数学培优教材第一讲函数的性质
高一年段数学培优教材第一讲二次函数

高一年段数学培优教材第一讲 二次函数一、基础知识:1. 二次函数的解析式(1)一般式:2()(0)f x ax bx c a =++≠ (2)顶点式:2()()f x a x h k =-+,顶点为(,)h k (3)两根式:12()()()f x a x x x x =-- 2.二次函数的图像和性质(1)2()(0)f x ax bx c a =++≠的图像是一条抛物线,顶点坐标是24(,)24b ac b a a--,对称轴方程为2bx a=-,开口与a 有关。
(2)单调性:当0a >时,()f x 在(,]2b a -∞-上为减函数,在[,)2ba-+∞上为增函数;0a <时相反。
(3)奇偶性:当0b =时,()f x 为偶函数。
延伸:若()()f a x f a x +=-对x R ∈恒成立,则x a =为()f x 的对称轴。
(4)最值:当x R ∈时,()f x 的最值为244ac b a -,当[,],[,]2b x m n m n a ∈-∈时,()f x 的最值可从(),(),()2b f m f n f a -中选取;当[,],[,]2bx m n m n a∈-∉时,()f x 的最值可从(),()f m f n 中选取。
常依对称轴与区间[,]m n 的位置分类讨论。
3.三个二次之间的关联及根的分布理论:二次方程2()0(0)f x ax bx c a =++=≠的区间根问题,一般情况需要从三个方面考虑:判别式、区间端点函数值的符号;对称轴与区间端点的关系。
二、综合应用:例1:已知二次函数()f x 的图像经过三点(1,6),(1,0),(2.5,0)A B C --,求()f x 的解析式。
例2:设2()(0)f x ax bx c a =++≠满足条件:(1)当x R ∈时,(4)(2)()f x f x f x x -=-≥且,(2)当21(0,2),()2x x f x +⎛⎫∈≤ ⎪⎝⎭时, (3)()f x 在R 上的最小值为0。
高中数学—函数的基本性质—完整版课件

• 当 > 时, − < ,则
• − = −
− = − = − ().
• 综上,对 ∈ (−∞,) ∪ (,+∞),
• ∴ ()为奇函数.
都有 − = − ().
奇偶性判定
• 【解析】 (4) =
−
−
• 定义域为 −, 关于原点对称
• ③一个奇函数,一个偶函数的积是 奇函数 .
函数的奇偶性
• 判断函数的奇偶性
• 1、首先分析函数的定义域,在分析时,不要把函数化简,而要根据
原来的结构去求解定义域,如果定义域不关于原点对称,则一定是非
奇非偶函数.
• 2、如果满足定义域对称,则计算(−),看与()是否有相等或互为
相反数的关系.
−
−−
+
++
−+
• 即
= 恒成立,
• 则2(+)2+2=0对任意的实数恒成立.
• ∴ ==0.
函数的单调性
+
•
(2)∵ =
∈ 是奇函数, 只需研究(, +∞)上()的单调区间即可.
•
任取, ∈ (,+∞),且 < ,则
应值,故函数取得最值时,一定有相应的x的值.
抽象函数的单调性
• 函数()对任意的、 ∈ ,都有 + = + − ,并且当
> 时,() > .
• (1)求证:()是上的增函数;
• (2)若()=,解不等式( − − ) < .
抽象函数的单调性
• ∴ ()=, ∴原不等式可化为( − − ) < (),
• ∵ ()是上的增函数,
寒假八年级数学培优学案一次函数图像与性质

八年级数学培优学案(4)-----一次函数及其性质知识点一:一次函数的定义一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,这时即是正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 及时练习1:1.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 2. 下列函数(1)y=πx (2)y=2x-1 (3)y=1x(4)y=2-1-3x (5)y=x 2-1中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个3. 已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.4. 已知函数221(43)3a a y a a x --=-++是一次函数,则a 的值为知识点二:一次函数的图象及其画法⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线.⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取()00,,()1k ,两点; ②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0b k ⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点.⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,有时直接称为直线y kx b =+.及时练习2:1. 如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.2.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.3. 一次函数y=kx+k+1的图象不经过第三象限,那么k 的取值范围为( )A.0< k < 1B.-1< k < 0C. -1≤ k < 0D.k < 04.图中表示一次函数y mx n =+与正比例函数y mnx =(m 、n 是常数,0mn ≠)图象的是( )5.若直线23y x =+与32y x b =-相交于X 轴,则b 的值是 () A 、3- B 、32-C 、6D 、94- CD6. 已知m 是整数,且一次函数(4)2y m x m =+++的图象不过第二象限,则m 为 .知识点三:一次函数的增减性⑴当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大; ⑵当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小. 及时练习3:1. 点A (1x ,1y )和点B (2x ,2y )在同一直线y kx b =+上,且0k <.若12x x >,则1y ,2y 的关系是:( )A 、12y y >B 、12y y <C 、12y y =D 、无法确定.2. 已知点(-4,y 1),(2,y 2)都在直线y=- 12x+2上,则y 1 y 2大小关系是( )(A )y 1 >y 2 (B )y 1 =y 2 (C )y 1 <y 2 (D )不能比较3. 一次函数y=kx+b 满足kb>0且y随x的增大而减小,则此函数的图象不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限4. 已知正比例函数x m y )12(-= 的图象上两点A (1x ,1y ),B (2x ,2y ),当21x x < 时,有21y y >,那么m 的取值范围是_________________5. 已知,函数()1321y k x k =-+-,试回答: (1)k 为何值时,图象交x 轴于点(34,0)(2)k 为何值时,y 随x 增大而增大?知识点四:一次函数y kx b =+的图象、性质与k 、b 的符号(1) k 决定函数趋势。
《函数的基本性质》函数的概念与性质PPT(第1课时函数的单调性)

第三章 函数的概念与性质
由函数单调性求参数范围的类型及处理方法 (1)由函数解析式求参数
栏目 导引
第三章 函数的概念与性质
(2)利用抽象函数单调性求范围 ①依据:定义在[m,n]上的单调递增(减)函数中函数值与自变 量的关系 f(a)<f(b)⇔am<≤b(a≤a>nb,),
m≤b≤n. ②方法:依据函数单调性去掉符号“f”,转化为不等式问题求解. [提醒] 单调区间是 D≠在区间 D 上单调. (1)单调区间是 D:指单调区间的最大范围是 D. (2)在区间 D 上单调:指区间 D 是单调区间的子集.
栏目 导引
第三章 函数的概念与性质
=(x1-x2)x1(x2x1x2-4). 因为 0<x1<x2<2, 所以 x1-x2<0,0<x1x2<4,x1x2-4<0, 所以 f(x1)-f(x2)>0,即 f(x1)>f(x2). 所以函数 f(x)=x+4x在(0,2)上单调递减.
栏目 导引
第三章 函数的概念与性质
栏目 导引
第三章 函数的概念与性质
(2)如果∀x1,x2∈D,当 x1<x2 时,都有__f_(x_1_)_>__f(_x_2_) ___,那么 就称函数 f(x)在区间 D 上单调递减(如图②) 特别地,当函数 f(x)在它的定义域上_单__调__递__减__时,我们就称它 是减函数.
栏目 导引
栏目 导引
第三章 函数的概念与性质
2.已知函数 f(x)=2x-+x1,证明:函数 f(x)在(-1,+∞)上为减 函数. 证明:∀x1,x2∈(-1,+∞), 且 x1<x2, 则 f(x1)-f(x2)=x21-+x11-x22-+x12
栏目 导引
第三章 函数的概念与性质
高三数学培优课程第1讲-函数的定义域和值域

第一讲 函数的定义域、值域一、知识回顾第一部分:函数的定义域1.函数的概念:设集合A 是一个非空的数集,对于A 中的任意一个数x ,按照确定的法则f ,都有唯一的确定的数y 与它对应,则这种关系叫做集合A 上的一个函数,记作()x f y =,(A x ∈)其中x 叫做自变量,自变量的取值范围(数集A )叫做这个函数的定义域.如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作)(a f y =或a x y =,所有的函数值所构成的集合{}A x x f y y ∈=),(叫做这个函数的值域.2.定义域的理解:使得函数有意义的自变量取值范围,实际问题还需要结合实际意义在确定自变量的范围,注意:定义域是个集合,所以在解答时要 用集合来表示. 3.区间表示法:设a ,R b ∈,且b a <.满足b x a ≤≤的全体实数x 的集合,叫做闭区间,记作[]b a ,. 满足b x a <<的全体实数x 的集合,叫做开区间,记作()b a ,.满足b x a ≤<或b x a <≤的全体实数x 的集合,都叫做半开半闭区间,记作(][)b a b a ,,或.b a 与叫做区间的端点,在数轴上表示时,包括端点时,用实心的点,不包括时用空心点表示.4.基本思想:使函数解析式有意义的x 的所有条件化为不等式,或不等式组的解集.5.定义域的确定方法:保证函数有意义,或者符合规定,或满足实际意义. (1)分式的分母不为零. (2)偶次方根式的大于等于零. (3)对数数函数的真数大于零.(4)指数函数与对数函数的底大于零且不等于1. (5)正切函数的角的终边不能在y 轴上. (6)零次幂的底数不能为零.(7)分段函数:①分段函数是一个函数.②分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(8)复合函数定义域的求法:①已知)(x f y =的定义域是A ,求()[]x f y ϕ=的定义域的方法为解不等式:A x ∈)(ϕ,求出x 的取值范围.②已知()[]x f y ϕ=的定义域为A ,求)(x f y =的定义域的方法:A x ∈,求)(x ϕ的取值范围即可.第二部分:函数的值域函数值域的确定方法:(1)直接观察法对于一些比较简单的函数,其值域可通过观察得到. (2)分离常数法:分子、分母是一次函数得有理函数,形如,dcx bax y ++=,,,,,(d c b a 为常数,)0≠c 可用分离常数法,此类问题一般也可以利用反函数法.(3)换元法:运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域,如d cx b ax y +±+=(d c b a ,,,均为常数且0≠a )的函数常用此法求解. (4)配方法:适用于二次函数值域的求值域. (5)判别式法:适用于二次函数型值域判定.(6)单调性法:利用单调性,端点的函数值确定值域的边界.(7)函数的有界性:在直接求函数值域困难的时候,可以利用已学过函数的有界性,反过来确定函数的值域.(8)不等式法:利用不等式的性质确定上下边界.(9)数形结合法:函数解析式具有明显的某种几何意义,如两点间的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目.二、 精选例题第一部分:函数的定义域例1.函数x x y +-=1的定义域为( )A .{}1x x ≤B .{}0x x ≥ C.{}10x x x ≥≤或 D.{}01x x ≤≤【解析】由题意⎩⎨⎧≥≤⇒⎩⎨⎧≥≥-01001x x x x 即∈x {}10≤≤x x ,故选D. 例2.函数()()xx x x f -+=01的定义域是( )A .()0,+∞B .(),0-∞ C.()(),11,0-∞-- D.()()(),11,00,-∞--+∞【解析】由⎩⎨⎧≠-≠+001x x x 得,01⎩⎨⎧<-≠x x 故选C.例3.若函数()1+=x f y 的定义域是[],3,2-则()12-=x f y 的定义域是( )5.0,2A ⎡⎤⎢⎥⎣⎦[]4,1.-B []5,5.-C []7,3.-D 【解析】 ()1+=x f y 的定义域是[],3,2-,32≤≤-∴x[]4,11-∈+∴x ,即()x f 的定义域是[]4,1-.又由4121≤-≤-x 解得250≤≤x即()12-=x f y 的定义域是⎥⎦⎤⎢⎣⎡25,0故选.A例4.设函数()x f y =的定义域是()1,0,则()2x f y =的定义域是什么?【解析】 函数()x f y =的定义域是()1,0.102<<∴x 即11<<-x故()2x f y =的定义域是()1,1-∈x 且0≠x .例5.已知函数(),11+=x x f 则函数()[]x f f 的定义域是( ) {}1.-≠x x A {}2.-≠x x B {}21.-≠-≠x x x C 且{}21.-≠-≠x x x D 或【解析】:()11+=x x f 的定义域是101-≠⇒≠+x x 则()[]x f f 的定义域是111-≠+x 即21012-≠-≠⇒≠++x x x x 且故选.C 例6.已知()x f21-求函数⎪⎭⎫⎝⎛-x x f 213的定义域是?【解析】由()x f21-可知021≥-x 即0213≥-xx()2100312≤≤⇒≤-⇒x x x 故函数⎪⎭⎫⎝⎛-x x f 213的定义域是⎥⎦⎤⎢⎣⎡∈21,0x例7.若函数y =R ,求实数k 的取值范围.【解析】当0=k 时,86+-=x y ,当34>x 时,无意义,∴0≠k ; 当0<k 时,()268y kx x k =-++为开口向下的二次函数,图像向下延伸,函数值总会出现小于零的情况,进而,0<k 不成立,当0>k 时,同时要求0≤∆,即解得1≥k .例8.已知函数x x x f -+=11lg )(,求函数)2(12)1()(xf x x f x F +++=的定义域. 【解析】由题意011>-+xx,即0)1)(1(<+-x x ,解得11<<-x 故函数xxx f -+=11lg )(的定义域为)1,1(-所以⎩⎨⎧≠+<+<-012111x x 解得02<<-x 且21-≠x .即12)1()(++=x x f x m 的定义域为)0,21()21,2(---又121<<-x ,解得22<<-x ,即)2(xf 的定义域为)2,2(-)2(12)1()(x f x x f x F +++=的定义域即为)(x m 和)2(xf 的定义域的交集,即)0,21()21,2(--- )2,2(- =)0,21()21,2(---故函数)2(12)1()(xf x x f x F +++=的定义域为)0,21()21,2(--- . 例9.已知函数()23x x f x a b =⋅+⋅,其中常数,a b 满足0ab ≠. (1)若0ab >,判断函数()f x 的单调性; (2)若0ab <,求(1)()f x f x +>时x 的取值范围. 【解析】(1)当0,0a b >>时,任意1212,,x x R x x ∈<,则121212()()(22)(33)xxxxf x f x a b -=-+-∵121222,0(22)0x x x x a a <>⇒-<,121233,0(33)0x x x x b b <>⇒-<,∴12()()0f x f x -<,函数()f x 在R 上是增函数. 当0,0a b <<时,同理,函数()f x 在R 上是减函数. (2)(1)()2230x x f x f x a b +-=⋅+⋅>当0,0a b <>时,3()22xa b >-,则 1.5log ()2ax b >-;当0,0a b ><时,3()22x a b <-,则 1.5log ()2ax b<-.第二部分:函数的值域1.观察法:例1.求函数x y 1=的值域. 【解析】0≠x 01≠∴x0≠∴y ,即值域为:()()+∞∞-,00,2.分离常数法:分子、分母是一次函数得有理函数,形如)0,,,(,≠++=c d c b a dcx bax y 为常数,,可用分离常数法,此类问题一般也可以利用反函数法.通式解析:)(,)(cad b d cx c ad b c a d cx b c ad d cx c a d cx b ax y ≠+-+=++-+=++= 故值域为⎭⎬⎫⎩⎨⎧≠c a y y 例2.求函数125xy x -=+的值域. 【解析】因为177(25)112222525225x x y x x x -++-===-++++, 所以72025x ≠+,所以12y ≠-,所以函数125x y x -=+的值域为1{|}2y y ≠-.3.换元法:运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域,如d cx b ax y +±+=(d c b a ,,,均为常数且0≠a )的函数常用此法求解.例3.(A 类)求函数2y x =.【解析】令x t 21-=(0t ≥),则212t x -=,所以22151()24y t t t =-++=--+因为当12t =,即38x =时,max 54y =,无最小值所以函数2y x =5(,]4-∞.4.三角换元:例4.求函数2)1(12+-++=x x y 的值域.【解析】0)1(12≥+-x 1)1(2≤+∴x ,令[]πββ,0,cos 1∈=+x1)4sin(21cos sin cos 11cos 2++=++=-++=∴πβββββy ,,0πβ≤≤ 4544ππβπ≤+≤,1)4sin(22≤+≤-πβ, 121)4sin(20+≤++≤πβ故值域为:[]12,0+ 5.配方法:例5.求函数242y x x =-++([1,1]x ∈-)的值域.【解析】2242(2)6y x x x =-++=--+, 因为[1,1]x ∈-,所以2[3,1]x -∈--,所以21(2)9x ≤-≤,所以23(2)65x -≤--+≤,即35y -≤≤, 所以函数242y x x =-++在([1,1]x ∈-)的值域为[3,5]-.6.判别式法:例6.求函数2211xx x y +++=的值域. 【解析】原函数化为关于x 的一元二次方程,0)1()1(2=-+--y x x y (1)当1≠y 时,R x ∈,0)1(4)1(22≥---=∆y .解得2321≤≤y , 当1=y 时,0=x ,而⎥⎦⎤⎢⎣⎡∈23,211,故函数的值域为⎥⎦⎤⎢⎣⎡23,21.7.单调性法:例7.求函数x x x f 4221)(-+-=的值域. 【解析】由042≥-x ,解得21≤x , 令x x g 21)(-=,x x m 42)(-=,在21≤x 上)(),(x m x g 均为单调递减函数, 所以x x x m x g 4221)()(-+-=+在21≤x 上也是单调递减函数.故0)21()(min ==f x f ,值域为),0[+∞.8.有界性例8.求函数11+-=x x e e y 的值域.【解析】函数变形为11-+=y y e x,0>x e 011>-+∴y y ,解得11<<-y , 所以函数的值域为()1,1-.9.不等式法: 例9.求函数xx y 4+=的值域; 【解析】当0>x 时,4424=⋅≥+=xx x x y (当x =2时取等号); 所以当0>x 时,函数值域为),4[+∞. 当0<x 时,442)4(-=⋅-≤+-=xx x x y (当2-=x 时取等号); 所以当0<x 时,函数值域为]4,(--∞. 综上,函数的值域为),4[]4,(+∞--∞10.数形结合法函数解析式具有明显的某种几何意义,如两点间的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目. 例10. (1)求函数82++-=x x y 的值域.(2)求函数5413622++++-=x x x x y 的值域. (3)求函数5413622++-+-=x x x x y 的值域.【解析】(1)函数可以看成数轴上点P (x )到定点A (2),)8(-B 间的距离之和.由上图可知,当点P 在线段AB 上时,10min ==AB y 当点P 在线段AB 的延长线或反向延长线上时,10>=AB y 故所求函数的值域为:),10[+∞ 此题也可以画函数图象来解.(2)原函数可变形为:2222)10()2x ()20()3x (y ++++-+-=可看成x 轴上的点)0,(x P 到两定点)1,2(),2,3(--的距离之和, 由图可知当点P 为线段与x 轴的交点时,如图34)12()23(22min =+++==AB y ,故所求函数的值域为),34[+∞.(3)将函数变形为:2222)10()2()20()3(-++--+-=x x y可看成定点A ()3,2到点P )0,(x 的距离与定点B ()2,1-到点P )0,(x 的距离之差. 如图BP AP y -=由图可知:①当点P 在x 轴上且与A ,B 两点不供线时,如点'P ,则构成'ABP ∆,)2xBP根据三角形两边之差小于第三边,有26)12()23(22=-++=<'-'AB P B P A所以2626<'-'<-P B P A即2626<<-y②当点P 恰好为直线AB 与x 轴的交点时,有26=='-'AB P B P A .综上所述,函数的值域为:]26,26(-.三、 课堂训练第一部分:函数定义域1.函数()x x x y +-=1的定义域为( ){}0.≥x x A{}1.≥x x B{}{}01. ≥x x C{}10.≤≤x x D解析:由题意得()⎩⎨⎧≥≥-001x x x ⎩⎨⎧≥≤≥⇒001x x x 或即[){}0,1 +∞∈x ,故选.C 2.()xx f 1111++=的定义域为 .【解析】由分式函数分母不为0得:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≠≠+≠++001101121x x x解得⎪⎪⎪⎩⎪⎪⎪⎨⎧≠-≠≠-≠-≠010311x x x x x 或或()1,-∞-∈⇒x ⎪⎭⎫ ⎝⎛-31,1 ⎪⎭⎫ ⎝⎛0,31 ()+∞,0 3.已知函数()x f 的定义域为[].2,2- ①求函数()x f 2的定义域;②求函数⎪⎭⎫⎝⎛-141x f 的定义域. 【解析】① 函数()x f 的定义域为[]2,2-222≤≤-∴x 即11≤≤-x故函数()x f 2的定义域为[]1,1-∈x . ② 函数()x f 的定义域为[]2,2-21412≤-≤-∴x 即124≤≤-x 故函数⎪⎭⎫⎝⎛-141x f 的定义域为[]12,4-. 4.已知函数()42-x f的定义域[]5,3∈x ,则函数()x f 的定义域是?【解析】 函数()42-x f 的定义域[]5,3∈x 21452≤-≤∴x即函数()x f 的定义域是[]21,5∈x5.如果函数()()()x x x f -+=11的图像在x 轴上方,则()x f 的定义域为( ).{}1.<x x A {}1.>x x B {}11.-≠<x x x C 且 {}11.≠->x x x D 且【解析】对于()(),011>-+x x 当0≥x 时,有()()011<-+x x 11<<-⇒x 得;10<≤x当0<x 时,有()012>+x 1-≠⇒x 得.10-≠<x x 且 综上,,11-≠<x x 且故选.C6.(1)已知1,,,,≠∈+a R z y x a ,设,,log 11log 11zya a ay ax --==用x a ,表示z .(2)设ABC ∆的三边分别为c b a ,,,且方程01lg 2)lg(2222=+--+-a b c x x 有等根,判断ABC ∆的形状. 【解析】(1),,log 11log 11zya a ay ax --==则,log 11log log ,log log log 11log 11z ay ax a za a ya a a a -===--y ax a ya a a log 11log log log 11-==-zza a log 11log 1111-=--=所以xz a a log 11log -=,故xa a z log 11-=.(2)原方程可以转化为0)(10lg 22222=-+-a b c x x又因为方程有等根,则0)(10lg 4)2(2222=---=∆ab c , 必然有1)(10lg 222=-a b c ,所以10)(10222=-ab c ,即222a b c +=. 故ABC ∆为直角三角形.第二部分:函数的值域例1.求函数111++=x y 的值域.【解析】.111,01≥++∴≥+x x ∴11110≤++<x ,∴函数的值域为(]1,0.例2.求函数[]2,1,522-∈+-=x x x y 的值域.【解析】将函数配方得:()412+-=x y []2,1-∈x由二次函数的性质可知:当1=x 时,,4m in =y 当1-=x 时,8m ax =y故函数的值域是[]8,4例3.求函数1-+=x x y 的值域.【解析】令()01≥=-t t x ,则12+=t x 故.4321122+⎪⎭⎫ ⎝⎛+=++=t t t y又,0≥t 由二次函数性质知,当0=t 时,;1min =y 当t 不断增大时,y 值趋于∞+, 故函数的值域为[)+∞,1.例4.求函数2332+-+-=x x x y 的值域. 【解析】定义域满足⎩⎨⎧≥+-≥-023032x x x 3≥⇒x . 令,31-=x y 任取,321≥>x x 由,03333212121>-+--=---x x x x x x1y ∴在[)+∞,3上单调递增.令,2322+-=x x y由,232+-=x x u 对称轴,23=x 开口向上,知2y 在[)+∞,3上也单调递增. 从而知()=x f 2332+-+-x x x 在定义域[)+∞,3上是单调递增.()∴=≥∴.23f y 值域为[)+∞,2.例5.求函数21+-=x x y 的值域 【解析】由1231232≠+-=+-+=x x x y ,可得值域{}1≠y y 例6.求13+--=x x y 的值域【解析】可化为 ⎪⎩⎪⎨⎧>-≤≤---<=3,431,221,4x x x x y 如图:观察得值域{}44≤≤-y y .例7.求函数x y -=3的值域.【解析】0≥x 33,0≤-≤-∴x x 故函数的值域是:[]3,∞-例8.求函数51042+++=x x y 的值域.【解析】配方,得().5622+++=x y ().65,6622+≥∴≥++y x∴函数的值域为).,65(+∞+例9.求函数1122+++-=x x x x y 的值域.【解析】 1122+++-=x x x x y ,R x ∈,去分母整理得()()01112=-+++-y x y x y.当1=y 时,,0=x 故y 可取1; ①当1≠y 时,方程①在R 内有解,则()()(),011412≥---+=∆y y y,031032≤+-∴y y 解得.331≤≤y ∴函数的值域为.3,31⎥⎦⎤⎢⎣⎡例10.求函数11--+=x x y 的值域.【解析】原函数可化为:112-++=x x y令,1,121-=+=x y x y 显然21,y y 在[)+∞,1上为无上界的增函数所以21,y y y =在[)+∞,1上也为无上界的增函数所以当1=x 时,21y y y +=有最小值2,原函数有最大值222= 显然,0>y 故原函数的值域为(]2,0.例11.求函数133+=x xy 的值域【解析】设t x=+13 ,则()111131113113>-=+-=+-+=t ty xx x 101101<<∴<<∴>y tt ,()01原函数的值域为∴.例12.求函数53-++=x x y 的值域.【解析】53-++=x x y ⎪⎩⎪⎨⎧≥-<<--≤+-=)5(22)53(8)3(22x x x x x由图像可知函数53-++=x x y 的值域为[)+∞,8.四、 课后作业【训练题A 类】1.函数()f x = ).A . 1[,)2+∞B . 1(,)2+∞ C. 1(,]2-∞ D. 1(,)2-∞2.函数265x x y ---=的值域是( )525.≤≤y A5.≤y B 50.≤≤y C 5.≥y D 3.函数31---=x x y 在其定义域内有( ).A 最大值2,最小值2- .B 最大值3,最小值1- .C 最大值4,最小值0 .D 最大值1,最小值3-4.已知函数31++-=x x y 的最大值为M ,最小值为m ,则Mm的值为( ) 41.A 21.B 22.C23.D 5.函数()=x f 962+-x 的值域是 ( )A 、(-∞,6)B 、]3,(-∞C 、 (0,6)D 、 (0,3) 6.()421-=x x f 的定义域为_____ 7.函数x x y 21-+=的值域是 . 8.求()4313512-++-=x x x x f 的定义域9.求2045222+-++-=x x x x y 的值域.10.求函数12-+=x x y 的值域.11.已知()x f 的值域为,94,83⎥⎦⎤⎢⎣⎡试求()()x f x f y 21-+=的值域.【参考答案】1.【答案】C【解析】由根式知21021≤⇒≥-x x 故选.C 2.【答案】A【解析】425425216022≤+⎪⎭⎫ ⎝⎛+-=--≤x x x , 25602≤--≤∴x x ,即525≤≤y 3.【答案】A【解析】由题意得()()()⎪⎩⎪⎨⎧>≤<-≤-=3,231,421,2x x x x y []2,2-∈⇒y ,故选A4.【答案】C【解析】两边平方,即()()312312+-+++-=x x x x y ()41242++-+=x844max 2=+=y ,4min 2=y ,2284max min ==y y 故选C . 5.【答案】B【解析】∴≥+392x 3962≤+-x 故选.B6.【答案】()+∞,8 【解析】80421≥⇒≥-x x ,即()+∞,8 7.【答案】(],1-∞【解析】令x t 21-=则()0212≥-=t t x 即()()021212≥++-=t t t t f ()11212+--=t故1=t 时,取得最大值.即().1≤x f8.【解析】1212210431012>⇒⎪⎩⎪⎨⎧>≥⇒⎪⎩⎪⎨⎧>-≥-x x x x x ,即()+∞,129.【解析】()()1624122+-++-=x x y ()()()()2222402201-+-+++-=x x即可看成三点:()()()4,2,2,1,0,B A x P -,PB PA y +=在PAB ∆中AB PB PA >+知点()2,1-A 点()4,2B 在数轴异侧时AB 最大.PB PA y +==AB 故()()37422122=--+-=≥AB y10.【解析】显然,函数的定义域为21≥x . 当21≥x 时,函数12,21-==x y x y 都是递增的 所以在21=x 时,取得最小值.即⎪⎭⎫⎢⎣⎡+∞∈,21y . 11.【解析】()(),412191,9483≤-≤∴≤≤x f x f即有(),212131≤-≤x f 令(),21,31,21⎥⎦⎤⎢⎣⎡∈-=t x f t ()(),1212t t x f +-=()()t t t g y +-==∴2121()11212+--=t⎥⎦⎤⎢⎣⎡∉21,311 ,∴函数()t g y =在区间⎥⎦⎤⎢⎣⎡21,31上单调递增,,9731min =⎪⎭⎫ ⎝⎛=∴g y ∴=⎪⎭⎫ ⎝⎛=.8721max g y 函数的值域为⎥⎦⎤⎢⎣⎡87,97.【训练题B 类】1.求()52+=x x f 的值域2.求函数xy --=111的值域3.求函数12--=x x y 的值域.4.已知()x f 43-的定义域为[],2,1-∈x 则函数()x f 的定义域是?5.求下列函数的值域:(1);1342++=x x y (2)5438222+-+-=x x x x y6.对于每个函数x ,设()x f 是2,14+=+=x y x y 和42+-=x y 三个函数中的最小者,则()x f 的最大值是什么?7.已知⎪⎭⎫⎝⎛-x f 213的定义域为[]5,1∈x ,则函数()32+x f 的定义域是?8.求下列函数的值域:(1)[);5,1,642∈+-=x x x y (1)245x x y -+=.9.求函数13+--=x x y 的值域.10.函数232+-=kx x y 的值域为⎪⎭⎫⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,3232, ,求k 的值.11.(1)已知函数⎩⎨⎧≥<=0,0,)(2x x x x x f ,求))((x f f .(2)求函数12)(2--+=x x x f 的最小值.12.若函数432--=x x y 的定义域为[],,0m 值域为,4,425⎥⎦⎤⎢⎣⎡--求m 的取值范围.【参考答案】1.【解析】25052-≥⇒≥+x x ,即⎪⎭⎫⎝⎛+∞-,25 2.【解析】原式化为,11=--x y y ,011≥-=-∴yy x 即01<≥y y 或. 故()[)+∞∞-∈,10, y .3.【解析】函数的定义域是{}.,1R x x x ∈≥令()0,1≥=-t t x 则 ,12+=t x8154122222+⎪⎭⎫ ⎝⎛-=+-=∴t t t y ,又o t ≥,∴结合二次函数的图像知()815≥t y .故原函数的值域为⎭⎬⎫⎩⎨⎧≥815y y . 4.【解析】 ()x f 43-的定义域为[]2,1-∈x 7435≤-≤-∴x()x f ∴的定义域为[]7,5-∈x .5.【解析】(1)由1342++=x x y 可得,0342=-+-y x yx 当0=y 时,;43-=x 当0≠y 时,,R x ∈故()(),03442≥---=∆y y解得,41≤≤-y 且0≠y .当2-=x 时,;1-=y 当21=x 时,.4=y∴所求函数的值域为[].4,1-(2)由5438222+-+-=x x x x y 可得()()0352422=-+---y x y x y ,当02≠-y 时,由,R x ∈得()()()035242162≥----=∆y y y ,25≤≤-∴y .25<≤-∴y .经检验2=x 时,5-=y ,而2≠y .∴原函数的值域为[]2,5-.6.【解析】在同一直角坐标系中作出三个函数的图像,由图像可知,()x f 的最大值是2+=x y 和42+-=x y 交点的纵坐标,易得()38max =x f . 7.【解析】 ⎪⎭⎫⎝⎛-x f 213的定义域为[]5,1∈x 2521321≤-≤∴x 即253221≤+≤x4145-≤≤-∴x 故函数()32+x f 的定义域是⎥⎦⎤⎢⎣⎡--∈41,45x 8.【解析】(1)配方,得().222+-=x y [),5,1∈x ∴函数的值域为{}.112<≤y y(2)对根号里配方得:()30922≤≤⇒+--=y x y 即[]3,0∈∴y .9.【解析】原式可变为()[)[)⎪⎩⎪⎨⎧+∞∈--∈+--∞-∈=,3,43,1,221,,4x x x x y 44≤≤-⇒y 即[]4,4-∈y10.【解析】232+-=kx x y 的反函数为kx x y -+=232,其定义域为⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛∞-,22,k k ,故.3322-=⇒-=k k 11.【解析】(1)当0≥x 时,0)(2≥=x x f ,则42)())((x x f x f f ==;当0<x 时,,0)(<=x x f 则x x f x f f ==)())(( 所以⎩⎨⎧≥<=0,0,))((2x x x x x f f(2)⎪⎩⎪⎨⎧<++-≥-+=2,12,3)(22x x x x x x x f由)(x f 在),2[+∞上的最小值为3)2(=f , 在)2,(-∞上的最小值为43)21(=f 故函数)(x f 在R 上的最小值为43. 12.【解析】,425232-⎪⎭⎫ ⎝⎛-=x y 因为,4,425⎥⎦⎤⎢⎣⎡--∈y 又,4)0(-=f ,42523-=⎪⎭⎫ ⎝⎛f ()43-=f ,故⎥⎦⎤⎢⎣⎡∈⇒≤≤3,23323m m . 【训练题C 类】1.函数()()R x xx f ∈+=211的值域是( ) []1,0.A [)1,0.B (]1,0.C ()1,0.D2.函数()155+=x xx f 的值域是( ) ()()+∞-∞-,51,. A ()5,1.B()()+∞∞-,11,. C ⎪⎭⎫⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,5151,. D3.下列函数中,值域是()+∞,0的是( )12.2+-=x x y A ()()+∞∈++=,012.x x x y B ()Nx x x y C ∈++=121.211.+=x y D 4.求函数x x y 431-+-=的值域.5.求x x y ++-=12的值域.6.函数()112->++=x x x y 的值域是.7.已知函数()x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有()()()x f x x xf +=+11,则⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛25f f 的值是多少?8.求函数)2(x x x y -+=的值域.9.已知函数⎪⎩⎪⎨⎧+∞∈+-∞∈-=),0[,1)0,(,11)(2x x x x x f ,求)1(+x f .10.已知函数()x f 的定义域为()b a ,且,2>-a b 则()()()1313+--=x f x f x F 的定义域为()13,13.-+b a A ⎪⎭⎫ ⎝⎛-+31,31.b a B ⎪⎭⎫ ⎝⎛--31,31.b a C ⎪⎭⎫⎝⎛++31,31.b a D11.若函数()x f y =的定义域为[],1,1-求函数⎪⎭⎫⎝⎛-∙⎪⎭⎫ ⎝⎛+=4141x f x f y 的定义域.【参考答案】1.【答案】C【解析】.1110,11,0,222≤+<∴≥+∴≥∴∈x x x R x∴函数()()R x xx f ∈+=211的值域为(].1,0 2.【答案】C 【解析】15115155+-+=+=x x x x y 1511+-=x 11511015≠+-∴≠+x x 即1≠y 知()()+∞∞-∈,11, y 故选.C3.【答案】D 【解析】A 中()012≥-x [)+∞∈∴,0yB 中11112++=++x x x ()+∞∈,0x 21<<∴y 即()2,1∈y C 中()2211121+=++=x x x y N x ∈ ()1,0∈∴y D 中由题意知01>+x ()+∞∈+∴,011x 故选D 4.【解析】令()01≥=-t t x 则()012≥+=t t x则142-+-=t t y ()o t t ≥⎪⎭⎫⎝⎛--=2214则0≤y .5.【解析】两边平方:6649212322≤⇒≤+⎪⎭⎫ ⎝⎛--+=y x y6.【解析】()12111211111112->=+⋅+≥+++=+++=++=x x x x x x x x x y当且仅当111+=+x x 即0=x 时成立,故2≥y 7.【解析】由()()()x f x x xf +=+11可得:23=x 时,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛23252523f f ,21=x 时,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛21232321f f , 21-=x 时,⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-21212121f f .又.025,023021=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛f f f又()()()(),111111--=+--f f ()().0100=-=-∴f f()().0025,00==⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∴=∴f f f f8.【解析】由0)2(≥-x x 解得定义域为20≤≤x两边平方整理得:0)1(2222=++-y x y x (1)因为0)1(2222=++-y x y x 一定有根,所以08)1(42≥-+=∆y y 解得:2121+≤≤-y由0≥∆仅保证关于x 的方程:0)1(2222=++-y x y x 在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根, 也就是说0≥∆求出的范围可能比y 的实际范围大, 故需要进一步确定此函数的值域. 采取如下方法进一步确定函数的值域. ∵20≤≤x 0)2(≥-+=∴x x x y ,把0min =y ,21+=y 带入方程(1)解得:]2,0[2222241∈-+=x即当时,2222241-+=x 时原函数的值域为:]21,0[+9.【解析】由复合函数的定义域知)1(+x f 的定义为),1[)1`,(+∞-⋃--∞当)1`,(--∞∈x 时 11)2(+=-x x f ,当),1[+∞-∈x 时22)1(2++=+x x x f 所以⎪⎩⎪⎨⎧+∞-∈++--∞∈+=+),1[,22)1,(,11)1(2x x x x x x f10.【答案】B【解析】由题意得⎩⎨⎧<+<<-<b x a b x a 1313,即⎪⎪⎩⎪⎪⎨⎧-<<-+<<+31313131b x a b x a 显然,3131->+b b ,3131->+a a 又,2>-a b 从而.3131+>-a b()x F ∴的定义域为⎪⎭⎫⎝⎛-+31,31b a ,故选.B11.【解析】 函数()x f y =的定义域为[]1,1-∴有⎪⎪⎩⎪⎪⎨⎧≤-≤-≤+≤-14111411x x 即⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤-45434345x x 得4343≤≤-x 故函数⎪⎭⎫ ⎝⎛-∙⎪⎭⎫ ⎝⎛+=4141x f x f y 的定义域是⎥⎦⎤⎢⎣⎡-∈43,43x .。
函数的性质教案8篇

函数的性质教案8篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!函数的性质教案8篇教案是教师与学生之间沟通的桥梁,教案是教学的路线图,帮助我们不偏离轨道,以下是本店铺精心为您推荐的函数的性质教案8篇,供大家参考。
函数的基本性质ppt课件

►单调性的两个易错点:单调性;单调区间.
(2)函数的单调递增(减)区间有多个时,不能用并集表示, 可以用逗号或“和”。
例如 函数 f(x)=x+1x的单调递增区间为________.
解析 由f(x)图象易知递增区间为(-∞,-1],[1,+∞). 答案 (-∞,-1],[1,+∞)
变式训练:
已知奇函数f (x)的定义域为- 2,2,且在区间 - 2,0上递减,则满足f (1 m) f (1 m2) 0的 实数m的取值范围是-1,1
题型五、函数的周期性解题方略
1.有关函数周期性的常用结论 (1)若 f(x+a)=f(x-a),则函数的周期为 2|a|; (2)若 f(x+a)=-f(x),则函数的周期为 2|a|; (3)若 f(x+a)=f(1x),则函数的周期为 2|a|; (4)若 f(x+a)=-f(1x),则函数的周期为 2|a|.
叫做f(x)的最小正周期.
题型归纳
题型一 判断函数的单调性 判断函数的单调性或求单调区间的方法 (1)利用已知函数的单调性. (2)定义法:先求定义域,再利用单调性定义.
(3) 图 象 法 : 如 果 f(x) 是 以 图 象 形 式 给 出 的 , 或 者 f(x)的图象易作出,可由图象的直观性写出它的单
域为[a-1,2a],则a=________,b=________.
解析 由定义域关于原点对称得 a-1+2a=0,解得 a=13,即
f(x)=13x2+bx+b+1,又 f(x)为偶函数,由 f(-x)=f(x)得 b=0.
答案
1 3
0
(2)若函数 f(x)为奇函数且在原点有意义,则 f(0)=0
[点评] 解题(1)的关键是会判断复合函数的单调性;解题(2) 的关键是利用奇偶性和单调性的性质画出草图.
函数的基本性质ppt课件

1
即函数f(x)=x+ 为奇函数.
函数的基本性质
例1 判断下列函数的奇偶性:
(3)f(x)=0;
(2)f(x)= ;
解:(1)函数f(x)的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=0=-f(x)=f(x),
函数f(x)既是奇函数,又是偶函数.
1
(2)函数f(x)=x+ 的定义域I为[0,+∞).
(1)若函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间
[a,b]上的最小(大)值是f(a),最大(小)值是f(b).
(2)若函数f(x)在区间[a,b]上是增(减)函数,在区间[b,c]
上是减(增)函数,则f(x)在区间[a,c]上的最大(小)值是f(b),
最小(大)值是f(a)与f(c)中较小(大)的一个.
当 > 0时,(1 ) − (2 )<0,即(1 ) < (2 )
所以函数() = + 在R上单调递增,即函数() = + 是增函数。
当 < 0时,(1 ) − (2 )>0,即(1 ) > (2 )
所以函数() = + 在R上单调递减,即函数() = + 是减函数。
1
(2)f(x)=x+
;
解:(1)函数f(x)=x4的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=(-x)4=x4=f(x),
函数f(x)=x4为偶函数.
1
(2)函数f(x)=x+ 的定义域I为(-∞,0)∪(0,+∞).
1
1
∀x∈I,都有-x∈I,且f(-x)=-x+ =-(x+ )=-f(x),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一年段数学培优教材第一讲 函数的基本性质1一、基本性质:1. 函数图像的对称性(1) 奇函数与偶函数:奇函数图像关于坐标原点对称,对于任意x D ∈,都有()()f x f x -=-成立;偶函数的图像关于y 轴对称,对于任意x D ∈,都有()()f x f x -=成立。
(2) 原函数与其反函数:原函数与其反函数的图像关于直线y x =对称。
若某一函数与其反函数表示同一函数时,那么此函数的图像就关于直线y x =对称。
若函数满足()(2)f x f a x =-,则()f x 的图像就关于直线x a =对称;若函数满足 f (x) + f (2a -x) = 2b ,则()f x 的图像就关于点(a ,b)对称。
(3) 互对称知识:函数()()y f x a y f a x =-=-与的图像关于直线x a =对称。
2.函数的单调性函数的单调性是针对其定义域的某个子区间而言的。
判断一个函数的单调性一般采用定义法、导数法或借助其他函数结合单调性的性质(如复合函数的单调性) 特别提示:函数(0)ay x a x=+>的图像和单调区间。
3.函数的周期性对于函数()y f x =,若存在一个非零常数T ,使得当x 为定义域中的每一个值时,都有()()f x T f x +=成立,则称()y f x =是周期函数,T 称为该函数的一个周期。
若在所有的周期中存在一个最小的正数,就称其为最小正周期。
(1) 若T 是()y f x =的周期,那么()nT n Z ∈也是它的周期。
(2) 若()y f x =是周期为T 的函数,则()(0)y f ax b a =+≠是周期为Ta的周期函数。
(3) 若函数()y f x =的图像关于直线x a x b ==和对称,则()y f x =是周期为2()a b -的函数。
(4) 若函数()y f x =满足()()(0)f x a f x a +=-≠,则()y f x =是周期为2a 的函数。
4.几种特殊的抽象函数的周期:函数()y f x =满足对定义域内任一实数x (其中a 为常数), ① ()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;②()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; ③()()1f x a f x +=±,则()x f 是以2T a =为周期的周期函数; ④()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数;⑤1()()1()f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数.⑥1()()1()f x f x a f x -+=-+,则()x f 是以4T a =为周期的周期函数.⑦1()()1()f x f x a f x ++=-,则()x f 是以4T a =为周期的周期函数.⑧函数()y f x =满足()()f a x f a x +=-(0a >),若()f x 为奇函数,则其周期为4T a =,若()f x 为偶函数,则其周期为2T a =.⑨函数()y f x =()x R ∈的图象关于直线x a =和x b =()a b <都对称,则函数()f x 是以 ()2b a -为周期的周期函数;⑩函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;⑾函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是 以()4b a -为周期的周期函数;二、范例讲解3. (原创)设函数f(x)是奇函数且周期为3,若f(1)=-1,则f(2 015)=________. 答案:1解析:由条件,f(2 015)=f(671×3+2)=f(2)=f(-1)=-f(1)=1.例3 设f(x)是定义在R 上的奇函数,且对任意实数x ,恒有f(x +2)=-f(x),当x ∈[0,2]时,f(x)=2x -x 2.(1) 求证:f(x)是周期函数;(2) 当x ∈[2,4]时,求f(x)的解析式;(3) 计算f(0)+f(1)+f(2)+…+f(2 014)的值.(1) 证明:因为f(x +2)=-f(x), 所以f(x +4)=-f(x +2)=f(x), 所以f(x)是周期为4的周期函数. (2) 解:因为x ∈[2,4],所以-x ∈[-4,-2],4-x ∈[0,2], 所以f(4-x)=2(4-x)-(4-x)2=-x 2+6x -8.又f(4-x)=f(-x)=-f(x),所以-f(x)=-x 2+6x -8,即f(x)=x 2-6x +8,x ∈[2,4]. (3) 解:因为f(0)=0,f(1)=1,f(2)=0,f(3)=-1, 又f(x)是周期为4的周期函数,所以f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)= 0所以f(0)+f(1)+f(2)+…+f(2 014)=f(0)+f(1)+f(2)=1.4. 【2014届高三原创预测卷理科数学试卷2(安徽版)】定义在R 上的偶函数()f x 满足33,22f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭且()()11,02,f f -==-则()()()()1232014f f f f ++++的值为( )A .1B .2-C .2D .0 【答案】A .例1:设()f x 是R 上的奇函数,(2)(),01(),f x f x x f x x +=-≤≤=当时,求(7.5)f 的值。
例2:设(),()f x g x 都是定义在R 上的奇函数,()()()2F x a f x b g x =++在区间(0,)+∞上的最大值为5,求()(,0)F x -∞在上的最小值。
例6:已知定义在R 上的函数()f x 满足()()()f x f y f x y +=+,当0()0x f x <<时,(1)2f =;(1) 求证:()f x 为奇函数; (2)求()f x 在[3,3]-上的最值;(3)当2t >时,不等式2222(log )(log log 2)0f k t f t t +--<恒成立,求实数k 的取值范围。
例8:设()f x 是定义在Z 上的一个实值函数,()f x 满足()()2()()(1)0f x y f x y f x f y f ++-=⎧⎨=⎩①②,求证:()f x 是周期为4的周期函数。
例9:给定实数x ,定义[]x 为不大于x 的最大整数,则下列结论中不正确的序号是 ( )[]0[]1()[]()[]x x x x f x x x f x x x -≥-<=-=-①②③是周期函数④是偶函数三、强化训练:6.【2014高考江苏卷第13题】已知()f x 是定义在R 上且周期为3的函数,当[)0,3x ∈时,21()22f x x x =-+,若函数()y f x a =-在区间[]3,4-上有10个零点(互不相同),则实数a 的取值范围是 .7. 【2014全国1高考理第3题】设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是( )A .)()(x g x f 是偶函数B .)(|)(|x g x f 是奇函数 C..|)(|)(x g x f 是奇函数 D .|)()(|x g x f 是奇函数11.【2014四川高考理第12题】设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = .【答案】112.【2014陕西高考理第7题】下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()12f x x = (B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭(D )()3xf x =14.【2014大纲高考理第12题】函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称,则()y f x =的反函数是( )A .()y g x =B .()y g x =-C .()y g x =-D .()y g x =-- 21. 【2013年普通高等学校招生全国统一考试(上海卷)理】设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++,若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为______. 【答案】87a ≤-1. 【浙江省建人高复2014届高三上学期第二次月考】已知函数()f x 满足(1)()f x f x +=-,且()f x 是偶函数,当[0,1]x ∈时,2()f x x =,若在区间[1,3]-内,函数()()g x f x kx k =--有4个零点,则实数k 的取值范围是( )A . (0,)+∞B . 1(0,]2 C . 1(0,]4D . 11[,]432. 【黄冈市2013年秋季高三年级期末考试理科数学】定义在R 上的偶函数,)(x f 满足R ∈∀x ,都有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上有三个零点,则a 的取值范围是 .【答案】53<<x2. 【唐山市2013-2014学年度高三年级第一学期期末考试】(x)f 是R 上的奇函数,当0x ≥时,3(x)x ln(1x)f =++,则当0x <时,()f x =( )A .3x ln(1x)--- B .3x ln(1x)+- C .3x ln(1x)-- D .3x ln(1x)-+-7. 【湖北孝感高中2014届高三年级九月调研考试】已知()y f x =是定义在R 上周期为4的奇函数,且02x ≤≤时,2()2f x x x =-则1012x ≤≤时,()f x =_________________ 9. 【福建长乐二中等五校2014届高三上期中联考数学(理)】定义在R 上的函数()f x 满足)()3(x f x f -=+,当31x -≤<-时,2()(2)f x x =-+,当13x -≤<时,()f x x =.则)2013()3()2()1(f f f f +++=( )A . 338B .337C .1678D .201311. 【2013河北省名校名师俱乐部高三3月模拟考试】已知()f x 是定义在R 上的奇函数,且是以2为周期的周期函数,若当[0,1)x ∈时,()21xf x =-,则12(log 6)f 的值为( )A .52-B .5-C .12- D .6- 【答案】C【解析】∵123log 62-<<-,∴121log 620-<+<即1231log 02-<< ∵f(x)是周期为2的奇函数∴23log 211122223331(log 6)(log )(log )(log )(21)2222f f f f ==--=-=--=-5. 【2014年高考原创预测卷(浙江版)】已知函数()y f x =是周期为2的周期函数,且当[1,1]x ∈-时,||()21x f x =-,则函数()()|lg |F x f x x =-的零点个数是( )A .9B .10C .11D .187.(2013·重庆高考文科·T3)函数21log (2)y x =-的定义域为 ( )A.(,2)-∞B.(2,)+∞C.(2,3)(3,)+∞D.(2,4)(4,)+∞6.(2013·天津高考理科·T8)已知函数()(1||)f x x a x =+. 设关于x的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是 ( )A. 15,0⎛⎫- ⎪ ⎪⎝⎭B.13,0⎛⎫- ⎪ ⎪⎝⎭C.15,0130,⎛⎫+⋃⎛ ⎪ ⎪⎝⎫- ⎪ ⎝⎭⎪⎭ D.5,1⎛⎫-- ⎪ ⎝⎭∞⎪ 【解题指南】将原函数转化为分段函数脱去绝对值号,再分情况讨论求解.【解析】选A. 因为22,()(1||),⎧+≥=+=⎨-<⎩x ax x f x x a x x ax x ,当a ≥0时,函数f(x)是增函数,由于x+a ≥x,所以不等式f(x+a)<f(x)无解,即a ≥0时无意义;当a<0时,若x<0,由f(x+a)<f(x)得x+a-a(x+a)2<x-ax 2,解得212->a x a.又因为函数f(x)是奇函数,不等式f(x+a)<f(x)的解集2211,22⎛⎫--=- ⎪⎝⎭a a A a a ,由11,22A ⎡⎤-⊆⎢⎥⎣⎦得,21122-<-a a ,解得150.-<<a 1. (2013·辽宁高考文科·T7)已知函数2()ln(193)1f x x x =+-+,则1(lg 2)(lg )2f f +=( ).1..1.2A B C D -1.(2013·福建高考文科·T5)函数()()2ln 1=+f x x 的图像大致是 ( )2.(2013·辽宁高考理科·T11)已知函数2222()2(2),()2(2)8,f x x a x a g x x a x a =-++=-+--+设{}{}12()max (),(),()min (),()H x f x g x H x f x g x ==({}max ,p q 表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值)记1()H x 的最小值为A , 2()H x 的最大值为B ,则A B -=( )22.16.16.216.216A B C a a D a a ---+-11. (2013·大纲版全国卷高考文科·T13)()[)()21,3=f x x f x ∈是以为周期的函数,且当时,2-x ,则=-)1(f .12.(2013·北京高考文科·T13)函数f (x )=12log ,12,1x x x x ≥⎧⎪⎨⎪<⎩的值域为_________.【解题指南】分别求出每段的值域,再取并集。