PB=AB,∴点P在线段AB上,不能说明点P是中点,故本小题错误.故选:A.【点评】本题考查的是两点间的距离,熟知中点的特点是解答此题的关键.2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定【分析】根据比较线段的长短进行解答即可.【解答】解:由图可知,A′B′<AB;故选:C.【点评】本题主要考查了比较线段的长短,解题的关键是正确比较线段的长短.3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种【分析】根据题意确定出数学模型,五点确定出线段条数,计算即可得到结果.【解答】解:根据题意得:从济南西站到枣庄站这段线路的火车票价格最多有==10种,故选:C.【点评】此题考查了直线、射线、线段、从实际问题中抽象出数学模型是解本题的关键.4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画1条或4条或6条直线.【分析】分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:①四点在同一直线上时,只可画1条;②当三点在同一直线上,另一点不在这条直线上,可画4条;③当没有三点共线时,可画6条;故答案为:1条或4条或6条.【点评】本题考查了直线、射线、线段,在没有明确平面上四点是否在同一直线上时,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有10个交点,最少有1个交点.【分析】直线交点最多时,根据公式,把直线条数代入公式求解即可,直线相交于同一个点时最少,是1个交点.【解答】解:最多时=10,相交于同一个点时最少,有1个交点.【点评】中学阶段记住公式在解题时会很方便,熟记公式是解题的关键.6.平面上有任意三点,过其中两点画直线,共可以画1或3条直线.【分析】先画图,由图可直接解答.【解答】解:如图所示:三点在一条直线上时可画一条,不在一条直线上时可画三条.【点评】本题考查了过平面上两点有且只有一条直线,体现了数形结合的思想.7.如图1,图中共有3条线段,它们是线段AC、线段AB、线段BC.如图2,图中共有4条射线,指出其中的两条射线AB、射线BA.【分析】直线上有三个点,过其中任意两个可以作为线段的端点作一条线段,即可以得出有三条;直线上有两点,过每一个点都可以得到两条射线,即过两个点可以找到4条射线.【解答】解:(1)根据线段的定义,可以找到3条,分别为:线段AC、线段AB、线段BC.(2)射线有一个端点,在直线上过每个点都可以得到2条射线,即如图所示,过两个点可以找到4条,其中包括:射线AB和射线BA.故图中共有4条射线,指出两条为:射线AB、射线BA.【点评】本题考查了线段和射线的性质,结合图形可以很明白的得出结论,注意数形结合的思想.8.要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.【分析】根据两点确定一条直线解答.【解答】解:要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.故答案为:两;两点确定一条直线.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是两点之间线段最短.【分析】根据两点之间线段最短解答.【解答】解:把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是:两点之间线段最短.故答案为:两点之间线段最短.【点评】本题考查了线段的性质,熟记两点之间线段最短是解题的关键.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是8cm或2cm.【分析】分点B在线段AC上和点C在线段AB上两种情况,计算即可.【解答】解:当点B在线段AC上时,AC=AB+BC=8cm,当点C在线段AB上时,AC=AB﹣BC=2cm,故答案为:8cm或2cm.【点评】本题考查的是两点间的距离的计算,灵活运用分情况讨论思想是解题的关键.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有5个.【分析】点P与A,B,C,D四点中的至少两个点距离相等时,也就是点P恰好是其中一条线段中点,而图中共有六条线段,所以出现报警的次数最多六次.【解答】解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段DC、DB、DA、CB、CA、BA,∵BC和AD中点是同一个∴发出警报的可能最多有5个.故答案为5.【点评】本题考查了两点间的距离,利用总体思想去思考线段的总条数是解决问题最巧妙的办法,可以减去不必要的讨论与分类.12.点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.【分析】①根据线段中点的性质,可得AB的长,根据比例分配,可得BP的长,根据线段的和差,可得答案;②分两种情况:M有P点左边和右边,分别根据线段和差进行计算便可.【解答】解:①∵点O是线段AB的中点,OB=14cm,∴AB=2OB=28cm,∵AP:PB=5:2.∴BP=cm,∴OP=OB﹣BP=14﹣8=6(cm);②如图1,当M点在P点的左边时,AM=AB﹣(PM+BP)=28﹣(4+8)=16(cm),如图2,当M点在P点的右边时,AM=AB﹣BM=AB﹣(BP﹣PM)=28﹣(8﹣4)=24(cm).综上,AM=16cm或24cm.【点评】本题考查了两点间的距离,利用了比例的性质,线段中点的性质,线段的和差.13.(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.【分析】(1)①直接根据关于x的方程(n﹣4)x=6﹣n无解求出m的值即可;②根据题意画出图形,分别用BP,AP表示出PM与PN的值,进而可得出结论;(2)根据题意画出图形,由各线段之间的关系可得出结论.【解答】解:(1)①方程(n﹣4)x=6﹣n,∵关于x的方程(n﹣4)x=6﹣n无解,∴n﹣4=0,即n=4,∴线段AB的长为4;②如图1,∵点M为线段PB的中点,点N为线段AP的中点,AB=n,∴PM=BP,PN=AP,∴MN=MP+NP=AB=n;∴线段MN的长与点P在线段AB上的位置无关;(2)如图2,∵点C为线段AB的中点,∴AC=AB,∴P A+PB=PC﹣AC+PC+BC=2PC,∴=2,∴的值不变.【点评】本题考查的是两点间的距离,根据题意画出图形,利用数形结合求解是解答此题的关键.14.如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.【分析】(1)①根据AB=2t即可得出结论;②先求出BD的长,再根据C是线段BD的中点即可得出CD的长;(2)分类讨论;(3)直接根据中点公式即可得出结论.【解答】解:(1)①∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当t=2时,AB=2×3=6cm;②∵AD=15cm,AB=6cm,∴BD=15﹣6=9cm,∵C是线段BD的中点,∴CD=BD=×9=4.5cm;(2)∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当0≤t≤5时,AB=3t;当5<t≤10时,AB=15﹣(3t﹣15)=30﹣3t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=(AB+BD)=AD=×15=7.5cm.【点评】本题考查了两点间的距离,根据已知得出各线段之间的等量关系是解题关键.。

人教版四年级数学上册第3单元线段、直线、射线附答案

人教版四年级数学上册第3单元线段、直线、射线附答案

人教版四年级数学上册第3单元4.线段、直线、射线一、我会选。

(每小题2分,共10分)1.小米画出了一条5厘米长的()。

A.直线B.射线C.线段2.直线和射线相比,()。

A.直线长B.射线长C.无法比较3.把线段向一端无限延伸后,就可以得到一条()。

A.线段B.射线C.直线4.把一条长5厘米的线段向两端各延长3厘米,得到的是一条()。

A.直线B.线段C.射线5.下列说法正确的是()。

A.直线的长度是射线的两倍B.线段比射线短,射线比直线短C.射线只是直线的一部分,所以直线比射线长D.直线和射线都能无限延伸二、我会填。

(每空2分,共24分)1.照样子,用字母来表示线段。

()或()2.线段有()个端点,()可以量出长度。

3.直线()端点,射线有()个端点,无法测量()和()的长度。

4.把线段的两端无限延长,就可以得到一条()。

线段和射线都是()的一部分。

5.射线可以用端点和射线上的另一个点来表示。

如:记作()记作()三、我会辨(对的在括号里打“√”,错的打“×”)。

(每小题2分,共8分) 1.小明用尺子测量出射线的长度是5分米。

() 2.直线很长,可以画出1万米长的直线。

() 3.直线和射线都没有端点,所以它们都不能量出长度。

() 4.手电筒射出的光线可以看成是射线。

()四、分一分。

(9分)五、数一数。

(每空2分,共18分)1.下图中共有()条射线,列式:________________2.下图中共有()条线段,列式:________________3.下图中共有()条线段,列式:________________4.下图中共有()条直线,有()条射线,有()条线段。

六、按要求做一做。

(共23分)1.过A点画一条直线。

(4分)2.过A、B两点画直线。

(4分)3.先以点A为端点画一条射线。

(6分)4.下面有5个点,经过任意2个点画直线能画几条?动手画一画,并列式计算出来。

(9分)七、我会应用。

(8分)小米家装一根长条状晾衣架,至少需要几颗钉子才能把这根长条状晾衣架固定在墙上?说说你的理由。

中考数学专题复习《直线、射线、线段》测试卷(附带答案)

中考数学专题复习《直线、射线、线段》测试卷(附带答案)

中考数学专题复习《直线射线线段》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________知识点1. 定义与性质:线段:线段是由两个端点及其之间的所有点组成的。

它有一个固定的长度并且可以在数轴上表示一个区间。

例如线段AB表示从点A到点B的所有点的集合。

射线:射线有一个起点(称为端点)并从该点沿一个方向无限延伸。

射线有一个端点和一个方向但没有固定的长度。

例如射线AB表示从点A出发沿AB方向无限延伸的线的集合。

直线:直线由无数个点组成没有端点并且向两端无限延伸。

直线没有固定的长度并且可以通过任意两个不重合的点来确定。

例如通过点A和点B可以确定一条直线。

2. 表示方法:线段:通常使用两个端点的字母来表示如线段AB。

在数轴上也可以使用一个区间来表示如[A, B]。

射线:使用起点和另一个点的字母来表示并指明方向如射线AB(从A出发经过B)。

直线:可以通过两点来表示如直线AB。

在数轴上直线可以用一个小写字母或两个不等的点来表示。

3. 几何特性:线段:是有限长的可以度量其长度。

线段是构成其他几何图形(如三角形四边形等)的基本元素。

射线:有一个端点和一个方向因此是无限长的不能度量其长度。

射线在几何学和物理学中有应用如光线和雷达波的传播。

直线:没有端点因此是无限长的也不能度量其长度。

直线是构成平面图形和立体图形的基本元素如平行四边形圆等。

4. 轴对称性:线段:线段是轴对称图形其对称轴是垂直于线段并通过其中点的直线。

射线:射线也是轴对称图形其对称轴是包含其端点的直线。

直线:直线是轴对称图形有无数条垂直于它的直线可以作为对称轴。

专项练一单选题1.下列说法错误的是()A.两点之间线段最短B.对顶角相等C.同角的补角相等D.过一点有且只有一条直线与已知直线平行2.我们知道若线段上取一个点(不与两个端点重合以下同)则图中线段的条数为++=条若线段上取三个点123+=条若线段上取两个点则图中线段的条数为1236+++=条……请用你找到的规律解决下列实际问题:杭甬铁路则图中线段的条数为123410(即杭州—宁波)上有萧山绍兴上虞余姚4个中途站则车站需要印的不同种类的火车票为( )A .6种B .15种C .20种D .30种3.下列命题中 是假命题的是( )A .三个角对应相等的两个三角形全等B .﹣3a 3b 的系数是﹣3C .两点之间 线段最短D .若|a |=|b | 则a =±b4.在下列说法①联接两点的线中 线段最短 ①相等的角是对顶角 ①过直线外一点有且只有一条直线与已知直线平行 ①两点间的线段是这两点的距离 ①20.196精确到百分位得20.2中 正确的是( )A .①①B .①①C .①①D .①①5.已知线段AB 长2cm .现延长AB 到点C 使3BC AB =.取线段AB 的中点D 线段CD 的长为( )A .5cmB .3cmC .7cmD .1cm6.如图 以A B C D E 为端点 图中共有线段( )A .7条B .8条C .9条D .10条7.如图所示 下列说法正确的个数是( )①射线AB 和射线BA 是同一条射线 ①图中有两条射线 ①直线AB 和直线BA 是同一条直线 ①线段AB 和线段BA 是同一条线段.A .4B .3C .2D .18.如图 在菱形ABCD 中 60ABC ∠=︒ E 是边BC 的中点 P 是对角线BD 上的一个动点 连接AE AM 若12AP BP +的最小值恰好等于图中某条线段的长 则这条线段是( )A .AB B .AEC .BD D .BE9.如图 点C 是线段AB 的中点 点D 是线段CB 上任意一点 则下列表示线段关系的式子不正确的是( )A .AB =2ACB .AC +CD +DB =ABC .CD =AD -12ABD .AD =12(CD +AB ) 10.若将点A (-1 3)向右平移2个单位 再向下平移4个单位得到点B 则点B 在第( )象限A .一B .二C .三D .四二 填空题11.绷紧的琴弦 人行横道都可以近似地看做 它有 个端点 手电筒 探照灯所射出的光线可以近似地看做 它有 个端点 笔直的铁轨可以近似地看做 它有 端点.12.A B C 三点在同一条直线上 若BC=2AB 且AB=m 则AC= . 13.如图 已知线段12AB = 延长线段AB 至点C 使得12BC AB =点D 是线段AC 的中点 则线段BD 的长是 .14.如图 等边ABC 的边长为4 AD 是BC 边上的中线 F 是AD 边上的动点 E 是AC 边上一点 若2AE = 当EF CF +取得最小值时 则ECF ∠= .15.若O 的半径为33 圆心O 为坐标系的原点 点P 的坐标是()3,5 点P 在O .16.已知线段AB=18cm P Q 是线段AB 上的两个点 线段AQ=12cm 线段BP=14cm 则线段PQ= .17.如图 直线243y x =+与x 轴 y 轴分别交于点A 和点B 点C D 分别为线段AB OB 的中点 点P 为OA 上一动点 PC PD +最小值是 .18.菱形OBCD 在平面直角坐标系中的位置如图所示 顶点B (2 0) ①DOB =60° 点P是对角线OC 上一个动点 E (0 则EP +BP 的最小值为 .19.如图 C 为线段AD 上一点 点B 为CD 的中点 且8cm AD = 2cm BD =.若点E 在AD 上 且EA=3cm BE 的长为 .20.如图 AD 为等边ABC 的高 E F 分别为线段AD AC 上的动点 且AE CF = 当BF CE +取得最小值时 AFB ∠的度数为 .三 解答题21.线段和角是我们初中数学常见的平面几何图形 它们的表示方法 和差计算以及线段的中点 角的平分线的概念等有很多相似之处 所以研究线段或角的问题时可以运用类比的方法.(1)特例感知:如图1 已知10cm AB = 点D 是线段AC 的中点 点E 是线段BC 的中点.若6cm BC 则线段DE =________cm .(2)数学思考:如图1 已知10cm AB = 若C 是线段AB 上的一个动点 点D 是线段AC 的中点 点E 是线段BC 的中点 线段DE 的长会发生变化吗?说明理由.(3)知识迁移:如图2 OB 是AOC ∠内部的一条射线 把三角尺中60︒角的顶点放在点O 处 转动三角尺 当三角尺的边OD 平分AOB ∠时 在角尺的另一边OE 也正好平分BOC ∠ 求AOC ∠的度数.22.如图 C 为线段AB 的中点 点D 在线段CB 上.(1)图中共有_________条线段(2)图中AD AC CD =+ BC AB AC =- 类似地 请你再写出两个有关线段的和与差的关系式:①_________ ①_________(3)若8AB = 1.5DB = 求线段CD 的长.23.补全解题过程已知:如图 点C 是线段AB 的中点 2CD =cm 8BD =cm 求AD 的长.解:①2CD=cm 8BD=cm①CB CD=+______=______cm①点C是线段AB的中点①AC CB==______cm①AD AC=+_______=_______cm24.(1)已知线段8AB=点C在线段AB的延长线上M N分别是线段AC与线段BC 的中点求线段MN的长(2)已知线段8cmAB=点C在线段AB的反向延长线上M N分别是线段AC与线段BC的中点则线段MN的长为cm.25.如图线段1134BD AB CD==点M N分别是线段AB CD的中点且20cmMN=求AC的长.参考答案:1.D2.D3.A4.A5.C6.D7.C8.B9.D10.D11.线段两射线 1 直线0个. 12.m或3m13.314.30︒15.外16.8cm17.5183119.3或9cm20.105︒/105度21.(1)5(2)不会(3)120︒22.(1)6 (2)(2)①BC=CD+DB ①AD=AB−DB (答案不唯一)(3)CD=2.5.23.BD10 10 CD12.24.(1)4 (2)425.48cm。

七年级 直线、射线、线段,带答案

七年级  直线、射线、线段,带答案

直线射线线段典题探究例1.点A、B是直线l上的两点,AB=12cm,在直线l上取一点C,使BC=5cm,则线段AC的长是____________.例2.如图一列往返于甲乙两站的火车,中途停靠三站,你认为要准备()种车票才满足乘客的需要.A.10 B.20C.30 D.40例3.如图所示,在平整的地面上放有一个正方体,一只蚂蚁在顶点A处,它要爬到顶点B,问蚂蚁有几条最短路线,它应怎样确定爬行路线?例4.已知点B在直线AC上,AB=6,AC=10,P、Q分别是AB、AC的中点,求PQ 的长演练方阵A档(巩固专练)1. 下列说法错误的是()A. 平面内过一点有且只有一条直线与已知直线垂直B. 两点之间的所有连线中,线段最短C.经过两点有且只有一条直线D. 过一点有且只有一条直线与已知直线平行2.平面上的三条直线最多可将平面分成()部分A .3 B.6 C . 7 D.93.如果A BC三点在同一直线上,且线段AB=4CM,BC=2CM,那么AC两点之间的距离为()A .2CM B. 6CM C .2 或6CM D .无法确定4.下列说法正确的是()A.延长直线AB到C; B.延长射线OA到CC.平角是一条直线; D.延长线段AB到C5.如果你想将一根细木条固定在墙上,至少需要几个钉子()A.一个 B.两个 C.三个 D.无数个6.若线段AB=a,C是线段AB上的任意一点,M、N分别是AC和CB的中点,则MN=_______.7.经过1点可作________条直线;如果有3个点,经过其中任意两点作直线,可以作______条直线;经过四点最多能确定条直线。

8.图中共有线段________条。

9.如图,已知C点为线段AB的中点,D点为BC中点,AB=10cm,求AD的长度。

10.线段AD=6cm,线段AC=BD=4cm ,E、F分别是线段AB、CD中点,求EF。

B档(提升精练)1.点P在线段EF上,现有四个等式①PE=PF;②PE=12EF;③12EF=2PE;④2PE=EF;其中能表示点P是EF中点的有()A.4个 B.3个 C.2个 D.1个2. 如图所示,从A地到达B地,最短的路线是().A.A→C→E→B B.A→F→E→B C.A→D→E→B D.A→C→G→E→B3.如右图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()A .2()a b B .2a b C .a b D .a b4.在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是()A.2㎝ B.0.5㎝ C.1.5㎝ D.1㎝5.如果AB=8,AC=5,BC=3,则()A.点C在线段AB上 B.点B在线段AB的延长线上C.点C在直线AB外 D .点C可能在直线AB上,也可能在直线AB外6.如图,学生要去博物馆参观,从学校A处到博物馆B处的路径共有⑴、⑵、⑶三条,为了节约时间,尽快从A处赶到B处,假设行走的速度不变,你认为应该走第________条线路(只填番号)最快,理由是___________________。

直线、射线、线段练习题(含答案)

直线、射线、线段练习题(含答案)

1.下列各说法一定成立的是A.画直线AB=10厘米B.已知A、B、C三点,过这三点画一条直线C.画射线OB=10厘米D.过直线AB外一点画一条直线和直线AB平行2.如图,用圆规比较两条线段A′B′和AB的长短,其中正确的是A.A′B′>AB B.A′B′=ABC.A′B′<AB D.A′B′≤AB3.工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是A.过一点有且只有一条直线B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离D.两点确定一条直线4.下列语句正确的是A.延长线段AB到C,使BC=ACB.反向延长线段AB,得到射线BAC.取直线AB的中点D.连接A、B两点,并使直线AB经过C点5.如图所示,不同的线段的条数是A.4条B.5条C.10条D.12条6.如图所示,该条直线上的线段有A.3条B.4条C.5条D.6条7.射线OA与OB是同一条射线,画图正确的是A.B.C.D.8.如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是A.1cm B.9cmC.1cm或9cm D.以上答案都不正确9.如图,对于直线AB,线段CD,射线EF,其中能相交的图是A.B.C.D.10.经过同一平面内的A,B,C三点中的任意两点,可以作出__________条直线.11.如图,该图中不同的线段数共有__________条.12.如下图,从小华家去学校共有4条路,第__________条路最近,理由是__________.13.如图,若D是AB中点,E是BC中点,若AC=8,EC=3,AD=__________.14.如图,已知线段AB,反向延长AB到点C,使AC=12AB,D是AC的中点,若CD=2,求AB的长.15.如图,B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.16.AB、AC是同一条直线上的两条线段,M在AB上,且AM=13AB,N在AC上,且AN=13AC,线段BC和MN的大小有什么关系?请说明理由.17.如图所示,C是线段AB上的一点,D是AC的中点,E是BC的中点,如果AB=9cm,AC=5cm.求:(1)AD的长;(2)DE的长.18.如图,已知A、B、C、D四点,根据下列语句画图:(1)画直线AB;(2)连接AC、BD,相交于点O;(3)画射线AD、BC,交于点P.19.如图,点C在线段AB上,点D是AC的中点,如果CB=32CD,AB=7cm,那么BC的长为A.3cm B.3.5cmC.4cm D.4.5cm20.如图,C是AB的中点,D是BC的中点,则下列等式不成立的是A.CD=AD–AC B.CD=12AB-BDC.CD=14AB D.CD=13AB21.A、B是直线l上的两点,P是直线l上的任意一点,要使PA+PB的值最小,那么点P的位置应在A.线段AB上B.线段AB的延长线上C.线段AB的反向延长线上D.直线l上22.已知点P是线段AB的中点,则下列说法中:①PA+PB=AB;②PA=PB;③PA=12AB;④PB=12AB.其中,正确的有A.1个B.2个C.3个D.4个23.如图,D是线段AB中点,E是线段BC中点,若AC=10,则线段DE=________.24.在直线l两侧各取一定点A、B,直线l上动点P,则使PA+PB最小的点P的位置是________.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其他条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC–BC=b cm,M、N分别为AC、BC的中点,你能猜想MN 的长度吗?并说明理由.26.如图所示,直线l是一条平直的公路,A、B是某公司的两个仓库,位于公路两旁,请在公路上找一点建一货物中转站C,使A、B到C的距离之和最小,请在图中找出点C的位置,并说明理由.27.(2017•桂林)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=__________.28.(2017•河北)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.1.【答案】D【解析】A、直线无限长,错误;B、若A、B、C三点不共线,则无法画出一条直线,错误;C、射线无限长,错误;D、过直线AB外一点只能画一条直线与AB平行,正确.故选D.4.【答案】B【解析】A、延长线段AB到C,使BC=AC,不可以做到,故本选项错误;B、反向延长线段AB,得到射线BA,故本选项正确;C、取直线AB的中点,错误,直线没有中点,故本选项错误;D、连接A、B两点,并使直线AB经过C点,若A、B、C三点不共线则做不到,故本选项错误.故选B.5.【答案】C【解析】图中线段有:AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共有10条.故选C.6.【答案】D【解析】线段有:AB,AC,AD,BC,BD,CD共6条.故选D.7.【答案】B【解析】A、射线OA与OB不是同一条射线,选项错误;B、射线OA与OB是同一条射线,选项正确;C、射线OA与OB不是同一条射线,选项错误;D、射线OA与OB不是同一条射线,选项错误.故选B.8.【答案】C【解析】如图所示,当点C在AB之间时,AC=AB−BC=5−4=1(cm);当点C在点B的右侧时,AC=AB+BC=5+4=9(cm).故选C.10.【答案】1或3【解析】若A,B,C三点在同一直线上,可作出1条直线;若A,B,C三点不在同一直线上,可作出3条.故答案为:1或3.11.【答案】6【解析】因为图中的线段有:BC、DC、AC、BD、BA、DA,所以共有6条线段.故答案为:6. 12.【答案】③;两点之间,线段最短【解析】从小华家去学校共有4条路,第③条路最近,理由是:两点之间,线段最短.13.【答案】1【解析】因为EC=3,E是BC中点,所以BC=2EC=2×3=6,因为AC=8,所以AB=AC–BC=8–6=2,因为D是AB中点,所以AD=12AB=12×2=1.14.【解析】因为D是AC的中点,所以AC=2CD,因为CD=2cm,所以AC=4cm,因为AC=12AB,所以AB=2AC,所以AB=2×4cm=8cm.15.【解析】设AB=3x,则BC=2x,CD=5x,因为E、F分别是AB、CD的中点,所以BE=32x,CF=52x,因为BE+BC+CF=EF,且EF=24,所以32x+2x+52x=24,解得x=4,所以AB=12,BC=8,CD=20.16.【解析】BC=3MN.分三种情况:17.【解析】(1)因为AC=5cm,D是AC中点,所以AD=DC=12AC=52cm,(2)因为AB=9cm,AC=5cm,所以BC=AB−AC=9−5=4(cm),因为E是BC中点,所以CE=12BC=2cm,所以DE=CD+CE=52+2=92(cm).18.【解析】(1)如图所示,直线AB即为所求;(2)如图所示,线段AC,BD即为所求;(3)如图所示,射线AD、BC即为所求.19.【答案】A20.【答案】D【解析】因为C是AB的中点,所以CA=CB,又因为D是BC的中点,所以DC=DB,所以CD=DB=14AB;CD=BC−BD=12AB−BD;CD=AD−AC.故选D.21.【答案】A【解析】当P点在线段AB的延长线上,则PA+PB=PB+AB+PB=AB+2PB;当P点在线段AB的反向延长线上,则PA+PB=PA+AB+PB=AB+2PA;当P点在线段AB上,则PA+PB=AB,所以当P点在线段AB上时PA+PB的值最小.故选A.22.【答案】D【解析】由P是线段AB的中点,得①PA+PB=AB②PA=PB③PA=12AB④PB=12AB,故选D.23.【答案】5【解析】因为D是线段AB中点,E是线段BC中点,所以BD=12AB,BE=12BC,所以DE=BD+BE=12AB+12BC=12(AB+BC)=12AC,因为AC=10,所以DE=1102=5.故答案为:5.24.【答案】点P是直线AB与l的交点【解析】由两点之间,线段最短可知:当点P位于直线AB与l的交点时,PA+PB最小.故答案为:点P是直线AB与l的交点.25.【解析】(1)因为点M、N分别是AC、BC的中点,因为点M、N分别是AC、BC的中点,所以MC=12AC,NC=12BC,所以MN=MC–CN=12(AC–BC)=12b(cm).26.【解析】如图所示,理由:两点之间,线段最短.27.【答案】4【解析】因为点C是线段AD的中点,若CD=1,所以AD=1×2=2,因为点D是线段AB的中点,所以AB=2×2=4.故答案为:4.28.【解析】(1)若以B为原点,则C表示1,A表示–2,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

姓名:_______________班级:_______________分数:_______________
一、选择题。

(每题3分)
1、如图,小华的家在A处,书店在B处,星期日小华到书店去买书,他想尽快地赶到书店,请你帮助他选择一条最近的路线( )
题1 题2
A.A→C→D→B →C→F→B →C→E→F→B →C→M→B
2、如图,林林的爸爸只用两枚钉子就把一根木条固定在墙上,下列语句能解释这个原理的( )
A.木条是直的
B.两点确定一条直线
C.过一点可以画无数条直线
D.一个点不能确定一条直线
3、如右图是一条射线,一条线段和一条直线,则它们的交点的个数有()个.
4、下列四个图中的线段(或直线、射线)能相交的是( )
A.(1)
B.(2)
C.(3)
D.(4)
5、
A、3cm
B、4cm
C、5cm
D、6cm
6、如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是
()
A.两点之间,线段最短
B.两点确定一条直线
C.两点之间,直线最短
D.两点确定一条线段
题6 题7 题9
7、.如图,C、D是线段AB上两点,D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长等于( )
A. 2 cm B. 3 cm C. 4 cm D. 6 cm
8、平面内有三个点,过任意两点画一条直线,则可以画直线的条数是( )
条条条条或3条
9、如图3,图中有( )
条直线条射线条线段 D.以上都不对
10、如图,C、D是线段AB上的两个点,CD=3cm,M是AC的中点,N是DB的中点,MN=,那么线段AB的长等于
A. B. C.8cm D.
二、填空题。

(每题3分)
11、已知线段AB=6cm,点C是它的三等分点之一,则线段AC= cm.
12、如图,将射线OA反向延长得射线,线段CD向延长得直线CD.
12题 14题
13、在直线上取A、B、C三点,使得AB=9cm,BC=4cm,如果O是线段AC的中点,则线段OA的长为__________cm。

14、如图,点B是线段AC上的点,点D是线段BC的中点,若AB=4cm,AC=10cm,则CD=______.
15、一列火车往返于A地与B地之间,途中有C、D、E三个车站停靠,那么往返于A、B两地之间的不同车票共有种.
16、若线段AB=10㎝,在直线AB上有一点C,且BC=4㎝,M是线段AC的中点,AM= ___㎝.
17、往返于甲、乙两地的火车中途要停靠三个站,则有种不同的票价(来回票价一样),需准备种车票.
18、已知线段AB=10cm,直线AB上有点C,且BC=4cm,M是线段AC的中点,AM= cm。

19、手枪上瞄准系统设计的数学道理是。

20、如图3,点C、D在线段AB上,AC=BD,若AD=8cm,则BC= .
三、作图题。

21、如图,A,B是两个村庄,若要在河边l上修建一个供水站向两村供水,问供水站应修在河边的什么位置才能使铺设的管道最短,并说明理由.(8分)
22、如图,已知A、B、C三点. (8分)
(1)画直线AC;(2)画射线BC;
(3)画线段AB;(4)找出线段AB的中点D,连结CD;
四、简答题
23、如图所示,已知AB=80,M为AB的中点,P在AB上,N为PB的中点,且NB=14,求MP的长.(8分)
24、如图所示,点C、D为线段AB的三等分点,点E为线段AC的中点,若ED=9,求线段AB的长度.(8分)
25、如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度.(8分)
参考答案
一、选择题
1、B.根据两点之间,线段最短,可知应选择A→C→F→B.
2、B.根据两点确定一条直线,故选B.
3、C
4、A
5、D
6、C
7、B
8、D
9、C
10、B
二、填空题
11、2或4【解析】一条线段的三等分点有两个,所以AC=2cm或4 cm.
12、:OB 两方
13、或解析:有点C在线段AB上或其延长线上两种情况。

14、3 cm 解析:BC=AC-AB=6 cm,因为点D是线段BC的中点,所以CD=BC=3 cm.
15、20 ;
16、3或7
17、10,20
18、3cm或7cm
19、两点确定一条直线
20、8cm;
三、作图题
21、【解析】如图,连接AB交直线l于点C,则点C就是供水站位置.理由:两点之间线段最短.
22、如图所示:
四、简答题
23、【解析】因为N为PB的中点,
所以PB=2NB=2×14=28.
又因为AP=AB-PB,AB=80,
所以AP=80-28=52.
∵M为AB的中点,∴AM=AB=40,
∴MP=AP-AM=52-40=12.
24、
25、解:点C是线段AB的中点AC= CB = = 5cm
点D是线段CB的中点
CD = DB = = cm-
AD = AC+CD = cm-。

相关文档
最新文档