计算方法及答案汇总

合集下载

计算方法各习题及参考答案

计算方法各习题及参考答案

计算⽅法各习题及参考答案第⼆章数值分析2.1 已知多项式432()1p x x x x x =-+-+通过下列点:试构造⼀多项式()q x 通过下列点:答案:54313()()()3122q x p x r x x x x x =-=-++-+. 2.2 观测得到⼆次多项式2()p x 的值:表中2()p x 的某⼀个函数值有错误,试找出并校正它.答案:函数值表中2(1)p -错误,应有2(1)0p -=.2.3 利⽤差分的性质证明22212(1)(21)/6n n n n +++=++ .2.4 当⽤等距节点的分段⼆次插值多项式在区间[1,1]-近似函数xe 时,使⽤多少个节点能够保证误差不超过61102-?.答案:需要143个插值节点.2.5 设被插值函数4()[,]f x C a b ∈,()3()h H x 是()f x 关于等距节点01n a x x x b =<<<= 的分段三次艾尔⽶特插值多项式,步长b a h n-=.试估计()3||()()||h f x H x ∞-.答案:()443||()()||384h M f x H x h ∞-≤.第三章函数逼近3.1 求()sin ,[0,0.1]f x x x =∈在空间2{1,,}span x x Φ=上最佳平⽅逼近多项式,并给出平⽅误差.答案:()sin f x x =的⼆次最佳平⽅逼近多项式为-522sin ()0.832 440 710 1.000 999 10.024 985 1x p x x x ≈=-?+-,⼆次最佳平⽅逼近的平⽅误差为0.122-1220(sin )())0.989 310 710x p x dx δ=-=??.3.2 确定参数,a b c 和,使得积分2121(,,)[I a b c ax bx c -=++-?取最⼩值.答案:810, 0, 33a b c ππ=-== 3.3 求多项式432()251f x x x x =+++在[1,1]-上的3次最佳⼀致逼近多项式()p x .答案:()f x 的最佳⼀致逼近多项式为323()74p x x x =++. 3.4 ⽤幂级数缩合⽅法,求() (11)x f x e x =-≤≤上的3次近似多项式6,3()p x ,并估计6,3||()()||f x p x ∞-.答案:236,3()0.994 574 650.997 395 830.542 968 750.177 083 33p x x x x =+++, 6,3||()()||0.006 572 327 7f x p x ∞-≤3.5 求() (11)xf x e x =-≤≤上的关于权函数()x ρ=的三次最佳平⽅逼近多项式3()S x ,并估计误差32||()()||f x S x -和3||()()||f x S x ∞-.答案:233()0.994 5710.997 3080.542 9910.177 347S x x x x =+++,32||()()||0.006 894 83f x S x -=,3||()()||0.006 442 575f x S x ∞-≤.第四章数值积分与数值微分4.1 ⽤梯形公式、⾟浦⽣公式和柯特斯公式分别计算积分1(1,2,3,4)n x dx n =?,并与精确值⽐较.答案:计算结果如下表所⽰4.2 确定下列求积公式中的待定参数,使得求积公式的代数精度尽量⾼,并指明所确定的求积公式具有的代数精度.(1)101()()(0)()hh f x dx A f h A f A f h --≈-++?(2)11211()[(1)2()3()]3f x dx f f x f x -≈-++? (3)20()[(0)()][(0)()]2h h f x dx f f h h f f h α''≈++-?答案:(1)具有三次代数精确度(2)具有⼆次代数精确度(3)具有三次代数精确度.4.3 设10h x x =-,确定求积公式12300101()()[()()][()()][]x x x x f x dx h Af x Bf x h Cf x Df x R f ''-=++++?中的待定参数,,,A B C D ,使得该求积公式的代数精确度尽量⾼,并给出余项表达式.答案:3711,,,20203020A B C D ====-,(4)6()[]1440f R f h η=,其中01(,)x x η∈.4.4 设2()P x 是以0,,2h h 为插值点的()f x 的⼆次插值多项式,⽤2()P x 导出计算积分30()hI f x dx =?的数值积分公式h I ,并⽤台劳展开法证明:453(0)()8h I I h f O h '''-=+.答案:3203()[(0)3(2)]4h h I p x dx h f f h ==+?.4.5 给定积分10sin xI dx x =(1)运⽤复化梯形公式计算上述积分值,使其截断误差不超过31102-?.(2)取同样的求积节点,改⽤复化⾟浦⽣公式计算时,截断误差是多少?(3)要求的截断误差不超过610-,若⽤复化⾟浦⽣公式,应取多少个节点处的函数值?答案:(1)只需7.5n ≥,取9个节点,0.946I ≈(2)4(4)46111|[]||()|()0.271102880288045n b a R f h f η--=-≤=? (3)取7个节点处的函数值.4.6 ⽤变步长的复化梯形公式和变步长的复化⾟浦⽣公式计算积分10sin xI dx x =?.要求⽤事后误差估计法时,截断误不超过31102-?和61102-?.答案:使⽤复化梯形公式时,80.946I T ≈=满⾜精度要求;使⽤复化⾟浦⽣公式时,40.946 083I s ≈=满⾜精度要求.4.7(1)利⽤埃尔⽶特插值公式推导带有导数值的求积公式2()()[()()][()()][]212ba b a b a f x dx f a f b f b f a R f --''=+--+?,其中余项为 5(4)()[](), (,)4!30b a R f f a b ηη-=∈.(2)利⽤上述公式推导带修正项的复化梯形求积公式020()[()()]12Nx N N x h f x dx T f x f x ''≈--?,其中 0121[()2()2()2()()]2N N N hT f x f x f x f x f x -=+++++ ,⽽ 00, (0,1,2,,), i N x x ih i N Nh x x =+==- .4.8 ⽤龙贝格⽅法计算椭圆2214x y +=的周长,使结果具有五位有效数字.答案:49.6884l I =≈.4.9确定⾼斯型求积公式0011()()()x dx A f x A f x ≈+?的节点0x ,1x 及系数0A ,1A .答案:00.289 949x =,10.821 162x =,00.277 556A =,10.389 111A =.4.10 验证⾼斯型求积公式00110()()()x e f x dx A f x A f x +∞-≈+?的系数及节点分别为0001 2 2A A x x ===-=+第五章解线性⽅程组的直接法5.1 ⽤按列选主元的⾼斯-若当消去法求矩阵A 的逆矩阵,其中11121 0110A -?? ?= ? ?-??.答案: 1110331203321133A -?? ? ?=---5.2 ⽤矩阵的直接三⾓分解法解⽅程组1234102050101312431701037x x x x= ? ? ? ? ? ? ? ? ??答案: 42x =,32x =,21x =,11x =.5.3 ⽤平⽅根法(Cholesky 分解法)求解⽅程组12341161 4.25 2.750.51 2.75 3.5 1.25x x x -?????? ??? ?-=- ??? ? ??? ???????答案: 12x =,21x =,31x =-.5.4 ⽤追赶法求解三对⾓⽅程组123421113121112210x x x x ?????? ? ? ? ? ? ?= ? ? ? ? ? ? ? ? ?????答案:42x =,31x =-,21x =,10x =.第六章解线性代数⽅程组的迭代法6.1对⽅程1212123879897x x x x x x x -+=??-+=??--=?作简单调整,使得⽤⾼斯-赛得尔迭代法求解时对任意初始向量都收敛,并取初始向量(0)[0 0 0]T x =,⽤该⽅法求近似解(1)k x+,使(1)()3||||10k k x x +-∞-≤.答案:近似解为(4)[1.0000 1.0000 1.0000]Tx =.6.2讨论松弛因⼦ 1.25ω=时,⽤SOR ⽅法求解⽅程组121232343163420412x x x x x x x +=??+-=??-+=-? 的收敛性.若收敛,则取(0)[0 0 0]T x=迭代求解,使(1)()41||||102k k x x +-∞-<.答案:⽅程组的近似解为*1 1.50001x =,*2 3.33333x =,*3 2.16667x =-.6.3给定线性⽅程组Ax b =,其中111221112211122A ?? ? ?=,证明⽤雅可⽐迭代法解此⽅程组发散,⽽⾼斯-赛得尔迭代法收敛.6.4设有⽅程组112233302021212x b x b x b -?????? ??? ?= ??? ? ??? ?-??????,讨论⽤雅可⽐⽅法和⾼斯-赛得尔⽅法解此⽅程组的收敛性.如果收敛,⽐较哪种⽅法收敛较快.答案:雅可⽐⽅法收敛,⾼斯-赛得尔⽅法收敛,且较快.6.5设矩阵A ⾮奇异.求证:⽅程组Ax b =的解总能通过⾼斯-赛得尔⽅法得到.6.6设()ij n nA a ?=为对称正定矩阵,对⾓阵1122(,,,)nn D diag a a a = .求证:⾼斯-赛得尔⽅法求解⽅程组1122D AD x b --=时对任意初始向量都收敛.第七章⾮线性⽅程求根例7.4对⽅程230xx e -=确定迭代函数()x ?及区间[,]a b ,使对0[,]x a b ?∈,迭代过程1(), 0,1,2,k x x k ?+== 均收敛,并求解.要求51||10k k x x -+-<.答案:若取2()x x ?=,则在[1,0]-中满⾜收敛性条件,因此迭代法121, 0,1,2,k x k x k +== 在(1,0)-中有惟⼀解.取00.5x =-,*70.458960903x x ≈=-.取2()x x ?=,在[0,1上满⾜收敛性条件,迭代序列121, 0,1,2,k x k x k +== 在[0,1]中有惟⼀解.取00.5x =,*140.910001967x x ≈=- 在[3,4]上,将原⽅程改写为23xe x =,取对数得2ln(3)()x x x ?==.满⾜收敛性条件,则迭代序列21ln(3), 0,1,2,k k x x k +== 在[3,4]中有惟⼀解.取0 3.5x =, *16 3.733067511x x ≈=.例7.6对于迭代函数2()(3)x x c x ?=+-,试讨论:(1)当c 为何值时,1()k k x x ?+=产⽣的序列{}k x(2)c 取何值时收敛最快?(3)取1,2c =-()x ?51||10k k x x -+-<.答案:(1)(c ∈时迭代收敛.(2)c =时收敛最快.(3)分别取1, 2c =--,并取0 1.5x =,计算结果如下表7.7所⽰表7.7例7.13 设不动点迭代1()k x x ?+=的迭代函数()x ?具有⼆阶连续导数,*x 是()x ?的不动点,且*()1x ?'≠,证明Steffensen 迭代式21(), (), 0,1,2,()2k k k k k k k k k k k y x z x k y x x x z y x+===-?=-?-+?⼆阶收敛于*x .例7.15 设2()()()()()x x p x f x q x f x ?=--,试确定函数()p x 和()q x ,使求解()0f x =且以()x ?为迭代函数的迭代法⾄少三阶收敛.答案:1()()p x f x =',31()()2[()]f x q x f x ''=' 例7.19 设()f x 在[,]a b 上有⾼阶导数,*(,)x a b ∈是()0f x =的(2)m m ≥重根,且⽜顿法收敛,证明⽜顿迭代序列{}k x 有下列极限关系:111lim2k kk k k k x x m x x x -→∞-+-=-+.第⼋章矩阵特征值8.1 ⽤乘幂法求矩阵A 的按模最⼤的特征值与对应的特征向量,已知5500 5.51031A -?? ?=- ? ?-??,要求(1)()611||10k k λλ+--<,这⾥()1k λ表⽰1λ的第k 次近似值.答案:15λ≈,对应的特征向量为[5,0,0]T-;25λ≈-,对应的特征向量为[5,10,5]T --. 8.2 ⽤反幂法求矩阵110242012A -??=-- -的按模最⼩的特征值.知A 的按模较⼤的特征值的近似值为15λ=,⽤5p =的原点平移法计算1λ及其对应的特征向量.答案:(1) A 的按模最⼩的特征值为30.2384428λ≈(2) 1 5.1248854λ≈,对应的特征向量为(8)[0.242 4310, 1 ,0.320 011 7]T U =--.8.3 设⽅阵A 的特征值都是实数,且满⾜121, ||||n n λλλλλ>≥≥> ,为求1λ⽽作原点平移,试证:当平移量21()2n p λλ=+时,幂法收敛最快. 8.4 ⽤⼆分法求三对⾓对称⽅阵1221221221A ?? ? ?= ? ? ???的最⼩特征值,使它⾄少具有2位有效数字.答案:取5 2.234375λ≈-即有2位有效数字.8.5 ⽤平⾯旋转变换和反射变换将向量[2 3 0 5]T x =变为与1[1 0 0 0]Te =平⾏的向量.答案:203/2/00001010/0T ??- ?=--?0.324 442 8400.486 664 26200.811 107 1040.486 664 2620.812 176 04800.298 039 92200100.811 107 1040.298 039 92200.530 266 798H --??--= ? ?--8.6 若532644445A -??=- -,试把A 化为相似的上Hessenberg 阵,然后⽤QR ⽅法求A 的全部特征值.第九章微分⽅程初值问题的数值解法9.1 ⽤反复迭代(反复校正)的欧拉预估-校正法求解初值问题0, 0<0.2(0)1y y x y '+=≤??=?,要求取步长0.1h =,每步迭代误差不超过510-.答案: [4]11(0.1)0.904 762y y y ≈==,[4]22(0.2)0.818 594y y y ≈==9.2 ⽤⼆阶中点格式和⼆阶休恩格式求初值问题2, 0<0.4(0)1dy x y x dx y ?=+≤=?的数值解(取步长0.2h =,运算过程中保留五位⼩数).答案:⽤⼆阶中点格式,取初值01y =计算得0n =时,1211.000 00, 1.200 00, (0.2)=1.240 00K K y y ==≈ 1n =时,1221.737 60, 2.298 72, (0.4)=1.699 74K K y y ==≈⽤⼆阶休恩格式,取初值01y =计算得0n =时,1211.000 00, 1.266 67, (0.2)=1.240 00K K y y ==≈ 1n =时,1221.737 60, 2.499 18, (0.4)=1.701 76K K y y ==≈9.3 ⽤如下四步四阶阿达姆斯显格式1123(5559379)/24n n n n n n y y h f f f f +---=+-+-求初值问题, (0)1y x y y '=+=在[0,0.5]上的数值解.取步长0.1h =,⼩数点后保留8位.答案:4(0.4)0.583 640 216y y ≈=,5(0.5) 1.797 421 984y y ≈=. 9.4 为使⼆阶中点公式1(,(,))22n n n n n n h hy y hf x y f x y +=+++,求解初值问题 , (0)y y y aλλ'=-??=?为实常数绝对稳定,试求步长h 的⼤⼩应受到的限制条件.答案:2h λ≤.9.5 ⽤如下反复迭代的欧拉预估-校正格式(0)1(1)()111(,)[(,)(,)]2 0,1,2,; 0,1,2,nn n n k k n n n n n n y y hf x y h y y f x y f x y k n +++++?=+??=++??==,求解初值问题sin(), 01(0)1x y e xy x y '?=<≤?=?时,如何选择步长h ,使上述格式关于k 的迭代收敛.答案:2h e<时上述格式关于k 的迭代是收敛的.9.6 求系数,,,a b c d ,使求解初值问题0(,), ()y f x y y x a '==的如下隐式⼆步法221()n n n n n y ay h bf cf df +++=+++的误差阶尽可能⾼,并指出其阶数.答案:系数为142,,33a b d c ====,此时⽅法的局部截断误差阶最⾼,为五阶5()O h .9.7 试⽤欧拉预估-校正法求解初值问题, (0)=1, 0<0.2()/, (0)2dyxy z y dxx dz x y z z dx=-≤=+=,取步长0.1h =,⼩数点后⾄少保留六位.答案:由初值00(0)1, (0)2y y z z ====可计算得110.800 000z 2.050 000y =??=? , 11(0.1)0.801 500(0.1) 2.046 951y y z z ≈=??≈=? 220.604 820z 2.090 992y =??=? , 22 (0.2)0.604 659(0.2) 2.088 216y y z z ≈=??≈=?。

计算方法试题集及答案

计算方法试题集及答案

计算方法试题集及答案复习试题四、计算题:4某12某2某311某14某22某3182某某5某22(0)T某(0,0,0)1231、用高斯-塞德尔方法解方程组,取,迭代四次(要求按五位有效数字计算)。

(k1)1(k)(k)某(112某某)1234(k1)1(k)(18某1(k1)2某3)某24(k1)1(k1)(k1)某(222某某)3125答案:迭代格式k01234某1(k)(k)某2(k)某302.75000.209380.240430.5042003.81253.17892.59972.482002.53753. 68053.18393.70191/272、11f(某)d某A[f(1)f(1)]B[f()f()]122的代数精求A、B使求积公式1度尽量高,并求其代数精度;利用此公式求2f(某)1,某,某答案:是精确成立,即I211d某某(保留四位小数)。

2A2B212182ABA,B23得991811f(某)d某[f(1)f(1)][f()f()]19922求积公式为1当f(某)某时,公式显然精确成立;当所以代数精度为3。

32f(某)某时,左=541,右=3。

3、已知某i1364554f(某i)2分别用拉格朗日插值法和牛顿插值法求f(某)的三次插值多项式P3(某),并求f(2)的近似值(保留四位小数)。

答案:L3(某)2(某3)(某4)(某5)(某1)(某4)(某5)6(13)(14)(15)(31)(34)(35)5(某1)(某3)(某5)(某1)(某3)(某4)4(41)(43)(45)(51)(53)(54)差商表为某iyi一阶均差二阶均差三阶均差2-1-1-101413452654P3(某)N3(某)22(某1)(某1)(某3)1(某1)(某3)(某4)4f(2)P3(2)5.53/274、取步长h0.2,用预估-校正法解常微分方程初值问题y2某3yy(0)1(0某1)(0)yn1yn0.2(2某n3yn)(0)yy0.1[(2某3y)(2某3yn1nnnn1n1)]答案:解:即yn10.52某n1.78yn0.04n某nyn0010.21.8220.430.640.851.015.879610.713719.422435.02795、已知某i-2-12022325f(某i)4求f(某)的二次拟合曲线p2(某),并求f(0)的近似值。

计算方法 课后习题答案

计算方法 课后习题答案
4. 设 f x xk k 0,1,...,n ,试列出 f x 关于互异节点 xi i 0,1,..., n 的
Lagrange 插值多项式。
3
注意到:若 n 1个节点 xi i 0,1,..., n 互异,则对任意次数 n 的多项式 f x ,它
(4.5)(0.01172)

0.00879
(2)采用 Newton 插值多项式 y x N2(x) 根据题意作差商表:
i
xi
0
4
1
6.25
f (xi ) 2 2.5
一阶差商 2 9
2
9
3
2 11
二阶差商 4 495
N2 (7) 2 29 (7 4) ( 4 495) (7 4) (7 6.25) 2.6484848
Lagrange
型二次插值函数,并估
计差。
解1)由题意知:
x0

0,
x1
1,
x2

1 2
;
y0
1,
y1

e1,
y2

1
e2
则根据二次Lagrange插值公式得:
L2 (x)

(x ( x0

x1)(x x2 ) x1)(x0 x2 )
y0

(x ( x1

x0 )(x x2 ) x0 )(x1 x2 )
x2 02
x4= 04
x3
7x2 14x 8 8
l1 ( x)

x x0 x1 x0

x x2 x1 x2

x x3 x1 x3

简便运算大全以及答案

简便运算大全以及答案

简便运算大全以及答案人们在日常生活中经常需要进行各种运算,包括加减乘除、百分数、幂次方等等,而这些运算涉及到的数学知识难度各不相同。

为了让大家能够轻松地进行各种数学运算,本文将介绍一些简便的计算方法和答案。

1. 快速计算乘法对于两个整数的乘法,人们常常采用竖式计算方法,但是这种方法有时不够快捷,因此我们可以采用以下方法进行快速计算。

(1) 末位对齐相乘法:将需要乘的两个数的个位数相乘得到个位数的部分,然后将需要乘的两个数的十位数相乘得到十位数的部分,最后将两部分相加即为答案。

例如:23 × 17 = 391(2) 交叉乘法:将两个数的各个位数依次相乘,然后将结果按位数从右向左排列,最后将相同位数的结果相加即为答案。

例如:23 × 17 = 3912. 快速计算除法对于整数的除法,我们通常采用手算或者借助计算器等工具进行计算,但是以下方法可以在一定程度上简化计算。

(1) 近似商计算法:这种方法适用于计算整数相除的时候,计算过程中只考虑商的整数部分。

例如:75 ÷ 6 ≈ 12(2) 倒数相乘法:这种方法适用于计算两个数相除时,可以将除数的倒数相乘得到答案。

例如:75 ÷ 6 = 75 × 1/6 = 12.53. 百分数计算方法对于百分数的计算,我们通常采用将百分数转化为小数进行计算的方法,以下是转化方法。

(1) 将百分数除以100得到小数。

例如:60% = 0.6(2) 乘以百分数,将数值除以100,得到结果。

例如:60% × 120 = 724. 幂次方计算方法当我们需要求一个数的幂次方时,可以采用以下方法进行计算。

(1) 直接计算:依据幂次方的定义,将底数按照指数进行循环乘法计算即可得到答案。

例如:2³ = 2 × 2 × 2 = 8(2) 快速幂算法:当需要计算的幂次方较大,而底数为整数时,可以利用快速幂算法进行计算,这种方法可以大大减少计算次数。

简便运算大全及答案

简便运算大全及答案

简便运算大全及答案一、加法运算加法是最基本的数学运算之一,在日常生活中经常会遇到需要进行加法运算的情况。

下面是一些简便的加法计算方法以及答案。

基本加法原则基本的加法原则是将两个或多个数按位对齐,然后从右向左逐位相加,进位则向左进一位。

例子:23+ 15-----38在这个例子中,将23和15按位对齐,然后从右向左逐位相加,得到的结果为38。

快速加法技巧除了基本的加法原则,还有一些快速加法技巧可以帮助我们更快地进行加法运算。

进位加法当相加的两个数的个位数字之和超过9时,我们可以先不考虑进位,而是将个位数字之和的个位数作为结果的个位数,并记住进位的数。

例子:48+ 56------1 0 4在这个例子中,4和6相加得到0(个位数),记住进位的1。

然后8和5相加得到3(十位数),再加上进位的1,得到结果的十位数1。

最终得到的结果是104。

关联加法当我们需要进行多个加法运算时,可以采用关联加法的方法,先计算其中的一部分,并将中间结果用于后面的计算,以减少重复计算的时间和精力。

例子:23+ 15+ 30+ 10-----一般情况下,我们会按照从上到下的顺序进行计算,即先计算23和15的和,再将结果与30相加,最后再将结果与10相加。

加法答案根据以上的加法运算方法,下面是一些加法题目及其答案:1.24 + 16 = 402.35 + 47 = 823.52 + 38 = 904.81 + 19 = 1005.49 + 56 = 105二、减法运算减法是加法的逆运算,同样也是日常生活中常用的数学运算之一。

下面是一些简便的减法计算方法以及答案。

基本减法原则基本的减法原则是将被减数和减数对齐,然后从右向左逐位相减。

例子:35- 17-----18在这个例子中,将35和17按位对齐,然后从右向左逐位相减,得到的结果为18。

快速减法技巧除了基本的减法原则,还有一些快速减法技巧可以帮助我们更快地进行减法运算。

借位减法当被减数的某一位小于减数的相应位时,我们可以向高位借一位,并将借位的数与低位减数相加,再与高位被减数相减。

计算方法 课后习题答案

计算方法 课后习题答案
解:因为第一列中10最大,因此把10作为列主元素
得到方程组
3。举例说明一个非奇异矩阵不一定存在LU分解。
例如:设
与题设相矛盾,所以一个非奇异矩阵不一定存在LU分解。
4。下列矩阵能否分解为LU(其中L为单位下三角矩阵,U为上三角矩阵)?若能分解,那么分解是否唯一?
解:
设 B可以进行LU分解,则B=
计算得
其中。 。
解:(1)由题意,可设 ,由Lagrange插值余项公式得
(2)由(1)式可知,
15.给定数据表:
1
0
2
3
构造出函数 的差商表,并写出它的三次 插值多项式.
解:利用Newton插值公式:
先作出差商表
一阶差商
二阶差商
三阶差商
0
1
3
1
3/2
13/4
1/2
2
0
3
1/6
1/3
3
2
5/3
-2/3
-5/3
证明:据题4可知,
令 ,则有 。注意到
(证明见王能超数值简明教程145页题6)
令 即有 。
9.已知 ,求差商 和 。
解:根据差商与微商的关系,有
10.已知 互异,求 。其中 。(此题有误。)(见王能超《教程》P149-题2)
解:因为 ,则
由差商性质 可知,
11.设首项系数为1的n次式 有n个互异的零点 ,证明
解:1)用梯形公式有:
事实上,
2)Simpson公式
事实上,
3)由Cotes公式有:
事实上,
2.证明Simpson公式 具有三次代数精度。
证明:
而当 时
左侧:
右侧:

计算方法习题集及答案第四版

计算方法习题集及答案第四版
位)。
解:
y次迭代公式
k
0
1
2
3
3.5
3.64
3.63
3.63
6. 试证用牛顿法求方程在[1,3]内的根是线性收敛的。 解:

y次迭代公式 故
从而 ,时, 故, 故牛顿迭代公式是线性收敛的 7. 应用牛顿法于方程, 导出求立方根的迭代公式,并讨论其收敛
性。
解:
相应的牛顿迭代公式为 迭代函数,, 则,
习题1.1
1. 什么叫数值方法?数值方法的基本思想及其优劣的评价标准如 何?
数值方法是利用计算机求解数学问题近似解的方法 2. 试证明 及
证明: (1)令
即 又 即 ⑵ 设,不妨设, 令 即对任意非零,有 下面证明存在向量,使得, 设,取向量。其中。 显然且任意分量为, 故有即证。 3. 古代数学家祖冲之曾以作为圆周率的近似值,问此近似值具有
解: (1)迭代公式,公式收敛
k
0
1
2
3
0
(2),, 局部收敛 k0 1 2 3
0.25
0.25098 0.25098
456789
1.5 1.322 1.421 1.367 1.397 1.380 1.390 1.384 1.387 1.386
2. 方程在附近有根,把方程写成三种不同的等价形式:
(1),对应迭代公式;
9
10
11
12
13
14
15
16
1.4650 1.46593 1.4653 1.46572 1.46548 1.46563 1.465534 1.465595
迭代公式(2):
k
0
1
2
3

《计算方法》样题与参考答案(一)

《计算方法》样题与参考答案(一)

《计算方法》样题(一)说明:1) 可使用计算器;第一、九题各15分,其余每题10分 2) 把要求的答案直接写在横线 上或方框 [ ] 内一、解答下列问题:1) 数值计算中,最基础的五个误差概念(术语)是 , , , , .2) 分别用 2.718281, 2.718282 作数e 的近似值 ,它们的有效位数分别有位, 位; 又取73.13≈ (三位有效数字),则≤-73.13 .3)为减少乘除法运算次数,应将算式32)1(7)1(51318---+-+=x x x y 改写成4)为减少舍入误差的影响,应将算式 9910- 改写成 5)递推公式 ⎪⎩⎪⎨⎧=-==-,2,1,110210n y y y n n如果取41.120≈=y 作计算,则计算到10y 时,误差有这个计算公式数值稳定不稳定 ?二、解答下列线性代数方程组问题:1) 解线性代数方程组b Ax =(nn R A ⨯∈非奇异)的关键思想是首先把方程组约化为 和 ,然后分别通过 过程 或 过程很容易求得方程组的解. 2)用“列主元Gauss 消元法”将下列方程组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-20111.0310********x x x化为上三角方程组的两个步骤⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-211.03010451321 ⇒ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡ ⇒ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡再用“回代过程”可计算解:三、解答下列线性代数方程组:1) 给定线性方程组 ⎩⎨⎧-=-=-45892121x x x x则解此方程组的Jacobi 迭代公式是⎪⎩⎪⎨⎧而Guass-Seidel 迭代公式是⎪⎩⎪⎨⎧2) 取迭代初值T x )0,0()0(=,用Guass-Seidel 迭代公式计算(取至小数后5位)可得 ⎪⎩⎪⎨⎧====)2(2)1(2)2(1)1(1,,x x x x四、设一元方程0133=--x x ,欲求其正根,试问:1) 方程的正根有几个? (个) 2) 方程的正根的有根区间是 3) 给出在有根区间收敛的不动点迭代公式: 4) 给出求有根区间上的Newton 迭代公式:五、解答插值问题:1) 函数)(x f 在],[10x x 上的一次(线性)插值函数(公式) =)(1x L其余项公式=)(x R2) 函数)2ln()(+=x x f 在区间]1,0[上的一次(线性)插值函数 =)(1x L 其余项估计 =)(x R六、设有实验数据如下:x 0 1 2 3 5 f 1.1 1.9 3.1 3.9 4.9要求按最小二乘法拟合上述数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《计算方法》练习题一一、填空题1. 14159.3=π的近似值3.1428,准确数位是( )。

2.满足d b f c a f ==)(,)(的插值余项=)(x R ( )。

3.设)}({x P k 为勒让德多项式,则=))(),((22x P x P ( )。

4.乘幂法是求实方阵( )特征值与特征向量的迭代法。

5.欧拉法的绝对稳定实区间是( )。

6. 71828.2=e 具有3位有效数字的近似值是( )。

7.用辛卜生公式计算积分⎰≈+101x dx( )。

8.设)()1()1(--=k ij k a A第k 列主元为)1(-k pk a ,则=-)1(k pka ( )。

9.已知⎥⎦⎤⎢⎣⎡=2415A ,则=1A ( )。

10.已知迭代法:),1,0(),(1 ==+n x x n n ϕ 收敛,则)(x ϕ'满足条件( )。

二、单选题1.已知近似数,,b a 的误差限)(),(b a εε,则=)(ab ε( )。

A .)()(b a εε B.)()(b a εε+ C.)()(b b a a εε+ D.)()(a b b a εε+ 2.设x x x f +=2)(,则=]3,2,1[f ( )。

A.1 B.2 C.3 D.4 3.设A=⎥⎦⎤⎢⎣⎡3113,则化A为对角阵的平面旋转=θ( ). A.2π B.3π C.4π D.6π 4.若双点弦法收敛,则双点弦法具有( )敛速.A.线性 B.超线性 C.平方 D.三次 5.改进欧拉法的局部截断误差阶是( ).A .)(h o B.)(2h o C.)(3h o D.)(4h o 6.近似数21047820.0⨯=a 的误差限是( )。

A.51021-⨯ B.41021-⨯ C.31021-⨯ D.21021-⨯ 7.矩阵A满足( ),则存在三角分解A=LR 。

A .0det ≠A B. )1(0det n k A k <≤≠ C.0det >A D.0det <A8.已知Tx )5,3,1(--=,则=1x( )。

A.9 B.5 C.-3 D.-5 9.设)}({x P k 为勒让德多项式,则=))(),((53x P x P ( )。

A.52 B.72 C.92 D.112三、计算题1.求矛盾方程组:⎪⎩⎪⎨⎧=-=+=+2423212121x x x x x x 的最小二乘解。

2.用4=n 的复化梯形公式计算积分⎰211dx x,并估计误差。

3.用列主元消元法解方程组:⎪⎩⎪⎨⎧=++=++=++426453426352321321321x x x x x x x x x 。

4.用雅可比迭代法解方程组:(求出)1(x)。

⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----131410*********x x x 5.用切线法求0143=+-x x 最小正根(求出1x )。

6.已知)(x f 数表:求抛物插值多项式,并求)5.0(f 近似值。

7.已知数表:求最小二乘一次式。

8.已知求积公式:)21()0()21()(21110f A f A f A dx x f ++-≈⎰-。

求210,,A A A ,使其具有尽可能高代数精度,并指出代数精度。

9.用乘幂法求⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=410131014A 的按模最大特征值与特征向量。

10.用予估-校正法求初值问题:⎩⎨⎧=-='1)0(2y yx y 在4.0)2.0(0=x 处的解。

四、证明题 1.证明:若)(x f ''存在,则线性插值余项为:1010),)((!2)()(x x x x x x f x R <<--''=ξξ。

2. 对初值问题:⎩⎨⎧=-='1)0(10y yy ,当2.00≤<h 时,欧拉法绝对稳定。

3.设)(A ρ是实方阵A的谱半径,证明:A A ≤)(ρ。

4.证明:计算)0(>a a 的单点弦法迭代公式为:nn n x c acx x ++=+1, ,1,0=n 。

《计算方法》练习题二一、填空题1.近似数30.6350010a =⨯的误差限是( )。

2.设|x|>>1,=( ),计算更准确。

3.用列主元消元法解:121223224x x x x +=⎧⎨+=⎩,经消元后的第二个方程是( )。

4.用高斯—赛德尔迭代法解4阶方程组,则(1)3m x += ( )。

5.已知在有根区间[a,b]上,'(),''()f x f x 连续且大于零,则取0x 满足( ),则切线法收敛。

6.已知误差限(),(),a b εε则()ab ε=( )。

7.用辛卜生公式计算积分102dxx ≈+⎰( )。

8.若T A A =。

用改进平方根法解Ax b =,则jk l =( )。

9.当系数阵A 是( )矩阵时,则雅可比法与高斯—赛德尔法都收敛。

10.若12λλ=-,且)3(1≥>i i λλ,则用乘幂法计算1λ≈( )。

二、选择题1.已知近似数a 的()10/0r a ε=,则3()r a ε=( )。

A. 10/0B. 20/0C. 30/0D. 40/0 2.设{()}K T X 为切比雪夫多项式,则22(().())T X T X =( )。

A.0 B 4π. C.2πD. π 3.对6436A ⎡⎤=⎢⎥⎣⎦直接作三角分解,则22r =( )。

A. 5 B. 4 C.3 D. 2 4.已知A=D-L-U ,则雅可比迭代矩阵B=( )。

A. 1()D L U -+ B. 1()D L U -- C. 1()D L U -- D. 1()D U L -- 5.设双点弦法收敛,则它具有( )敛速。

A. 线性B.超线性C.平方D. 三次 6. 41424.12=,则近似值107的精确数位是( )。

A. 110- B. 210- C. 310- D. 410- 7.若111221221042,1024r r l r ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦则有22r =( )。

A. 2 B. 3 C.4 D. 08.若4114A ⎡⎤=⎢⎥⎣⎦,则化A 为对角阵的平面旋转角θ=( )。

A.2π B.3π C.4π D. 6π9.改进欧拉法的绝对稳定实区间是( )。

A.[-3,0]B. [-2.78,0]C. [2.51,0]D. [-2,0]三、计算题1. 已知()f x 数表用插值法求()0f x =在[0,2]的根。

2.已知数表求最小二乘一次式。

3.用n=4的复化辛卜生公式计算积分102dxx +⎰,并估计误差。

4.用雅可比法求310130003A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的全部特征值与特征向量。

5.用欧拉法求初值问题'2(0)1y x yy =+⎧⎨=⎩在x=0(0.1)0.2处的解。

6 已知函数表:求埃尔米特差值多项式)(x H 及其余项。

7.求3()f x x =在[-1,1]上的最佳平方逼近一次式。

8.求积公式:110()(0)(),f x dx Af Bf x ≈+⎰试求1x ,A ,B ,使其具有尽可能高代数精度,并指出代数精度。

9.用双点弦法求3520x x -+=的最小正根(求出2x )。

10.用欧拉法求初值问题:'(0)1y x yy =-⎧⎨=⎩在x=0(0.1)0.2处的解。

四、证明题1. 证明:A B A B -≤-。

2.的切线法迭代公式为:141(4),0,1,...5n n nax x n x +=+= 3.设0(),...,()n l x l x 为插值基函数,证明:()1nk k l x ==∑。

4.若1B <。

证明迭代法:(1)()()21,0,1, (33)m m m x x Bx b m +=++= 收敛。

《计算方法》练习题一答案一.填空题1.210- 2.))((!2)(b x a x f --''ξ 3.524.按模最大 5.]0,2[-6.21102-⨯,7., 8.21x =,9.())(434)1(232)1(1313331m m m x a x a x a b a ---++ , 10.0()0f x >二.单选题1.C 2.A 3.C 4.B 5.C6.C 7.D 8.B 9.B三.计算题1.22122122121)2()42()3(),(--+-++-+=x x x x x x x x ϕ,由0,021=∂∂=∂∂x x ϕϕ得:⎩⎨⎧=+=+9629232121x x x x , 解得149,71821==x x 。

2.⎰≈++++≈21697.0]217868581[81x dx ,9611612)(2=⨯≤M x R 。

3.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1142242644223214264426453426352回代得:Tx )1,1,1(-=4.因为A为严格对角占优阵,所以雅可比法收敛。

雅可比迭代公式为:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=+=+++ ,1,0,)1(41)3(41)1(41)(2)1(3)(3)(1)1(2)(2)1(1m x x x x x x x m m m m m m m 。

取T x )1,1,1()0(=计算得: T x)5.0,25.1,5.0()1(=。

5.因为0875.0)5.0(,01)0(<-=>=f f ,所以]5.0,0[*∈x ,在]5.0,0[上,06)(,043)(2≥=''<-='x x f x x f 。

由0)()(0≥''x f x f ,选00=x ,由迭代公式:,1,0,4314231=-+--=+n x x x x x n n n n n 计算得:25.01=x 。

6.利用反插值法得211(0)(0)(04)(04)(02) 1.75224f N ==⨯+-⨯++=7. 由方程组:01014648614102a a a a +=⎧⎨+=⎩,解得:013,6a a ==,所以x x g 63)(*1+=。

8.10118881[]0.4062282910113dx I x =≈++++≈+⎰, 21|()|0.001321216768M R f ≤=≈⨯ 。

9.因为2211123,1,4a a a πθ====1002222310400013000302222003002001001A⎡⎤⎤-⎢⎥⎥⎢⎥⎥⎡⎤⎡⎤⎢⎥⎥⎢⎥⎢⎥=-=⎢⎥⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦所以:1122334,223,(0,1,0)2,(TTTXXXλλλ======10.应用欧拉法计算公式:nnnyxy1.12.01+=+,1,0=n,1=y。

相关文档
最新文档