幂的运算评估测试题及答案

合集下载

《幂的运算》练习题及答案

《幂的运算》练习题及答案

《幂的运算》练习题及答案幂的运算是数学中一个重要的概念,经常在代数和数论等领域出现。

本文将提供一些幂的练习题,并附上详细的答案,帮助读者加深对幂的运算规则的理解。

一、练习题1. 计算以下幂的结果:a) 2^3b) 5^2c) (-3)^4d) 10^0e) 1^1002. 化简以下幂的表达式:a) (2^3)^2b) 4^0c) (-2)^4d) (3^2)^3e) 5^13. 计算以下幂的结果,并写成最简形式:a) 2^(1/2)b) 10^(2/3)c) 8^(3/2)d) 27^(2/3)e) 16^(-1/2)二、答案解析1. 计算以下幂的结果:a) 2^3 = 2 * 2 * 2 = 8b) 5^2 = 5 * 5 = 25c) (-3)^4 = (-3) * (-3) * (-3) * (-3) = 81d) 10^0 = 1 (任何数的0次幂都等于1)e) 1^100 = 1 (任何数的1次幂都等于自身)2. 化简以下幂的表达式:a) (2^3)^2 = 2^(3*2) = 2^6 = 64b) 4^0 = 1 (任何非零数的0次幂均等于1)c) (-2)^4 = 2^4 = 16d) (3^2)^3 = 3^(2*3) = 3^6e) 5^1 = 5 (任何数的1次幂都等于自身)3. 计算以下幂的结果,并写成最简形式:a) 2^(1/2) = √2b) 10^(2/3) ≈ 4.641 (保留三位小数)c) 8^(3/2) = (√8)^3 = 2^3 = 8d) 27^(2/3) = (∛27)^2 = 3^2 = 9e) 16^(-1/2) = 1/√16 = 1/4上述练习题和答案介绍了幂的运算规则,包括幂的计算、幂的化简和带分数指数的幂运算等内容。

通过对这些问题的分析和解答,读者可以更好地理解幂的性质和规律。

总结:幂的运算是数学中一个重要的概念,掌握幂的运算规则对于数学学习和解题非常重要。

幂的运算评价测试题及答案

幂的运算评价测试题及答案

七(下)数学第八章幂的运算评估测试卷(时间:90分钟满分:100分)一、选择题(每小题2分,共50分)1.下列计算不正确的是( )??3?a---÷÷101?122nn240a??2ab?01 C. D. A3+2= B.10=.=0.a13b13a822.下列计算不正确的是( )aaa--÷(÷÷pm0mnpmmn aaaa =1 B A.=.)=--(3÷(-x)÷335 2 4=l C.(-x)9)=-x D. 3.下列计算正确的是( )a--5÷3÷÷x÷5÷39910810042 8528a 5=5 A.x=3 D.=1 C=x B..3 ( ) 的计算结果是÷1000nm1004.--mn3nm2mn mn A.100000.100B.101000D. C1-( ) 的值是22+x5=2,则.若x x11 0 D..A.4B. C444a-中A的值应是( )÷A=2m+nm a.在等式6-2 m+n+3 nn+2m+n+2aaaa B.. A..DC等于( ) 2m+4a.7a·m+422mm+2 24 m4aaaaaaa.C D.2 A.. B()+-÷(x ( )的结果是 2m+11mm)8x.xA.-l B.1 C.0 D.±19.下列等式正确的是( )-②3.10×1044 =31 00010 ①0.000 126=1.26×-5610.26×=0.000011 ③1.1×10④12 600 000=1 A.①② B.②④ C.①②③ D.①③④2×10×(1.5×10的值是 ( )243 2 )-)(10.311141414 10D4×105×10. B10.- C.- A.-1.11.下列各式中-定正确的是( )1)- 022 0 00?a=1+1)..( A.(2x-3)=1 B.(m=1 D=0 C2009200811????( )的结果是.计算12???????22????20092008200920091111????????B.. DA.. C???1????????2222????????( ) x的值是,m为正整数,则3mx6m>2.若2>2132m3 D.4m B.3m C. A.a-( ) ÷中括号内的式子应是( )=2m+nm a.在算式14--n+22m+n2m+n+2n aaaa. AD CB... ( ) 结果为02)(2×12÷3-15..12 D.无意义 A.0 B.1C ( ) 的式子是结果为16.aa---÷26 2 43421aaaaa.) C.. A.( D B2a( ).下面计算正确的是1785638243277aaa. A.=. Bb+b=b Cx+x=xD=x.xx等于 ( ) 23 a)-218.(569 6aaaa D C. A.44.-B.4419.下列运算正确的是( )-x·(-y) 7 23 795553102- (-y) A.xx=xy B.xy)=y=y D=x.-C.(20.下列运算正确的是( )÷(x÷x÷(xy) 2 332108 643)=x=x B A.x.(xy)=(xy)y--xx÷÷3n2nnnn+2n+14n x=x D C.x.x=x÷5得( ) mm25.计算21mm20.5 D. A.5 B.20 C ( ) 纳米应表示为2.5纳米1=0.000 000 001米,则22.---×10米米 D.2.5×10 C米.2.5×1052米 B..99810102.×5 A.奥运会场馆之一,它的外层膜的展开面积23.国家游泳中心——“水立方”是北京2008 ( ) 260 000用科学记数法表示应为约260 000平方米,将64 5 6 102.62C..6×10×D A.0.26×10 B.26×10.是的列下运算24正确.( )+5x=m=3x A.n.-= D. B(-y)2x=y C.(mn)222623 36 35322aaa万人,这一数据2008年全国普通高考计划招生66725.国家教育部最近提供的数据娃示,科学记数法表示为(结果保留两个有效数字)( )66 6 610×D.67.. B66×10C.67×10×..A6610二、填空题(每小题2分,共44分)a)(-·22a.=____________.26.--÷x=____________(x.·1332).(x)27·(-b)223)=_____________.b28.-b (-2 3=______________.x)-y) (y-29.(x×820092008=_____________.125. 30. 0-8÷1nn=_____________. 31.-43m+12m+4aaa =__________32.aa-b3b=____________. 10=25,则1033.已知10=5,,则A=_____________.2n+1n+1=xAx34.已知×64×25×48388=______________25.35.0.-55)××(-42 2=_____________. 36.-5a-(-2 32 2 3aaa)=______________.)( (.(b)-b) 37a)-÷(36a=____________.38.(- )a÷625aa=____________.39.--5×120=____________.40.5+25·(m÷m10 632=___________. 41.m)-x÷1m+1m=___________42.-x.a-÷mn1 nm a=___________.)(43.2n=4,则n=__________.44.若2,则x=___________.x3=286445.若×1-,则x=____________.÷(2 53)-x46.若2)=(247.用科学记数法表示0.000 000 125=____________.三、计算题(48~51题每小题4分,52、53题每小题5分,共26分)a÷2)3-(.48.3 2a-x÷1n 2nn+1 (x≠(x0) )49.x-x·x·x 2546x.x5011-(-2 03 )+(51.(--3)) 23--·(x-·xx) ·322 2nn x)52.3x+3(----(-3÷3×2009022 232))3×353.(-参考答案1.C 2.B 3.C 4.B 5.B 6.D 7.B 8.B 9.C 10.B 11.D 12.D 13.A 14.D 15.D 16.B 17.D 18.B 19.D 20.A 21.C 22.B23.C 24.D 25.C1-n34 m7 5aa 28.b 29.(y26.-x) 27. 30.8 31.-2 32.10x n 35.4 5 34.x33.123 5 aa 44. 43..m1 .-36.-1 37.0 38 42.-39.x 40.1 41n a-725×1045.15 46.-2 47.1.aa-÷÷462623 22aaaa =9) =948.解:(-3=9---(x÷·x0n 21(n+1)+(n2nn+11)n=1 .解:x =x)=x49x-·x-x2492569=0x=x. x.解:50x 3?21111??????0???51.解:8????3????1??9??????8283??????-3x nn =052.解:原式=3x.---(-3÷3×200902232 236-1=×9-27-=))3×3-(.解:53.。

幂的运算测试题

幂的运算测试题

幂的运算测试题
1. 计算题
a) 计算 $2^3$。

b) 计算 $(-3)^4$。

c) 计算 $0.5^2$。

2. 拓展思考题
a) 如果底数为负数,而指数为偶数,结果是正数还是负数?为什么?
b) 如果底数为零,而指数为正数,结果是什么?为什么?
c) 如果底数为正数,而指数为零,结果是什么?为什么?
d) 如果底数和指数都为零,结果是什么?为什么?
3. 简答题
a) 什么是幂?
b) 幂运算的性质有哪些?
c) 如何进行幂运算的乘法?
d) 如何进行幂运算的除法?
4. 实际应用题
a) 一辆车以每小时60公里的速度行驶,计算4小时后车子行驶的总路程。

以幂运算的形式给出答案。

b) 一笔存款以年利率5%计算利息,计算5年后的本金和利息总和。

以幂运算的形式给出答案。

5. 推理题
根据已知条件,完成以下推理:
a) 如果 $a^2 = 25$,那么 $a$ 的值是多少?
b) 如果 $b^3 = 27$,那么 $b$ 的值是多少?
c) 如果 $c^4 = 81$,那么 $c$ 的值是多少?
6. 计算题
a) 计算 $(2^2)^3$。

b) 计算 $2^{2^3}$。

以上是幂的运算测试题目,请根据每个小题给出答案,并标明是否使用了幂的运算。

幂的运算专项练习50题(有答案)

幂的运算专项练习50题(有答案)

幂的运算专项练习50题(有答案)1.2. (4ab2)2×(﹣a2b)33.(1);(2)(3x3)2•(﹣x);(3) m2•7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.5.已知3m=x,3n=y,用x,y表示33m+2n.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d 的大小.7.计算:(﹣2 m2)3+m7÷m.8.计算:(2m2n﹣3)3•(﹣mn﹣2)﹣29.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x•32y的值.13.已知3×9m×27m=316,求m的值.14.若(a n b m b)3=a9b15,求2m+n的值.15.计算:(x2•x3)2÷x6.16.计算:(a2n)2÷a3n+2•a2.17.若a m=8,a n =,试求a2m﹣3n的值.18.已知9n+1﹣32n=72,求n的值.19.已知x m=3,x n=5,求x2m+n的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.(x﹣y)5[(y﹣x)4]3(用幂的形式表示)22.若x m+2n=16,x n=2,(x≠0),求x m+n,x m﹣n的值.23.计算:(5a﹣3b4)2•(a2b)﹣2.24.已知:3m•9m•27m•81m=330,求m的值.25.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.26.若2x+3y﹣4=0,求9x﹣1•27y.27.计算:(3a2x4)3﹣(2a3x6)2.28.计算:.29.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.30.已知162×43×26=22m﹣2,(102)n=1012.求m+n的值.31.(﹣a)5•(﹣a3)4÷(﹣a)2.32.(a﹣2b﹣1)﹣3•(2ab2)﹣2.33.已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3的值.34.a4•a4+(a2)4﹣(﹣3x4)235.已知(x5m+n y2m﹣n)3=x6y15,求n m的值.36.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.37.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n38.计算:(x﹣2y﹣3)﹣1•(x2y﹣3)2.39.已知a2m=2,b3n=3,求(a3m)2﹣(b2n)3+a2m•b3n的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n 的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n 的值.42.计算:(a2b6)n+5(﹣a n b3n)2﹣3[(﹣ab3)2]n.43..44.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.46.已知2a•27b•37c=1998,其中a,b,c为整数,求(a﹣b﹣c)1998的值.47.﹣(﹣0.25)1998×(﹣4)1999.48.(1)(2a+b)2n+1•(2a+b)3•(2a+b)n﹣4(2)(x﹣y)2•(y﹣x)5.49.(1)(3x2y2z﹣1)﹣2•(5xy﹣2z3)2.(2)(4x2yz﹣1)2•(2xyz)﹣4÷(yz3)﹣2.50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a2b3(2a﹣1b3);(2)(a﹣2)﹣3(bc﹣1)3;(3)2(2ab2c﹣3)2÷(ab)﹣2.幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2. 原式=16a2b4×(﹣a6b3)=﹣2a8b73.解:(1)原式=(﹣5)×3=﹣15;(2)原式=9x6•(﹣x)=﹣9x7;(3)原式=7m3p2÷(﹣7mp)=﹣m2p;(4)原式=6a2+2a﹣9a﹣3=6a2﹣7a﹣3.故答案为﹣15、﹣9x7、﹣m2p、6a2﹣7a﹣3 4.解:a x+y=a x•a y=2×3=6;a2x﹣y=a2x÷a y=22÷3=5.解:原式=33m×32n,=(3m)3×(3n)2,=x3y26.解:a=(25)11=3211;b=(34)11=8111;c=(43)11=4811;d=(52)11=2511;可见,b>c>a>d7.解:(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m68.解:(2m2n﹣3)3•(﹣mn﹣2)﹣2=8m6n﹣9•m﹣2n4= 9.解:原式=(﹣4)+4×1=010.解:原式=÷(﹣)+2×1=﹣2+2=011.解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2 ①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,=3×32m×33m,=31+5m,∴31+5m=316,∴1+5m=16,解得m=314.解:∵(a n b m b)3=(a n)3(b m)3b3=a3n b3m+3,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n17.解:a2m﹣3n=(a m)2÷(a n)3,∵a m=8,a n =,∴原式=64÷=512.故答案为51218.解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=119.解:原式=(x m)2•x n=32×5=9×5=4520.解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=2721.解:(x﹣y)5[(y﹣x)4]3=(x﹣y)5[(x﹣y)4]3=(x﹣y)5•(x﹣y)12=(x﹣y)1722.解:∵x m+2n=16,x n=2,∴x m+2n÷x n=x m+n=16÷2=8,x m+2n÷x3n=x m﹣n=16÷23=223.解:(5a﹣3b4)2•(a2b)﹣2=25a﹣6b8•a﹣4b﹣2=25a﹣10b6=24.解:由题意知,3m•9m•27m•81m,=3m•32m•33m•34m,=3m+2m+3m+4m,=330,∴m+2m+3m+4m=30,整理,得10m=30,解得m=325.解:∵x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,∴,解得:,则a+b=1026.解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x﹣1•27y=32x﹣2•33y=32x+3y﹣2=32=927.解:(3a2x4)3﹣(2a3x6)2=27a6x12﹣4a6x12=23a6x12 28.解:原式=•a2b3=29.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.32.解:(a﹣2b﹣1)﹣3•(2ab2)﹣2=(a6b3)•(a﹣2b﹣4)=a4b﹣1=33.解:∵x a+b•x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,∴(﹣3)b+(﹣3)3=(﹣3)3+(﹣3)3=2×(﹣3)3=2×(﹣27)=﹣54 34.解:原式=a8+a8﹣9x8,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,∵(x5m+n y2m﹣n)3=x6y15,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=37.解:(﹣3x2n+2y n)3÷[(﹣x3y)2]n,=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2•y﹣3)﹣1•(x2•y﹣3)2,=x2y3•x4y﹣6,=x6y﹣3,=39.解:(a3m)2﹣(b2n)3+a2m•b3n,=(a2m)3﹣(b3n)2+a2m•b3n,=23﹣32+2×3,=540.解:原式=27x6n﹣4x6n=23x6n=23(x3n)2=23×7×7=112741.解:∵x2n=5,∴(3x3n)2﹣34(x2)3n=9x6n﹣34x6n=﹣25(x2n)3=﹣25×53=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n=6a2n b6n﹣3a2n b6n=3a2n b6n43.解:原式=()50x50•()50x100=x15044.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=045.解:(1)∵x a=2,x b=6,∴x a﹣b=x a÷x b=2÷6=;=(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a•33b⋅37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=448.解:(1)原式=(2a+b)(2n+1)+3+(n﹣4)=(2a+b)3n;(2)原式=﹣(x﹣y)2•(x﹣y)5=﹣(x﹣y)749.解:(1)原式=()﹣2•()2=•=;(2)原式=•÷=•y2z6=150.解:(1)a2b3(2a﹣1b3)=2a2﹣1b3+3=2ab6;(2)(a﹣2)﹣3(bc﹣1)3,=a6b3c﹣3,=;(3)2(2ab2c﹣3)2÷(ab)﹣2,=2(4a2b4c﹣6)÷(a﹣2b﹣2),=8a4b6c﹣6,。

幂的运算综合专项练习题(有答案过程)ok

幂的运算综合专项练习题(有答案过程)ok

幂的运算专项练习50题(有答案)1.2 2 2 32.(4ab)×(﹣ab)3.(1);(2)(3x3)2(?﹣x);(3)m2?7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d的大小.2 3 77.计算:(﹣2m)+m÷m.2 ﹣33﹣2)﹣28.计算:(2mn) ?(﹣mn9.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x?32y的值.mn3m+2n 13.已知3×9m×27m=316,求m的值.5.已知3=x,3=y,用x,y表示3 .nm3915,求2 m+n 14.若(abb ) =ab 的值.2 3 2 615.计算:(x?x )÷x .2n 2 3n+2 216.计算:(a )÷a ?a .17.若a m =8,a n = ,试求a 2m ﹣3n的值.n+1 2n18.已知9 ﹣3=72,求n 的值.m n 2m+n19.已知x=3,x=5,求x 的值.20.已知3m =6,9n =2,求32m ﹣4n+1的值.21.(x ﹣y )5[(y ﹣x )4]3(用幂的形式表示)m m m m 3024.已知:3?9?27?81=3,求m 的值.6﹣b 2b+1 11 a ﹣1 4﹣b 525.已知x ?x =x ,且y ?y =y ,求a+b 的值.x ﹣1 y26.若2x+3y ﹣4=0,求9 ?27.2 43 3 6 227.计算:(3ax )﹣(2ax ).28.计算: .m2n ﹣2 n m+3 2010 的值. 29.已知16=4×2 ,27=9×3 ,求(n ﹣m )30.已知162×43×26=22m ﹣2,(102)n =1012.求m+n 的值.5 3 4 231.(﹣a )(?﹣a )÷(﹣a ).22.若x m+2n =16,x n =2,(x ≠0),求x m+n ,x m ﹣n的值. 32.(a ﹣2b ﹣1)﹣3(?2ab 2)﹣2.﹣3 4 2 2﹣2 a+b 2b ﹣a 9 b 323.计算:(5a b )(?ab ) . 33.已知x ?x =x ,求(﹣3)+(﹣3)的值.2/64 4 2 4 4234.a?a+(a)﹣(﹣3x )5m+n2m﹣n 3 6 15 m 35.已知(x y )=xy,求n的值.m n 3m+2n 2n﹣3m 36.已知a=2,a=7,求a ﹣a 的值.2n+2 n 3 3 2 n 37.计算:(﹣3x y)÷[(﹣xy)]2 6 n n 3n 23 2 n 42.计算:(ab)+5(﹣ab)﹣3[(﹣ab)].43..n﹣5 n+13m﹣2 2 n﹣1 m﹣2 33m+244.计算:a (a b )+(a b )(﹣b )45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.﹣2 ﹣3 ﹣1 2 ﹣3 238.计算:(x y )(?xy ).46.已知2a?27b?37c=1998,其中a,b,c为整数,2m 3n3m 2 2n 3 2m 3n求(a﹣b﹣c)1998的值.39.已知a=2,b =3,求(a)﹣(b)+a?b的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n47.﹣(﹣0.25)1998×(﹣4)1999.的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n2n+1 3?(2a+b)n ﹣448.(1)(2a+b)?(2a+b)的值.3/6(2)(x ﹣y )2?(y ﹣x )5. 50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a 2b 3(2a ﹣1b 3);22 ﹣1﹣2 ﹣232 49.(1)(3xyz ) ?(5xy z ).2 ﹣12 ) ﹣43 ﹣2 (2)(4xyz )?(2xyz ÷(yz ) .幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2 4 63 8 72.原式=16ab ×(﹣ ab )=﹣2ab3.解:(1)原式=(﹣5)×3=﹣15; (2)原式=9x 6(?﹣x )=﹣9x 7; 3 2 2(3)原式=7mp ÷(﹣7mp )=﹣mp ;2 2( 4)原式=6a+2a ﹣9a ﹣3=6a ﹣7a ﹣3.故答案为﹣15、﹣9x 7、﹣m 2p 、6a 2﹣7a ﹣34.解:a x+y=a x?a y =2×3=6; a 2x ﹣y =a 2x ÷a y =22÷3=3m 2n5.解:原式=3×3,=(3m )3×(3n )2, 3 2 =xy5 11 116.解:a=(2)=32;3 11 11 c=(4)=48; 2 11 11d=(5)=25; 可见,b >c >a >d2 3 77.解:(﹣2m )+m ÷m ,3 2 3 6=(﹣2)×(m )+m ,6 6 =﹣8m+m ,6 =﹣7m2﹣33 ﹣2 ﹣26 ﹣9 ﹣248.解:(2mn )?(﹣mn )=8mn ?mn=9.解:原式=(﹣4)+4×1=010.解:原式= ÷(﹣ )+2×1=﹣2+2 =0﹣2 ﹣3 ﹣1 3(2)(a )(bc );2﹣3 2 ﹣2 (3)2(2abc )÷(ab).11.解:∵2x=4y+1,x2y+2,∴2=2∴x=2y+2①y x﹣1又∵27=3 ,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x?32y=22x?25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,2m 3m=3×3×3,=31+5m,1+5m 16∴3=3,∴1+5m=16,解得m=3nm3n3m333n3m+3 14.解:∵(abb)=(a)(b)b=ab ,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2?a2=a4n÷a3n+2?a24n﹣3n﹣2 2=a ?an﹣22=a ?a=a n﹣2+2n=a17.解:a2m﹣3n=(a m)2÷(a n)3,m n∵a=8,a=,4/6∴原式=64÷ =512.故答案为 51218.解:∵9n+1﹣32n =9n+1﹣9n =9n (9﹣1)=9n×8,而72=9 ×8, ∴当9n+1﹣32n =72时,9n×8=9×8, ∴ 9n=9, ∴n =1 19.解:原式=(x m )2?x n2 =3×5 =9×5 =45 20.解:由题意得, 9n =32n =2,32m =62=36,故 32m ﹣4n+1=32m ×3÷34n=36×3÷4=275 4 3 5 4 321.解:(x ﹣y )[(y ﹣x )]=(x ﹣y )[(x ﹣y )]=( x ﹣y )5(?x ﹣y )12=(x ﹣y )1722.解:∵x m+2n=16,x n=2,m+2nn m+n ∴x ÷x=x =16÷2=8, x m+2n ÷x 3n =x m ﹣n =16÷23=223.解:( ﹣3 4 22﹣2 5a b )?(ab )﹣6 8 ﹣4 ﹣2 =25a b?a b =24.解:由题意知, 3m ?9m ?27m ?81m,m 2m3m 4m =3?3 ?3?3 , m+2m+3m+4m =3 , =330,∴ m +2m+3m+4m=30,整理,得10m=30, 解得m=325.解:∵x 6﹣b ?x 2b+1=x 11,且y a ﹣1?y 4﹣b =y 5, ∴ ,解得: ,则 a+b=1026.解:∵2x+3y ﹣4=0, ∴2x+3y=4, x ﹣1y 2x ﹣23y 2x+3y ﹣22∴9 ?27=3 ?3 =3=3=9 27.解:(3a 2x 4)3﹣(2a 3x 6)2=27a 6x 12﹣4a 6x 12=23a 6x 1228.解:原式= ? a 2b 3=29.解:∵16m =4×22n ﹣2,∴(24)m=22×22n ﹣2,∴24m =22n ﹣2+2,∴ 2n ﹣2+2=4m ,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,2010∴(n﹣m)=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5?a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣17 2 15a÷a=﹣a.32.解:(a ﹣2﹣1﹣3 2﹣2 b)?(2ab)=(a6b3)(? a﹣2b﹣4)= a4b﹣1=33.解:∵x a+b?x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,b 3 3 3 3∴(﹣3)+(﹣3)=(﹣3)+(﹣3) =2×(﹣3)=2 ×(﹣27)=﹣5434.解:原式88 8=a+a ﹣9x,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,5m+n2m﹣n 3 6 15∵(xy )=xy ,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,3m+2n 2n﹣3m m 3 n 2 n 2 m 3 ∴a ﹣a =(a)(?a)﹣(a)÷(a)=8×49﹣49÷8=2n+2 n 3 3 2 n37.解:(﹣3x y)÷[(﹣xy)],=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2?y﹣3)﹣1(?x2?y﹣3)2,5/6234﹣6=xy?xy ,=39.解:(a3m)2﹣(b2n)3+a2m?b3n,=(a2m)3﹣(b3n)2+a2m?b3n,3 2=2﹣3+2×3,=56n6n40.解:原式=27x﹣4x=23(x3n)2=23×7×7=11272n41.解:∵x=5,∴(3x3n)2﹣34(x2)3n6n6n=9x﹣34x2n3=﹣25(x )3=﹣25×5=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n =6a2n b6n﹣3a2n b6n=3a2n b6n50 50)50101543.解:原式=()x?(x =x44.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=0a b45.解:(1)∵x=2,x=6,∴x a﹣b=x a÷x b=2÷6=;(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a?33b?37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=4(2n+1)+3+(n﹣4)48.解:(1)原式=(2a+b)3n =(2a+b);WORD 格式专业资料整理( 2)原式=﹣(x ﹣y )2(?x ﹣y )5=﹣(x ﹣y )749.解:(1)原式=( )﹣2(? )2= ?= ;(2)原式= ? ÷= ?y 2z 6=150.解:(1)a 2b 3(2a ﹣1b 3)=2a 2﹣1b 3+3=2ab 6;( 2)(a ﹣2)﹣3(bc ﹣1)3,=a 6b 3c ﹣3,= ;( 3)2(2ab 2c ﹣3)2÷(ab )﹣2,=2(4a 2b 4c ﹣6)÷(a ﹣2b ﹣2),=8a 4b 6c ﹣6, =6/6。

2019第八章《幂的运算》水平测试题及答案精品教育.doc

2019第八章《幂的运算》水平测试题及答案精品教育.doc

第八章《幂的运算》水平测试题及答案以下是查字典数学网为您推荐的第八章《幂的运算》水平测试题及答案,希望本篇文章对您学习有所帮助。

第八章《幂的运算》水平测试题及答案一、选择(每题3分,共30分)1.下列各式中,正确的是( )A. B. C. D.2.实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.00000156m,则这个数用科学记数法表示是( )A. mB. mC. mD. m3.在等式 ( ) 中,括号里面的代数式是( )A. B. C. D.4.在下列括号中应填入的是( )A. B. C. D.5. 的结果是( )A. B. C. D.6.若,则等于( )A.5B.6C.8D.97.若则、的值分别为( )A.9,5B.3,5C.5,3D.6,128. 与的正确关系是( )A.相等B.互为相反数C.当为奇数时它们互为相反数,当为偶数时相等D.当为奇数时相等,当为偶数时互为相反数9.如果,,,那么三数的大小为( )A. B. C. D.10. 等于( )A. B. C. D.二、填空(每题3分,共30分)1.计算:(1) (2) (3)2.填上适当的指数:(1) (2) (3)3.填上适当的代数式:(1) (2)(3)4. 计算:(1) . (2) .5.用小数表示 .6.计算:的结果是 .7.若,则 .8.若,则 ________.(用幂的形式表示)9.计算: .10.已知,,则 .三、用心解答(共60分)1.(本题16分)计算:(1) (2)(3) (4)2.(本题10分)用简便方法计算:(1) (2)3.(本题8分)已知空气的密度是1.239㎏/m3,现有一塑料袋装满了空气,其体积为3500cm3,试问:这一袋空气的质量约为多少千克?(结果用科学计数法表示)4.(本题8分)若,解关于的方程 .5.(本题8分)已知,求的值.6.(本题10分)已知,,,用表示的代数式.参考答案一、1.A 2.C 3.C 4.B 5.D 6.B 7.B 8.D 9.A 10.A二、1.(1) ,(2) ,(3) ;2.(1)1,(2)1,(3)2;3.(1)1,(2)6,(3) ;4.(1) ,(2)1;5. ;6. ;7.4;8. ;9. ;10.3三、1.(1)解:原式 ;(2)解:原式 ;(3)解:原式 ;(4)解:原式 .2.(1)解:原式 ;(2)解:原式 .3.解:1.2393500 ㎏.4.解:解:变形为,所以,解得 .此时等式为, .5.解:由,得, ;由,得,, . 所以 .6.解:由,得,所以 .。

初中八年级数学上册幂的运算评估测试题及答案

初中八年级数学上册幂的运算评估测试题及答案

七年级下册数学第八章幂的运算评估测试卷(时间:90分钟满分:100分)一、选择题(每小题2分,共50分)1.下列计算不正确的是 ( )A.30+2-1=112B.10-4÷10-2=0.01 C.a2n÷a n=a2 D.()331328baba---=-2.下列计算不正确的是 ( ) A.a m÷a m=a0=1 B.a m÷(a n÷a p)=a m-n-pC.(-x) 5÷(-x) 4=-x D.9-3÷(3-3) 2=l3.下列计算正确的是 ( ) A.x8÷x4=x2 B.a8÷a-8=1 C.3100÷399=3 D.510÷55÷5-2=534.100m÷1000n的计算结果是 ( ) A.100000m-n B.102m-3n C.100mn D.1000mn5.若1x=2,则x2+x-2的值是 ( )A.4 B.144C.0 D.146.在等式a m+n÷A=a m-2中A的值应是 ( ) A.a m+n+2 B.a n-2 C.a m+n+3 D.a n+27.a2m+4等于 ( ) A.2a m+2 B.(a m) 2 a4 C.a2·a m+4 D.a2 a m+a48.x m+1 x m-1÷(x m) 2的结果是 ( ) A.-l B.1 C.0 D.±19.下列等式正确的是 ( )①0.000 126=1.26×10-4 ②3.10×104=31 000③1.1×10-5=0.000 011 ④12 600 000=1.26×106A.①② B.②④ C.①②③ D.①③④10.(-23×103) 2×(1.5×104) 2的值是 ( )A.-1.5×1011 B.1014 C.-4×1014 D.-101411.下列各式中-定正确的是 ( )A.(2x-3) 0=1 B.π0=0 C.(a2-1) 0=1 D.(m2+1) 0=112.计算200820091122⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎝⎭的结果是 ( )A.2009112⎛⎫+⎪⎝⎭B.200912⎛⎫- ⎪⎝⎭C.200812⎛⎫- ⎪⎝⎭D.200912⎛⎫⎪⎝⎭13.若26m>2x>23m,m为正整数,则x的值是 ( )A.4m B.3m C.3 D.2m14.在算式a m+n÷( )=a m-2中括号内的式子应是 ( ) A.a m+n+2 B.a n-2 C.a m+n-2 D.a n+215.(2×3-12÷2)0结果为 ( ) A.0 B.1 C.12 D.无意义16.结果为a2的式子是 ( ) A.a6÷a3 B.a4 a-2 C.(a-1) 2 D.a4-a217.下面计算正确的是 ( ) A.a4 a2=a8 B.b3+b3=b6 C.x5+x2=x7 D.x x7=x8 18.(-2a3) 2等于 ( ) A.4a5 B.4a6 C.4a9 D.-4a619.下列运算正确的是 ( ) A.x5 x=x5 B.x5-x2=x3 C.(-y) 2 (-y) 7=y9 D.-y3·(-y) 7=y10 20.下列运算正确的是 ( ) A.x10÷(x4÷x2)=x8 B.(xy) 6÷(xy) 2=(xy) 3=x3y3C.x n+2÷x n+1=x-n D.x4n÷x2n x3n=x-n21.计算25m÷5m得 ( )A.5 B.20 C.5m D.20m22.1纳米=0.000 000 001米,则2.5纳米应表示为 ( ) A.2.5×10-8米 B.2.5×10-9米 C.2.5×10-10米 D.2.5×109米23.国家游泳中心——“水立方”是北京2008奥运会场馆之一,它的外层膜的展开面积约260 000平方米,将260 000用科学记数法表示应为 ( )A.0.26×106 B.26×104 C.2.6×105 D.2.6×10624.下列运算正确的是 ( )A.a2 a3=a6 B.(-y2) 3=y6 C.(m2n) 3=m5n3 D.-2x2+5x2=3x2 25.国家教育部最近提供的数据娃示,2008年全国普通高考计划招生667万人,这一数据科学记数法表示为(结果保留两个有效数字) ( ) A.6.6×106 B.66×106 C.6.7×106 D.67×106二、填空题(每小题2分,共44分)26.a2·(-a)2=____________.27.(x2)-3·(x3)-1÷x=____________.28.-b2·(-b) 2 (-b3)=_____________.29.(x-y) 2 (y-x) 3=______________.30. 0.1252008×82009=_____________.31.-4n÷8n-1=_____________.32.a3 __________ a m+1=a2m+433.已知10a=5,10b=25,则103a-b=____________.34.已知Ax n+1=x2n+1,则A=_____________.35.0.258×643×258×48=______________.36.-52×(-5) 2×5-4=_____________.37.(a2) 2 (a b) 3-(-a2b) 3(-a)=______________.38.(-a)6÷(-a)3=____________.39.a2 a5÷a6=____________.40.50×5-2+25-1=____________.41.m3·(m2) 6÷m10=___________.42.-x m+1÷x m-1=___________.43.(a m-1) n÷a mn=___________.44.若22n=4,则n=__________.45.若64×83=2x,则x=___________.46.若x3=(-2) 5÷(12)-2,则x=____________.47.用科学记数法表示0.000 000 125=____________.三、计算题(48~51题每小题4分,52、53题每小题5分,共26分) 48.(-3a3) 2÷a249.x n+1 ÷x n-1(x n) 2 (x≠0) 50.x5 x4-x6·x2·x51. ( -3) 0+(-12)3-(13)-252.3x2·x n-2+3(-x) 2·x n-3·(-x) 53.(-3×3-2)-3-(-32) 2÷32×20090参考答案1.C 2.B 3.C 4.B 5.B 6.D 7.B 8.B 9.C 10.B 11.D12.D 13.A 14.D 15.D 16.B 17.D 18.B 19.D 20.A 21.C 22.B23.C 24.D 25.C26.a 4 27.101x 28.b 7 29.(y -x) 5 30.8 31.-23-n 32.a m33.5 34.x n 35.436.-1 37.0 38.-a 3 39.a 40.1 41.m 5 42.-x 2 43.1na 44.1 45.15 46.-2 47.1.25×10-748.解:(-3a 3) 2÷a 2 =9a 6÷a 2 =9a 6-2=9a 449.解:x n+1·x n -1÷(x n ) 2 =x (n+1)+(n -1)-2n =x 0=150.解:x 5·x 4-x 6 x 2 x=x 9-x 29=0.51.解:()320111131982388π-⎛⎫⎛⎫⎛⎫-+--=+--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭52.解:原式=3x n -3x n =0.53.解:(-3×3-2)-3-(-32) 2÷32×20090=-27-9×1=-36。

【精选】苏科版七年级下册数学第八章《幂的运算》测试卷(含答案)

【精选】苏科版七年级下册数学第八章《幂的运算》测试卷(含答案)

【精选】苏科版七年级下册数学第八章《幂的运算》测试卷(含答案)一、选择题(每题3分,共24分)1.【2021·南京市玄武区二模】计算a 3·(-a 2)的结果是( )A .a 5B .-a 5C .a 6D .-a 62.计算⎝ ⎛⎭⎪⎫130×⎝ ⎛⎭⎪⎫15-2的结果是( ) A.110 B .-110 C .25 D .-1253.【2022·宿迁】下列运算正确的是( )A .2m -m =1B .m 2·m 3=m 6C .(mn )2=m 2n 2D .(m 3)2=m 54.计算:(a ·a 3)2=a 2·(a 3)2=a 2·a 6=a 8,其中,第一步运算的依据是( )A .同底数幂的乘法法则B .幂的乘方法则C .乘法分配律D .积的乘方法则5.已知a a -1÷a =a ,则a =( )A .3B .1C .-1D .3或±16.【2022·长沙市校级期中】已知2x -3y =2,则(10x )2÷(10y )3的值为( )A .10 000B .1 000C .10D .1007.已知(x -1)|x |-1有意义且值为1,则x 的值为( )A .±1 B.-1 C .-1或2 D .28.【2022·青岛期中】如图,已知点P 从距原点右侧8个单位的点M 处向原点方向跳动,第一次跳动到OM 的中点M 1处,第二次从点M 1跳到OM 1的中点M 2处,第三次从点M 2跳到OM 2的中点M 3处,…,依次这样进行下去,第2 024次跳动后,该点到原点O 的距离为( )A .2-2 024B .2-2 023C .2-2 022D .2-2 021二、填空题(每题3分,共30分)9.【2022·苏州市吴江区期中】计算:(-3xy 3)3=__________.10.【2021·溧阳市期中】若83=25·2m ,则m =________.11.计算:(-5)2 023×⎝ ⎛⎭⎪⎫15 2 024=________.12.【2021·扬州市江都区期中】已知2a ÷4b =8,则a -2b 的值是________.13.【2022·湖北】科学家在实验室中检测出某种病毒的直径约为0.000 000 103m ,该直径用科学记数法表示为______________m.14.若0<x <1,则x -1,x ,x 2的大小关系是____________.15.【2021·盐城市建湖县月考】已知3x +1=6,2y +2=108,则xy 的值为________.16.设x =5a ,y =125a +1(a 为正整数),用含x 的代数式表示y ,则y =________.17.梯形的上、下底的长分别是4×103cm 和8×103cm ,高是1.6×104cm ,此梯形的面积是__________.18.我们知道,同底数幂的乘法法则为a m ·a n =a m +n (其中a ≠0,m 、n 为正整数).类似地,我们规定关于任意正整数m 、n 的一种新运算:g (m +n )=g (m )·g (n ),若g (1)=-13,则g (2 023)·g (2 024)=________________. 三、解答题(第19、20题每题6分,第21、22题每题8分,第23、24题每题9分,第25、26题每题10分,共66分)19.计算:(1)a3·a2·a+(a2)3; (2)(2m3)3+m10÷m-(m3)3. 20.计算:(1)0.62 023×(-53)2 024; (2)(-2)-2+⎝⎛⎭⎪⎫13-1×(2 023-π)0.21.已知2a=4b(a、b是正整数)且a+2b=8,求2a+4b的值.22.(1)比较221与314的大小;(2)比较86与411的大小.23.【2021·张家港市月考】(1)已知2×8x×16=223,求x的值;(2)已知a m=2,a n=3,求a3m-2n的值.24.某农科所要在一块长为1.2×105cm,宽为2.4×104cm的长方形实验地上培育新品种粮食,已知培育每种新品种需一块边长为1.2×104cm的正方形实验地,这块长方形实验地最多可以培育多少种新品种粮食?25.【2021·宿迁市沭阳县期中】(1)已知10a=5,10b=6,求102a+103b的值;(2)已知9n+1-9n=72,求n的值.26.【2022·盐城市亭湖区校级月考】规定两数a、b之间的一种运算,记作(a,b);如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七(下)数学第八章幕的运算评估测试卷(时间:90分钟满分:100分)一、选择题(每小题2分,共50分)计算不正确.30+2—1=1-2 4- 10 2=0. 01 2na 2abb38a3ma =a 0=1 p m— n —pa )= a5.(—x) r —x) 二—x (3 —3)2=l—8 ”a =1 .3100+ 399=3 D . 510+2=53m100 1000n111A . 100000小B . 102m 「3nC 5 . 若 1=2, 则x( )A . 4B .41C46. 在等式m+n展ar A= amn.100 D. 1000mn2x +x— 2的 值是.0D1• 4m —2中 A 的值应 是()1(x)12① 0 . 000 126=1 . 26 X 10 —4② 3 . 10 X 104=31 00031. 1X 10—5=0 . 000 011 ④ 12 600 000=1 . 26 X 106A .①② B- ②④C.①②③ D .①③④10 .(—23X 103)2X (14.5 X 10)2的值是()A .—1 . 5 X 1011B .1014C .—4X 1014D. — 101411. 下列各式中 -定 正 确的是()A .(2x — 3)0=1B=0C.(a 2—1) 0= 12D . (m+1) 0=1( )200820092009 12009 2008 2009m+n+2ac. m+n+3aD. n+2a2m+4m+2.(aTga 4c.m+4a2 m 4a ga +am+1x13若 26m >2x >23m , m 为 正 整 数 则 x 的 值 是m+n -2.a Dn+2a宁2)结果 为.12D无意义 2的式子是- 1 24 2.( a1) 2 D .a -a 算正确的是x 5-x 2=x 3 C . ( -y) 2( -y) 7=y 9 D . - y 3 •(-A .a ga =aB .b +b=bA . 4mB . 3mD. 2m ( )m+n+2n -2A .a B• a C15. (2X3-12( )A .0 B.1 C16•结果为a( )634 - 2A .a 十aB • a gaC17下面 计14 .在算式a m+n+ (m)= a( )527. x +x =xD78.x g x =x 18 ( - 2a3)等于( ) A .4a 4 5B .4a 6C .4a 96D .-4a 6 19列运算的是y) 7 10=y中括号内的式子应是A .x 5g x=x 5B20•下列运算正确的是( )A 10 4 .x 宁(x28—x )=xB• (xy) 6 . (xy) 2 3 3 3(xy) =x yn+2 n+1-n4n2n 3n -nC .x 宁x =xD•x 宁: x 2n gx =x21•计算25m.5m得( )A .5B . 20C.5mD. 20m22.1 纳 米=0 . 000 000 001 米 ,则2. 5纳 米 应表示为( )A .2.5X 10-8米 B . 2. 5X 10-9米 C .2. 5X10-10 米 D . 2 . 5X 109米这一数据科学记数法表示为(结果保留两个有效数字)( )A . 6. 6X 106B . 66X 106C. 6. 7X 106D. 67X 106水立方”是北京 2008 奥运会场馆之一,它的外层膜的展开面积约 260000 平 方 米 ,( )A.0.26X 106B . 26X 10424 •下列运( )A236.a ga =a B2 3 6.( -y ) =y将 260 000 用 科 学 记 数 法 表 示 应 为5C .2.6X 105D .2.6X 106算正确的是2 3 5 3C .(mn) =mnD .-2x 2+5x 2=3x 223.国家游泳中心25.国家教育部最近提供的数据娃示,2008 年全国普通高考计划招生 667 万人,填空题(每小题2分,共44分) 2 2a • ( - a ) = _________ .(X ) •(X ) __________ - x= .-b 2 • ( - b)2 ( - b 3)= __________ . (x - y)2 (y - x)3 =___________ .亠 …一2008 ^20090 . 125 X 8 = ___________ . -4 + 8 ____________ = .3 m+1 2m+4ag ______ ga =a已知 10a =5, 10b =25,贝9 103a -b = _______ .已知 Ax n+1=x 2n+1,则 A= ______ . 0. 258X 643X 258X 48= _________ .-52 X ( - 5) 2 X 5-4= _________ .(a 2) 2 ( a b) 3 - ( - a 2b) 3( - a )= ____________若 64 X 83=2x ,贝9 x= ____ .26. 27. 28. 29. 30. 31 . 32. 33. 34. 35. 36. 37.38. 39. 40. 41 .42. 43.44.45. 46.50X 5-2+25-1=.3 . Z 6 10m • (m)宁 m =m+1m — 1—x 宁 x =(a n -1) n + mna =.若 22n =4, 则n=(-a )6+( - a )3= _______________ . 2 5 6a ga + a = _______________若 e-2)5“2厂2,则x= --------------------------------47.用科学记数法表示0 . 000 000 125= .三、计算题(48〜51题每小题4分,52、53题每小题5分,共26分)48.(-3a3) 2+ a249 .n+1 n-1 n 2x g 宁x (x )(X 半 0)50 .5 46 2X g x —X • X • X51 .g( —3)0+(—^)3—(1)—22 352 .2 n —2 2 n —33x • x +3( —x) • x • ( —x)53 .(—3 X 3 2) 3—( —32) 2- 32X 2009°参考答案1.C 2 .B 3 .C 4 .B 5 .B 6 .D 7 .B 8 .B 9 .C 10 .B 11 .D12. D 13 . A 14 . D 15 . D 16 . B 17 . D 18 . B 19 . D 20 . A 21 . C 22.B 23 . C 24 . D 25 . C26.a4 27 . [ 28 . b7 29 . (y x) 5 30 . 8 31 . 23—n 32 . a mX33.5 34 . x n 35 . 436.3 5 2 1—1 37 . 0 38 . —a3 39 . a 40 . 1 41 . m 42 . —x2 43 .丄44 . 1na45.15 46 . —2 47 . 1 . 25 X 10—748.3、2 2 6 2 6—2 4解: ( —3a )宁 a =9 a 宁 a =9 a =9a49.解:X • X + (x ) =x =x =150. 5 4 6 2 9 2解:X • X —X g X g x=x —X 9=0 .3 251 .0 11,1 1解: 3 1 9 82 3 8 8 52.解:原式=3x n—3x n=0 .53.2 3 22 2 0解:(—3X 3—) ——( —3) - 3 X 2009=—27—9X 1 = —364 2 8 3 3 6。

相关文档
最新文档