公路桥梁抗风设计一般规定(源于公路桥梁抗风设计规范)

合集下载

抗风设计规范

抗风设计规范

1总则1.0.1 为使公路桥梁,特别是大跨轻柔桥梁结构的抗风设计做到技术先进、经济合理和安全可靠,特编制本规范。

1.0.2 本规范主要针对斜拉桥和悬索桥制定,梁式桥、其它桥型结构的抗风设计可参照执行。

本规范不适用于跨度800m以上的斜拉桥和1500m以上的悬索桥。

对跨度800m以上的斜拉桥和1500m以上的悬索桥应作抗风设计的专题研究。

1.0.3 公路桥梁的抗风设计和验算要求造成危险性的静力失稳和动力失稳的临界风速高于相应的检验风速;同时对涡激振动和抖振的振幅应加以限制。

1.0.4 如判定桥梁对风敏感时,宜考虑进行风洞试验,利用风洞试验获得的气动参数进行各种风致振动分析。

1.0.5 当设计不满足抗风要求计时,可采取气动措施、结构措施、机械措施等手段提高结构的抗风能力。

1.0.6 公路桥梁设计除满足本规范的要求外,还必须遵守国家或交通部有关标准规范的规定。

2.术语和符号2.1 术语2.1.1 基本风速(Basic Wind Speed)桥梁所在地区的开阔平坦地貌条件下,地面以上10m高度处,100年重现期的10min平均年最大风速。

2.1.2 设计基准风速(Standard Design Wind Speed)在桥梁所在地区基本风速的基础上,考虑桥位处局部地表粗糙度影响,桥面高度处100年重现期的10min平均年最大风速。

2.1.3颤振检验风速(Flutter Checking Wind Speed)检验桥梁避免发生颤振的风速2.1.4驰振检验风速(Galloping Checking Wind Speed)检验桥梁避免发生驰振的风速。

2.1.5 风攻角(Wind Attack Angle)风与水平面产生的夹角。

2.1.6 阵风系数(Gust Coefficient)考虑因时距减小而使平均风速提高的系数。

2.1.7 阵风荷载(Gust Load)基于阵风风速的风荷载。

2.1.8 地表粗糙度(Terrain Roughness)反映大气边界层中地表起伏或地物高矮稀密状况的指标。

公路桥涵设计通用规范-新规范(JTGD60-2015)与老规范(JTGD60-2004)调整内容汇总

公路桥涵设计通用规范-新规范(JTGD60-2015)与老规范(JTGD60-2004)调整内容汇总
4.3.13、支座摩擦系数增加盆式支座、球形支座的规定。
4.4.1、取消内河航道等级为1-3级内河船舶撞击作用设计值,要求按照专题研究确定。
4.4.4、公路桥梁护栏执行标准由《高速公路交通安全设施设计及施工技术规范》改为《公路交通安全设施设计规范》。
4.5、地震作用直接引用《公路工程抗震规范》、《公路桥梁抗震设计规范》。
3.6.6、增加桥梁栏杆与桥面板的连接方式描述。
3.6.8、条纹中补充了盆式支座、球钢支座等支座。
3.6.9、简化伸缩缝的要求,删除了数模式伸缩缝中钢梁高度的要求。
3.7.6、增加桥面排水、桥台排水、支挡构造物排水的要求,详见《公路排水设计规范》
3.8.2、新增永久观测点的设置要求。(特大桥、大桥)
公路桥涵设计通用规范-新规范(JTGD60-2015)与老规范(JTGD60-2004)增删内容汇总
1.0.4、设计使用年限(新增)
桥涵主体结构和可更换部件的使用年限提出明确要求。
1.0.6、增加抗风、抗震、抗撞设计要求。
3.1.2、公路桥涵线形设计:(引用公路路线设计规范)。
3.1.4、地震状况应做承载力极限状态设计(从偶然状况中剥离)。
3.1.5、公路桥梁钢结构部分应根据需要进行抗疲劳设计(通用规范新增内容,对应的钢结构设计新规范执行)。
3.1.6、风险评估:初步设计阶段实行风险评估制度(新增,对应交公路发(2010)175号)。
3.2.3、增加斜交桥梁桥墩斜交正做时,墩台边缘净距的计算简式。
3.2.7、新增跨线桥桥墩设置及防护要求。
3.4.1、紧急停车带的设计长度要求修改。
3.4.2、人行道设置宽度修改。最小宽度有原来0.75或1米,修改为1米。增加路缘石高度设置的进一步说明。

公路桥梁设计规范答疑汇编--问题举例

公路桥梁设计规范答疑汇编--问题举例

公路桥梁设计规范答疑汇编--问题举例1、在条文说明中的第3.3.1中的第3款:“应首先考虑与桥涵相连的公路路段的路基宽度,保持桥面净宽与路肩同宽。

”主要疑惑是:路肩指的是硬路肩还是土路肩?2、规范第3.3.2条中规定:“在不通航和无流筏的水库中区域内,梁底面或拱顶底面离开水面的不应小于计算浪高的0.75倍加上0.25m。

”问题如下:(1)以上条款中的0.25m指的是在浪高的0.75倍上加的一个安全值,还是指高于支承垫石顶面高度0.25m?(2)在水库区域内的通航桥的不通航孔,以上条款是否适用?(3)此处的水面是指计算水位还是最高洪水位?(4)最终梁底净空是否需要满足第 3.3.2条中的所有条款?即是否需满足该条最后一段所要求的并同时满足表3.3.2的要求?3、(1)规范第3.3.6条规定天然气管道不是顺桥过。

是所有的天然气管道不得过,还是对直径和压力有限制?在城市桥梁及城市郊区公路桥梁的设计中,此条经常不能满足。

(2)煤气管道是否等同于天然气条文取用?管道与桥梁的交叉如何考虑?高压线的定义是多少电压?4、(1)规范第3.5.8条中纵坡大于1%的桥梁非常普通,对于空心板等大规模工厂化制作的上部结构,梁底水平如何操作(每根梁的纵坡可能都不同)?(2)规范第3.5.8条中“某一规定坡度”具体数值是多少?对于纵、横坡较大的空心板桥,如果不能使用球冠支座,梁底只能做垫块,空心板预制比较困难,景观较差,如何处理?5、规范第3.6.4条规定水泥混凝土桥面铺装面层(不含整平层和垫层)的厚度不宜小于80mm,混凝土强度等级不应低于C40。

条文中,关于“不含整平层和垫层”的含义,如采用沥青混凝土桥面,有两种不同的理解,一是沥青混凝土下的混凝土铺装,只算是“整平层和垫层”,可不按第3.6.4条的厚度及强度要求;二是沥青混凝土下的混凝土铺装,不是整平层和垫层,是桥面铺装(根据条文解释,似这样理解也是符合精神的),应符合第3.6.4条的厚度及强度要求。

曲线桥梁的设计计算

曲线桥梁的设计计算

曲线桥梁的设计计算摘要:随着贵阳市的快速发展和道路等级的提高,曲线桥梁的应用越来越广泛,结合工程实践,对曲线桥梁设计计算进行分析,叙述箱梁构造,对几个重要荷载做计算以及结果分析、总结,以期为后续类似工程提供参考。

关键词:曲线桥梁;设计;计算1.工程概况贵阳市新建林城东路延伸段的立交节点—新添大道立交匝道桥,本匝道桥采用螺旋形,内外幅设置,本文以外幅第一联27.963+2x27m为工程实例,本联平曲线为半径50m的圆曲线加缓和曲线,竖曲线为凸曲线,上部结构为预应力混凝土现浇箱梁,中支墩固结,边支点采用支座,中支墩高度为70m和77m,桥墩采用3x5m矩形空心墩,承台桩基础。

1.结构计算上部结构箱梁按单箱单室设计,顶板宽10.2m,底板宽5.35m,悬臂长2m,腹板倾角76°,箱梁顶、底板平行设置,梁高2.2m。

端横梁宽度为1.2m,中横梁宽度为3.0m。

采用Midas/civil计算,并以《公路桥涵设计通用规范》(JTG D60-2015)和《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG 3362-2018)为标准,按部分预应力(A类)混凝土结构进行验算。

横断面尺寸图2.1 本文针对在设计过程中的几个荷载做计算分析:1.风荷载由于桥墩最大墩高为77m,风荷载对上部结构箱梁和下部桥墩影响较大,现以此桥墩墩高计算。

根据《公路桥梁抗风设计规范》(JTG/T 3360-01-2018)规定,横桥向风作用下主梁单位长度上的顺风向等效静阵风荷载为,1)——空气密度,2)——等效静阵风风速,,——等效静阵风系数,本联水平加载长度L=27.963+2x27=82m,根据本匝道桥的建设地点,地表类别判定为C类,根据表5.2.1, =1.465;——桥梁或构件基准高度Z处的设计基准风速,或——抗风风险系数,基本风速 =28m/s,根据表4.2.6-1, =1.02, Z=77+2.2=79.2m;根据表4.2.1,, ,根据表4.2.4,,,得出,;——地形条件系数,取 =1.2,——地表类别转换及风速高度修正系数,根据表4.2.6-2,得出, =1.238,得出,,取大值,3)——主梁横向力系数,可按下式计算,,B——主梁的特征宽度,B=10.2m,D——主梁梁体的投影高度,D=3.38m,得出, =1.8;桥梁的主梁截面带有斜腹板时,横向力系数可根据腹板倾角角度折减,横向力系数的腹板倾角角度折减系数可按下式确定:,=14°,得出, =0.93。

公路桥涵设计通用设计规范

公路桥涵设计通用设计规范

公路桥涵设计通用设计规范篇一:dJTGD60-2015公路桥涵设计通用规范新规范删减列表及疑问探讨JTGD60-2015 公路桥涵设计通用规范新规范删减列表及疑问探讨1.0.4、设计使用年限(新增)桥涵主体结构和可更换部件的使用年限提出明确要求。

1..0.6、增加抗风、抗震、抗撞设计要求。

3.1.2、公路桥涵线形设计:(引用公路路线设计规范)。

3.1.4、地震状况应做承载力极限状态设计(从偶然状况中剥离)。

3.1.5、公路桥梁钢结构部分应根据需要进行抗疲劳设计(通用规范新增内容,对应的钢结构设计新规范执行)。

3.1.6、风险评估:初步设计阶段实行风险评估制度(新增,对应交公路发(2010) 175号)。

3.2.3、增加斜交桥梁桥墩斜交正做时,墩台边缘净距的计算简式。

13.2.7、新增跨线桥桥墩设置及防护要求。

3.4.1、紧急停车带的设计长度要求修改。

3.4.2、人行道设置宽度修改。

最小宽度有原来0.75或1米,修改为1米。

增加路缘石高度设置的进一步说明。

3.5.1、增加易结冰、积雪的桥梁纵坡不宜大于3%的要求。

3.5.3、第四条,增加逆风、冰冻、漂流物的影响下,提高铺砌高度。

3.5.5、详细补充桥台搭板设置长度、宽度、搭接以及厚度要求。

3.6.6、增加桥梁栏杆与桥面板的连接方式描述。

3.6.8、条纹中补充了盆式支座、球钢支座等支座。

3.6.9、简化伸缩缝的要求,删除了数模式伸缩缝中钢梁高度的要求。

3.7.6、增加桥面排水、桥台排水、支挡构造物排水的要求,详见《公路排水设计规范》3.8.2、新增永久观测点的设置要求。

(特大桥、大桥)3.8.4、修改防雷设计要求。

(参考《建筑物防雷设计规范》、《高速公路设施防雷设计规范》)3.8.6、新增结构监测设施设置要求(技术复杂的大型桥梁)。

3.8.7、新增跨线桥设置防抛网要求。

4.1.5、基本组合中将汽车荷载按照车辆荷载的加载时,车2辆荷载分项系数调整为1.8。

JTGD60-2015 公路桥涵设计通用规范及删减列表

JTGD60-2015 公路桥涵设计通用规范及删减列表

JTGD60-2015 公路桥涵设计通用规范新规范删减列表1.0.4、设计使用年限(新增)桥涵主体结构和可更换部件的使用年限提出明确要求。

1..0.6、增加抗风、抗震、抗撞设计要求。

3.1.2、公路桥涵线形设计:(引用公路路线设计规范)。

3.1.4、地震状况应做承载力极限状态设计(从偶然状况中剥离)。

3.1.5、公路桥梁钢结构部分应根据需要进行抗疲劳设计(通用规范新增内容,对应的钢结构设计新规范执行)。

3.1.6、风险评估:初步设计阶段实行风险评估制度(新增,对应交公路发(2010)175号)。

3.2.3、增加斜交桥梁桥墩斜交正做时,墩台边缘净距的计算简式。

3.2.7、新增跨线桥桥墩设置及防护要求。

3.4.1、紧急停车带的设计长度要求修改。

3.4.2、人行道设置宽度修改。

最小宽度有原来0.75或1米,修改为1米。

增加路缘石高度设置的进一步说明。

3.5.1、增加易结冰、积雪的桥梁纵坡不宜大于3%的要求。

3.5.3、第四条,增加逆风、冰冻、漂流物的影响下,提高铺砌高度。

3.5.5、详细补充桥台搭板设置长度、宽度、搭接以及厚度要求。

3.6.6、增加桥梁栏杆与桥面板的连接方式描述。

3.6.8、条纹中补充了盆式支座、球钢支座等支座。

3.6.9、简化伸缩缝的要求,删除了数模式伸缩缝中钢梁高度的要求。

3.7.6、增加桥面排水、桥台排水、支挡构造物排水的要求,详见《公路排水设计规范》3.8.2、新增永久观测点的设置要求。

(特大桥、大桥)3.8.4、修改防雷设计要求。

(参考《建筑物防雷设计规范》、《高速公路设施防雷设计规范》)3.8.6、新增结构监测设施设置要求(技术复杂的大型桥梁)。

3.8.7、新增跨线桥设置防抛网要求。

4.1.5、基本组合中将汽车荷载按照车辆荷载的加载时,车辆荷载分项系数调整为1.8。

4.1.5、桥涵结构设计安全等级修改,将原不同情况下的大桥、中桥、小桥的结构设计安全等级提高了一个等级。

4.1.5、偶然组合:修改作用的分项系数。

公路桥梁抗风设计规范

公路桥梁抗风设计规范

公路桥梁抗风设计规范一、前言随着经济的不断发展,交通基础设施的建设也日益提升。

公路桥梁作为其中的重要组成部分,承担着交通运输的重要任务。

而在建设公路桥梁时,抗风设计是其中的一个重要环节,尤其是在一些气候条件较为复杂的地区。

本文将围绕公路桥梁抗风设计规范展开讨论,旨在为相关工程师提供一些指导。

二、一般原则1.推崇实用性原则。

在设计公路桥梁时,应当遵循实用性原则,即所选用的设计方案和结构形式应当满足实际的使用需求。

2.推崇安全性原则。

在设计公路桥梁时,应当遵循安全性原则,即所选用的设计方案和结构形式应当能够确保桥梁在各种条件下安全可靠地使用。

3.推崇经济性原则。

在设计公路桥梁时,应当遵循经济性原则,即所选用的设计方案和结构形式应当能够在控制成本的前提下实现高效的使用效果。

三、抗风设计要求1.抗风等级。

桥梁设计时应考虑所在地的气候情况和气候变化。

根据《公路桥梁抗风设计规范》,可将风速划分为不同的等级,从而确定所需采取的防风措施。

2.风荷载的计算。

在设计公路桥梁时,应根据不同的风速等级,计算风对桥梁的作用力,以确定桥梁结构的抗风能力。

3.设计风荷载。

根据结构形式和当地气候条件,确定桥梁设计所需的风荷载。

设计应考虑不同风向和角度的影响,确保桥梁在各种风向下都能够稳定。

4.桥梁结构的抗风设计。

在具体设计过程中,应根据桥梁的结构形式和特点,合理设计桥梁的风荷载传递路径和支撑结构,以保证桥梁的抗风性能。

四、抗风设计的具体步骤1.桥梁风荷载计算。

通过气象数据和已知风速等级,计算桥梁所受的风荷载。

考虑各种因素的影响,如风向、风速、桥梁形状等。

2.结构参数确定。

根据桥梁的结构形式和特点,确定桥梁的相关参数,如跨度、高度、支座位置等,以便进行抗风设计。

3.结构抗风性能评估。

根据计算得到的风荷载和结构参数,评估桥梁的抗风性能,确定是否满足设计要求。

4.抗风措施设计。

根据评估结果,设计桥梁的抗风措施,包括加固结构、加大支撑等,以确保桥梁的安全性和稳定性。

台风地区独柱索塔半漂浮体系斜拉桥混凝土主梁悬臂施工阶段抗台风

台风地区独柱索塔半漂浮体系斜拉桥混凝土主梁悬臂施工阶段抗台风

2017年第2期西南公路台风地区独柱索塔半漂浮体系斜拉桥混凝土 主梁悬臂施工阶段抗台风稳定性分析唐栋梁罗杨(中交二航局第二工程有限公司重庆401121)【摘要】在沿海地区进行独柱索塔半漂浮体系斜拉桥混凝土主梁悬臂施工时,由于受台风影响,索塔 两侧主梁底面在风压作用下将产生向上的不同升力矩,该升力矩严重不平衡时将导致主梁倾覆。

此外,在台 风作用下,半漂浮体系主梁亦可能以独柱索塔为中心发生绕转失稳。

本文以广东省番中大桥为例,介绍独柱 索塔半漂浮体系斜拉桥混凝土主梁悬臂施工阶段抗台风稳定性的分析方法,供同行探讨。

【关键词】台风;独柱索塔;半漂浮;斜拉桥;主梁;悬臂施工;抗台;稳定;倾覆;绕转 【中图分类号】U 441/U 448.27【文献标识码】A1工程概况1.1设计概况番中大桥位于广东省,是广(州市)中(山市)江(门市)高速公路上的一座跨江特大桥,横 跨广州市南沙区大岗镇和中山市黄圃镇交界的洪奇 沥水道,为独柱双塔、中央双索面、五跨预应力混 凝土连续梁、半漂浮体系斜拉桥。

桥梁总长775m , 主跨365m ,边跨205m ,五跨跨径具体布置为 “75m +130m +365m +130m +75m ”,如图 1 所示。

2,~28,2~282~282'~28'图1 桥型及悬浇节段纵向划分图索塔标号C 50,高119.788m ,为独柱式空心结构,分为上下塔柱,其中上塔柱为等截面厚壁空心结 构,混凝土方量约3500m 3,其横截面外包轮廓尺寸 8.0mx 5.4m 。

此外,索塔在上下塔柱过渡区设置有牛 腿,作为半漂浮体系主梁的承力构件,如图2所示。

主梁离水面高度约30m ,为三向预应力混凝土结 构,单箱五室超宽截面,顶板宽37.8m ,底板宽 19.6m ,中心处梁高4m ,斜拉索横向标准索距3.9m ,如图3所示。

h -------------------------------------------------------------------H----------^ 3.9m r| ]|19.6m图3 主梁标准横断面主要参数全桥共划分为119个浇筑节段(共计224根斜拉 索),其中〇#及1# (含r #)梁段采用落地支架同步【收稿日期】2016-01-14【作者简介】唐栋梁(1974-),男,重庆市人,大学本科,高级工程师,主要从事路桥施工及技术管理工作西南公路浇筑,2# (含妒)~2矿(含28'*)梁段采用挂篮工艺对称悬浇,悬浇段单端单节长度均为6m (见图1 ),即斜拉索纵向索距均为6m,悬浇段单端单节 标准方量约200m3〇1.2气候条件桥址区离人海口约35k m,为亚热带海洋性季风 气候,每年夏末秋初季节开始出现台风,尤其以 7~9月最多,台风在桥址区最大风力约10级。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公路桥梁抗风设计一般规定
(来源于:公路桥梁抗风设计规范JTG/T 3360-01)
桥梁的抗风设计应考虑风的静力作用与动力作用,并根据不同的抗风性能要求按承载能力极限状态和正常使用极限状态进行设计和检验。

风对桥梁结构的作用效应一般分为静力效应、静风效应和动力效应。

①静力效应主要表现为结构产生的变形与内力以及静力失稳;
②静风效应主要表现为风引起的结构静风失稳,如静风扭转发散和静风横向失稳;
③动力效应包含抖振和涡激共振等有限振幅振动、以及颤振和驰振等气动失稳现象。

以下给出了风对桥梁结构作用的效应分类
公路桥梁抗风设计时应根据桥址风环境、桥型、跨径、结构体系、结构或构件外形等因素对桥梁风致振动的可能性进行评估。

(1)当判定结构或构件在风作用下存在疲劳问题时,应进行抗疲劳设计
(2)当判定桥面高度处风对行车安全及舒适性存在影响时,应按规定进行相应的风致行车安全评估及设计
(3)将桥梁所在地区根据基本风速的大小划分为三类风险区域,分别对应为RI、R2和R3,三类等级所对应的风速范围的概率水平相接近,并考虑到气象意义上风力等级已被广泛接受,因此将三类等级与风力水平相衔接,其中R1为十二级或超过十二级大风,R2介于十级风与十一级大风之间,R3为不大于九级风。

相关文档
最新文档