2.数字调制 - 通信原理实验报告
通信原理实验报告

中南大学数字通信原理实验报告课程名称:数字通信原理实验班级:学号:姓名:指导教师:实验一数字基带信号一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。
2、掌握AMI、HDB3码的编码规则。
3、掌握从HDB3码信号中提取位同步信号的方法。
4、掌握集中插入帧同步码时分复用信号的帧结构特点。
5、了解HDB3(AMI)编译码集成电路CD22103。
二、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。
2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。
3、用示波器观察HDB3、AMI译码输出波形。
三、实验步骤本实验使用数字信源单元和HDB3编译码单元。
1、熟悉数字信源单元和HDB3编译码单元的工作原理。
接好电源线,打开电源开关。
2、用示波器观察数字信源单元上的各种信号波形。
用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位置的GND点均可,进行下列观察:(1)示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2)用开关K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ 码特点。
3、用示波器观察HDB3编译单元的各种波形。
仍用信源单元的FS信号作为示波器的外同步信号。
(1)示波器的两个探头CH1和CH2分别接信源单元的NRZ-OUT和HDB3单元的AMI-HDB3,将信源单元的K1、K2、K3每一位都置1,观察全1码对应的AMI码(开关K4置于左方AMI 端)波形和HDB3码(开关K4置于右方HDB3端)波形。
通信原理实验报告南航

一、实验目的1. 理解通信原理的基本概念和原理。
2. 掌握通信系统的基本组成和各部分的功能。
3. 熟悉通信信号的基本处理方法。
4. 培养实验操作能力和分析问题、解决问题的能力。
二、实验内容1. 通信系统基本组成实验2. 通信信号调制与解调实验3. 通信信道传输特性实验4. 通信系统误码率实验三、实验仪器1. 通信原理实验箱2. 双踪示波器3. 数字信号发生器4. 信号分析仪四、实验原理1. 通信系统基本组成实验:了解通信系统的基本组成,包括信源、信道、信宿和变换器等。
2. 通信信号调制与解调实验:掌握模拟调制、数字调制的基本原理,以及相应的调制和解调方法。
3. 通信信道传输特性实验:了解通信信道的传输特性,包括频率响应、时延特性和噪声特性等。
4. 通信系统误码率实验:掌握通信系统误码率的计算方法,以及影响误码率的因素。
五、实验步骤1. 通信系统基本组成实验(1)观察实验箱各模块的功能和连接方式;(2)按照实验指导书的要求,连接实验电路;(3)进行实验操作,观察实验现象,记录实验数据。
2. 通信信号调制与解调实验(1)按照实验指导书的要求,设置调制参数和解调参数;(2)进行调制和解调实验,观察实验现象,记录实验数据;(3)分析实验结果,验证调制和解调的正确性。
3. 通信信道传输特性实验(1)设置不同的信道参数,观察信道对信号的影响;(2)分析信道传输特性,记录实验数据;(3)计算信道传输特性指标,如信噪比、误码率等。
4. 通信系统误码率实验(1)设置不同的误码率,观察误码率对通信系统的影响;(2)分析误码率与信道、调制、解调等因素的关系,记录实验数据;(3)计算通信系统误码率,验证实验结果。
六、实验结果与分析1. 通信系统基本组成实验实验结果显示,通信系统由信源、信道、信宿和变换器等部分组成,各部分之间通过信号传输实现信息交流。
2. 通信信号调制与解调实验实验结果显示,调制和解调过程可以有效地将信息信号转换为适合信道传输的形式,并恢复出原始信息。
通信原理二进制调制技术原理报告

实验二二进制调制技术原理一:实验目的(1)根据题目,查阅有关资料,掌握数字带通调制技术以及扩频通信原理。
(2)学习MA TLAB软件,掌握MA TLAB各种函数的使用。
(3)根据数字带通调制原理,运用MA TLAB进行编程,仿真调制过程,记录并分析仿真结果。
(4)熟悉二进制调制的技术原理,能够利用二进制调制原理进行2ASK,2PSK,2FSK调制并分析在不同信噪比下它们的误码率。
二: 实验原理数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。
为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。
这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。
通常使用键控法来实现数字调制,比如对载波的振幅、频率和相位进行键控。
(1)2ASK:2ASK信号的产生方法通常有两种:模拟调制和键控法。
解调有相干解调和非相干解调。
P=1时f(t)=Acoswt;p=0时f(t)=0;其功率谱密度是基带信号功率谱的线性搬移(2)2FSK:一个FSK信号可以看成是两个不同载波的2ASK信号的叠加。
其解调和解调方法和ASK差不多。
2FSK信号的频谱可以看成是f1和f2的两个2ASK频谱的组合。
(3)2PSK:2PSK以载波的相位变化作为参考基准的,当基带信号为0时相位相对于初始相位为0,当基带信号为1时相对于初始相位为180°。
三:实验内容:(1) 2ASK调制信噪比:snr=5db信噪比:snr=15db时信噪比:snr=25db时1.单极性NRZ基带信号的时域波形和频谱2.经过2ASK调制后的波形3.经过信道后的波形图4. 设计带通滤波器5经过理想低通6.抽样判决(2) 2PSK调制信噪比:snr=5db信噪比: snr=15db时信噪比:snr=25db时经过2ASK调制后的波形经过信道后的波形图设计带通滤波器经过理想低通后的波形图抽样判决四:实验结果2ASK程序代码:%clc;clear all;close all;echo off%echo on%------------------系统仿真参数A=1; %载波振幅fc=3; %载波频率(Hz)snr=5; %信噪比dB。
普通调制解调实验报告(3篇)

第1篇一、实验目的1. 了解普通调制解调的基本原理和过程。
2. 掌握模拟调制和解调的基本方法。
3. 学习调制解调设备的使用和调试方法。
4. 培养实际操作能力和分析问题的能力。
二、实验原理调制解调是一种将数字信号转换为模拟信号,或将模拟信号转换为数字信号的通信技术。
调制是将数字信号转换为模拟信号的过程,解调是将模拟信号转换为数字信号的过程。
调制解调的基本原理如下:1. 模拟调制:将数字信号转换为模拟信号的过程称为模拟调制。
模拟调制分为调幅(AM)、调频(FM)和调相(PM)三种。
2. 数字调制:将模拟信号转换为数字信号的过程称为数字调制。
数字调制分为调幅键控(ASK)、调频键控(FSK)和调相键控(PSK)三种。
3. 解调:将模拟信号转换为数字信号的过程称为解调。
解调分为模拟解调和数字解调。
三、实验器材1. 模拟调制解调设备:调幅(AM)、调频(FM)、调相(PM)调制器和解调器。
2. 数字调制解调设备:调幅键控(ASK)、调频键控(FSK)、调相键控(PSK)调制器和解调器。
3. 信号发生器:产生模拟信号和数字信号。
4. 示波器:观察调制解调信号波形。
5. 连接线:连接实验器材。
四、实验步骤1. 调制实验(1)调幅(AM)调制实验1)将信号发生器产生的模拟信号接入AM调制器。
2)调整调制器的调制频率和调制指数。
3)观察示波器上的调制信号波形,记录波形数据。
(2)调频(FM)调制实验1)将信号发生器产生的模拟信号接入FM调制器。
2)调整调制器的调制频率和调制指数。
3)观察示波器上的调制信号波形,记录波形数据。
(3)调相(PM)调制实验1)将信号发生器产生的模拟信号接入PM调制器。
2)调整调制器的调制频率和调制指数。
3)观察示波器上的调制信号波形,记录波形数据。
2. 解调实验(1)调幅(AM)解调实验1)将调制信号接入AM解调器。
2)调整解调器的解调频率和解调指数。
3)观察示波器上的解调信号波形,记录波形数据。
数字通信实验报告 实验二

数字通信实验报告实验二一、实验目的本次数字通信实验二的主要目的是深入了解和掌握数字通信系统中的关键技术和性能指标,通过实际操作和数据分析,增强对数字通信原理的理解和应用能力。
二、实验原理1、数字信号的产生与传输数字信号是由离散的数值表示的信息,在本次实验中,我们通过特定的编码方式将模拟信号转换为数字信号,并通过传输信道进行传输。
2、信道编码与纠错为了提高数字信号在传输过程中的可靠性,采用了信道编码技术,如卷积码、循环冗余校验(CRC)等,以检测和纠正传输过程中可能产生的错误。
3、调制与解调调制是将数字信号转换为适合在信道中传输的形式,常见的调制方式有幅移键控(ASK)、频移键控(FSK)和相移键控(PSK)。
解调则是将接收到的调制信号还原为原始的数字信号。
三、实验设备与环境1、实验设备数字通信实验箱示波器信号发生器计算机及相关软件2、实验环境在实验室中,提供了稳定的电源和良好的电磁屏蔽环境,以确保实验结果的准确性和可靠性。
四、实验步骤1、数字信号产生与编码使用信号发生器产生模拟信号,如正弦波、方波等。
通过实验箱中的编码模块,将模拟信号转换为数字信号,并选择合适的编码方式,如 NRZ 编码、曼彻斯特编码等。
2、信道传输与干扰模拟将编码后的数字信号输入到传输信道模块,设置不同的信道参数,如信道衰减、噪声等,模拟实际传输环境中的干扰。
3、调制与解调选择合适的调制方式,如 PSK 调制,将数字信号调制到载波上。
在接收端,使用相应的解调模块对调制信号进行解调,恢复出原始的数字信号。
4、性能分析与评估使用示波器观察调制和解调前后的信号波形,对比分析其变化。
通过计算误码率、信噪比等性能指标,评估数字通信系统在不同条件下的性能。
五、实验结果与分析1、数字信号编码结果观察不同编码方式下的数字信号波形,分析其特点和优缺点。
例如,NRZ 编码简单但不具备自同步能力,曼彻斯特编码具有良好的自同步特性但编码效率较低。
2、信道传输对信号的影响在不同的信道衰减和噪声条件下,接收信号的幅度和波形发生了明显的变化。
通信原理实验2

①以9号模块“NRZ-I”为触发,观测“I”;以9号模块 “NRZ-Q”为触发,观测“Q”。
②以9号模块“基带信号”为触发,观测“调制输出”。 ③以9号模块的“基带信号”为触发,观测13号模块的 “SIN”,调节13号模块的W1使“SIN”的波形稳定,即恢复 出载波。 ④以9号模块的“基带信号”为触发观测“DBPSK解调输 出”,多次单击13号模块的“复位”按键。观测“DBPSK解 调输出”的变化。
⑤以信号源的CLK为触发,测9号模块LPF-FSK,观测眼 图。
实验项目三 2PSK调制及解调实验
1、实验原理框图
256K
信号源
PN15
载波1 基带信号
256K
载波2
BPSK解调 输出
门限
低通
判决 LPF-BPSK 滤波
9# 数字调制解调模块
反相
I NRZ_I
取反
NRZ_Q Q
相干载波
13# 载波同步及位同步模块
模块9:TH4(调制输出) 模块13:TH2(载波同步输入) 载波同步信号输入
模块13:TH1(SIN)
模块9:TH10(相干载波输入) 用于解调的载波
模块9:TH4(调制输出) 模块9:TH7(解调输入)
解调信号输入
模块9:TH12(BPSK输出) 模块13:TH7(锁相环输入) 锁相环信号输入
模块13:TH5(BS2)
(4)波形观测 ①示波器CH1接9号模块TH1基带信号,CH2接9号模块 TH4调制输出,以CH1为触发对比观测FSK调制输入及输出, 验证FSK调制原理。 ②将PN序列输出频率改为64KHz,观察载波个数是否发 生变化。 ③尝试以学号作为基带信号,观测调制输出波形。
④以9号模块TH1为触发,用示波器分别观测9号模块 TH1和TP6(单稳相加输出)、TP7(LPF-FSK)、 TH8(FSK 解调输出),验证FSK解调原理。
模拟信号和数字信号调制解调

哈尔滨工业大学信息科学与工程学院通信原理实验报告姓名:XXX学号:XXX2011年7月15日一、任务与要求1.1设计任务1. 模拟调制与解调用matlab实现AM、DSB、SSB调制与解调过程。
2. 数字调制与解调用matlab实现2ASK、2FSK、2PSK调制与解调过程。
1.2设计要求1. 掌握AM, DSB, SSB 三种调制方式的基本原理及解调过程。
2. 掌握2ASK, 2FSK, 2PSK 三种调制方式的基本原理及解调过程。
3. 学习MATLAB软件,掌握MA TLAB各种函数的使用,能将调制解调过程根据调制解调过程的框图结构,用matlab程序实现,仿真调制过程,记录并分析仿真结果。
4. 对作出的波形和曲线进行分析和比较,讨论实际值和理论值的误差原因和改进方法。
二、设计原理(1)模拟调制与解调DSB调制属于幅度调制。
幅度调制是用调制信号去控制高频载波的振幅,使其按调制信号的规律而变化的过程。
设正弦型载波c(t)=Acos(wc*t),式中:A为载波幅度, wc为载波角频率。
根据调制定义,幅度调制信号(已调信号)一般可表示为:f(t)=Am(t)cos(t)(公式1-1),其中,m(t)为基带调制信号。
设调制信号m(t)的频谱为M(),则由公式1-1不难得到已调信号(t)的频谱。
在波形上,幅度已调信号随基带信号的规律呈正比地变化;在频谱结构上,它的频谱完全是基带信号频谱在频域内的简单搬移。
如果在AM调制模型中将直流去掉,即可得到一种高调制效率的调制方式—抑制载波双边带信号(DSB—SC),简称双边带信号。
其时域表达式为f(t)=m(t)cos(t)式中,假设的平均值为0。
DSB的频谱与AM的谱相近,只是没有了在处的函数,即f()=[M(w-wc)+M(w+wc)]其典型波形和频谱如图1-1所示:图1-1 DSB 调制典型波形和频谱与AM 信号比较,因为不存在载波分量,DSB 信号的调制效率是100,即全部效率都用于信息传输。
通信原理实验报告四DPSK和QPSK

实验四 调制解调(BPSK ,QPSK ,信噪比)一、实验目的掌握数字频带传输系统调制解调的仿真过程 掌握数字频带传输系统误码率仿真分析方法 二、实验原理数字频带信号通常也称为数字调制信号,其信号频谱通常是带通型的,适合于在带通型信道中传输。
数字调制是将基带数字信号变换成适合带通型信道传输的一种信号处理方式,正如模拟通信一样,可以通过对基带信号的频谱搬移来适应信道特性,也可以采用频率调制、相位调制的方式来达到同样的目的。
1. BPSK 调制解调原理假定:信道为加性高斯白噪声信道,其均值为0、方差为2σ,采用矩形成形,发射端BPSK 调制信号为:s (t )=A cos(2p f c t )b k ="1"-A cos(2p f c t )b k ="0"kT £t <(k +1)Tìíïîï经信道传输,接收端输入信号为:()()()d y t s t n t =+经相干解调,匹配滤波,定时恢复后输出:x k =A +n kb k ="1"-A +n k b k ="0"ìíïîï当1,0独立等概出现时,BPSK 系统的最佳判决门限电平*0d U =。
故判决规则为在取样时刻的判决值大于0,判1,小于0,判0。
BPSK 信号的功率谱密度为:()()()][42c m c m s f f P f f P A f P ++-=2. 2ASK 调制过程如果将二进制码元“0”对应信号0,“1”对应信号t f A c π2cos ,则2ASK 信号可以写成如下表达式:()()cos2T n s c n s t a g t nT A f tπ⎧⎫=-⎨⎬⎩⎭∑{}1,0∈n a ,()⎩⎨⎧≤≤=其他 0T t 0 1s t g 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机与信息工程学院验证性实验报告
一、实验目的
1、掌握绝对码(AK)、相对码(BK)的概念以及它们之间的关系。
2、掌握用键控法产生2ASK 、2FSK 、2DPSK 信号的方法。
3、掌握BK 与2PSK 信号波形之间的关系、AK 与2DPSK 信号波形之间的关系。
4、了解2ASK 、2FSK 、2DPSK 信号的频谱与数字基带信号频谱之间的关系。
二、实验原理及方法
数字调制分为二进制调制和多进制调制,二进制调制是多进制调制的基础。
在HUST TX 系列实验设备中只包含二进制数字调制,多进制调制实验由仿真软件实现,需要仿真软件的读者可以向作者索取,当然也可以使用有关商业软件或自己开发。
本实验使用数字信源模块和数字调制模块。
信源模块向调制模块提供数字基带信号和位定时信号。
调制模块将输入的绝对码AK (NRZ 码)变为相对码BK 、用键控法产生2ASK 、2FSK 、2DPSK 信号。
调制模块内部使用+5V 电源。
数字调制模块的原理方框图如图2.1所示,电原理图如图2.2所示。
图中CLK-IN 接信源模块晶振的输出信号CLK
,NRZ-IN(AK)接信源模块的输出信号NRZ-OUT (AK ),BS-IN 接信源模块的输出位定时信号BS-OUT ,它们已在印刷电路板上连通。
图2.1 数字调制方框图
数字调制模块上有以下信号测试点:
• CAR
2DPSK 和2ASK 的载波信号测试点
• BK 相对码测试点
• 2DPSK 2DPSK信号测试点,V P-P>0.5V
• 2FSK 2FSK信号测试点,V P-P>0.5V
• 2ASK 2ASK信号测试点,V P-P>0.5V
图2.2 数字调制模块电原理图
图2.1中各单元与图2.2中元器件的对应关系如下:
•÷2(A)U18B:双D触发器74LS74
•÷2(B)U9B:双D触发器74HC74
•滤波器A V1:三极管9013,电感L1,电容C7
•滤波器B V6:三极管9013,电感L2,电容C2
•码变换器U18A:双D触发器74LS74;U19A:异或门74LS86 • 2ASK调制器U22:三路二选一模拟开关4053
• 2FSK调制器U22:三路二选一模拟开关4053
• 2PSK调制器U21:八选一模拟开关4051
•放大器V5:三极管9013
•射随器V3:三极管9013
数字调制模块将数字信源模块晶振的输出信号CLK 进行2分频、滤波后,得到2ASK 和2DPSK 的载波信号,频率为2.2165MHz 。
放大器的发射极和集电极输出两个频率相等、相位相反的信号,这两个信号分别被BK 的“0”码和“1”码选通。
2FSK 信号有两个载波信号,一个是2ASK 信号的载波,另一个是将CLK 信号进行4分频、滤波得到的。
2PSK 、2DPSK 信号波形与信息代码的关系如图2.3所示。
图中假设码元宽度等于载波周期的1.5倍。
2PSK 信号的相位与信息代码的关系是:前后码元相异时,2PSK 信号相位变化180︒;相同时,2PSK 信号相位不变,可简称为异变同不变。
2DPSK 信号的相位与信息代码的关系是:码元为“1”时,2DPSK 信号的相位变化180︒;码元为“0”时,2DPSK 信号的相位不变,可简称为“1”变“0”不变。
图2.3 2PSK 、2DPSK 信号波形示意图
应该说明的是,此处所说的相位变或不变,是指将本码元内信号的初相与上一码元内信号的末相进行比较,而不是将相邻码元信号的初相进行比较。
实际工程中,2PSK 和2DPSK 信号的载波频率与码速率之间可能是整数倍关系也可能是非整数倍关系。
但不管是那种关系,上述结论总是成立的。
本数字调制模块用码变换—2PSK 调制方法产生2DPSK 信号,原理方框图及波形图如图2.4所示。
相对于绝对码AK ,2PSK 调制器的输出就是2DPSK 信号;相对于相对码BK 、2PSK 调制器的输出是2PSK 信号。
图中设码元宽度等于载波周期,已调信号的相位与AK 的关系是“1”变“0”不变,与BK 的关系是异变同不变,由AK 到BK 的变换也符合“1”变“0”不变规律。
图2.4中已调制信号波形也可能具有相反的相位,BK 也可能具有相反的序列即00100,这取决于载波的参考相位以及异或门电路的初始状态。
+
2PSK 调制器
2DPSK(AK)
2PSK(BK)
T S
AK
BK
(a) 方框图
(b) 波形图
图2.4 2DPSK 调制器方框图及波形图
2PSK 解调器输出信号存在相位模糊现象,而2DPSK 解调器输出信号则不存在此现象,故实际通信中一般采用2DPSK 而不用2PSK ,此问题将在数字解调实验中再详细介绍。
2PSK 信号的时域表达式为
S(t)= m(t)Cos ωc t (2.1)
式中m(t)为双极性非归零码(BNRZ),当“0”、“1”等概时m(t)中无直流分量,S(t)中无载频分量,2DPSK 信号的时域表达式与2PSK 相同,只是式中的m(t)为相对码对应的基带信号。
2ASK 信号的时域表达式与2PSK 相同,但m(t)为单极性非归零码(NRZ),NRZ 中有直流分量,故2ASK 信号中有载频分量。
相位不连续2FSK 信号可看成是用AK 和AK 调制不同载频信号形成的两个2ASK 信号相加,时域表达式为
t t m t t m t S c c 21cos )(cos )()(ωω+= (2.2)
式中m(t)为NRZ 码。
设码元宽度为T S ,f S =1/T S 在数值上等于码速率,2ASK 、2PSK (2DPSK )、2FSK 的功率谱密度如图2.5所示。
可见,2ASK 、2PSK (2DPSK )的功率谱是数字基带信号m(t)功率谱的线性搬移,故常称2ASK 、2PSK (2DPSK )为线性已调信号。
而2FSK 的功率谱与m(t)的功率谱之间不是线性搬移关系,称为非线性已调信号。
在多进制数字已调信号中,MASK 、MPSK 、MDPSK 、及MQAM 信号是线性已调信号,MFSK 信号是非线性已调信号。
应特别说明的是,在现代通信中,常将矩形数字基带信号进行低通滤波器处理后与载波信号相乘,从而构成二进制或多进制线性已调信号,低通滤波器的频率特性为余弦滚降特性或其开平方。
为了方便用示波器观察已调信号波形,HUST TX 系列实验设备中仍采用矩形信号作为调制器的基带信号。
另外在本实验系统中m(t)是一个周期信号,故m(t)有离散谱,因而2ASK 、2PSK (2DPSK )、2FSK 也具有离散谱。
图2.5 2ASK 、2PSK (2DPSK )、2FSK 信号功率谱
三、实验内容及步骤
1、熟悉数字调制模块的工作原理。
接通电源,打开实验箱电源开关。
将数字调制模块单刀双掷开关K7置于左方N端,使信源输出周期性NRZ信号(而非m序列信号)作为调制器的基带信号。
2、将示波器置于外同步触发状态,用数字信源模块的FS信号作为示波器的外同步触发信号。
示波器CH1接信源模块的NRZ-OUT(AK),CH2接数字调制模块的BK,信源模块的K1、K2、K3置于任意状态(非全0),观察AK、BK波形,总结绝对码至相对码变换规律以及从相对码至绝对码的变换规律。
3、示波器CH1接2DPSK,CH2分别接AK及BK,观察并总结2DPSK信号相位变化与绝对码的关系以及2DPSK信号相位变化与相对码的关系(此关系即是2PS K信号相位变化与信源代码的关系)。
观察时应注意:
•若用20MHz模拟示波器观察,可将时基扩展MAG开关置于X10档,以便更清晰地观察到多个码元周期内2PSK信号或2DPSK信号波形。
•若用模拟示波器观察,带衰减探头的灵敏度应置于X10档,以减小探头输入电容对信号波形的影响。
•接已调信号的示波器探头(CH1)的地线应接在数字调制模块的GND点,以免已调信号相位不连续处出现较大的毛刺。
•几种已调信号幅度远小于基带信号的幅度,观察时要适当调节示波器CH1通道的幅度旋钮,增加此通道的灵敏度。
4、示波器CH2接AK、CH1依次接2FSK和2ASK;观察这两个信号与AK的关系(“1”码与“0”码对应的2FSK信号的幅度可能略有不同)。
5、用频谱议观察AK、2ASK、2FSK、2DPSK信号频谱(条件不具备时可不进行此项观察)。
四、实验过程及结果
1、将示波器置于外同步触发状态,用数字信源模块的FS信号作为示波器的外同步触发信号。
示波器CH1接信源模块的NRZ-OUT(AK),CH2接数字调制模块的BK,信源模块的K1、K
2、K3置于任意状态。
AK、BK波形如下:
分析:绝对码AK:110001001111000011001
相对码BK:011110001010000010001 结论:符合绝对码和相对码的关系。
2、示波器CH1接2DPSK,K1、K2、K3状态如下:
CH2接AK
CH2接BK:
教师签名:
年月日。