影响硝化反硝化的因素
同步硝化反硝化

同步硝化反硝化的出路,究竟在何方?古语云:殊途同归。
对于污水脱氮来说,亦是如此。
处理方法并不是只有一种。
方法一:依照传统生物脱氮理论,在脱氮过程中需要经过硝化和反硝化两个过程,最终将氨氮转化为氮气而解决污水处理脱氮问题。
生物脱氮原理如下:硝化作用是在亚硝酸菌作用下将氨氮转化为NO2-N,然后硝酸菌将NO2-N转化为NO3-N。
反硝化作用是指在厌氧或缺氧情况下将NO3-N转化为NO2-N,并最终将NO2-N转化为N2。
方法二:然而,近年来,国内外的不少研究和报告证明存在着同步硝化反硝化现象。
同步硝化反硝化又称短程硝化反硝化。
是指在同一反应器内同步进行硝化反应和反硝化反应。
这样的反应中,反硝化可以直接利用硝化作用转化的NO2-N进行反应,而不必将氨氮转化为NO3-N,可以减少能源的消耗,以及对氧的需求。
条条道路通罗马,那么总有一条是最合适的吧?那么,相对于传统脱氮反应来说,同步硝化反硝化又具有什么样的优势呢?根据化学计量学统计,与传统硝化反硝化脱氮反应相比,同步硝化反硝化具有以下优势:1.在硝化阶段可以减少25%左右的需氧量,减少对曝气的需求,就是减少能耗;2.在反硝化阶段减少了40%的有机碳源,降低了运行费用;3.NO2-N的反硝化速率比NO3-N的反硝化速率高63%左右;4.减少50%左右污泥;5.反应器容积可以减少30%-40%左右;6.反硝化产生的OH-可以原地中合硝化作用产生的H+,能有效保持反应容器内的PH。
(以上数据出自论文:《同步硝化反硝化脱氮机理分析及影响因素研究》)既然有这么多的优势,那么为什么同步硝化反硝化工艺一直没能得到推广呢?这个,就要用一句古语来解释了:祸兮,福之所倚,福兮,祸之所伏。
也就是说,有利就有弊。
同步硝化反硝化工艺进入人们的视线以来,科学家以及相关的研究人员在上面倾注了大量的精力进行研究,对影响同步硝化反硝化反应的因素有了详细的了解。
同步硝化反硝化的影响因素总结如下:1.溶解氧(DO)控制系统中溶解氧,对获得高效的同步硝化反硝化具有极其重要的意义。
温度对短程硝化反硝化的影响

温度对短程硝化反硝化的影响温度对短程硝化反硝化的影响引言短程硝化反硝化是指硝化和反硝化的两个关键过程在不同的环境中同时发生,在一定程度上可以提高氮源的利用效率和降低氮废物的排放。
温度是影响这两个过程的重要环境因素之一,本文将探讨不同温度下,温度对短程硝化反硝化过程的影响。
温度对短程硝化的影响短程硝化过程是细菌将氨氮的氧化产物硝氮氧化成亚硝酸盐的过程。
温度对短程硝化的影响在不同温度下表现出不同的特点。
在较低温度下,硝化菌的活性降低,硝化过程的速率较慢;而在较高温度下,硝化菌的活性增强,硝化过程的速率加快。
此外,温度还可以影响硝化菌的种群组成,不同种类的硝化菌在不同的温度下有不同的适应性。
因此,温度对短程硝化的速率和效果都有直接的影响。
温度对短程反硝化的影响短程反硝化是细菌将亚硝酸盐还原成氮气的过程。
温度对短程反硝化的影响也在不同温度下表现出不同的特点。
在较低温度下,反硝化菌的活性较低,反硝化过程的速率较慢;而在较高温度下,反硝化菌的活性增强,反硝化过程的速率加快。
另外,温度还会影响反硝化菌的种群组成,不同种类的反硝化菌对温度的适应性也不同。
因此,温度对短程反硝化的速率和效果同样有直接的影响。
温度对短程硝化反硝化过程的综合影响短程硝化反硝化过程中的硝化和反硝化过程是相互关联的,它们共同作用于氮循环。
温度对两个过程的影响是综合的,不仅影响着各自过程的速率和效果,还影响着两个过程之间的协同性。
在一定温度范围内,如果硝化和反硝化的速率相互匹配,那么氮源的利用效率会比较高;而如果速率不匹配,可能导致氮损失或氮积累。
碳氮比对温度影响的调节碳氮比是指底物中的碳和氮的比例,也是影响硝化反硝化过程的重要因素之一。
碳氮比低意味着氮存在过量,容易导致氮损失;而碳氮比高则可能导致氮积累。
温度对碳氮比的影响主要体现在调节碳氮比的最佳范围。
结论综上所述,温度对短程硝化反硝化过程有直接的影响。
在适宜的温度下,短程硝化反硝化过程的速率较快,效果较好,有利于氮源的利用和减少氮废物的排放。
硝化与反硝化

3.7 硝化与反硝化废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。
生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。
一、硝化与反硝化(一) 硝化在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。
反应过程如下:亚硝酸盐菌NH4++3/2O2 NO2-+2H++H2O-△E △E=278.42KJ 第二步亚硝酸盐转化为硝酸盐:硝酸盐菌NO-+1/2O2 NO3--△E △E=278.42KJ 这两个反应式都是释放能量的过程,氨氮转化为硝态氮并不是去除氮而是减少它的需氧量。
上诉两式合起来写成:NH4++2O2 NO3-+2H++H2O-△E △E=351KJ综合氨氧化和细胞体合成反应方程式如下:NH4+1.83O2+1.98HCO3- 0.02C5H7O2N+0.98 NO3-+1.04 H2O+1.88H2CO3 由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg 氨氮,将消耗碱度(以CaCO3计) 7.lg。
影响硝化过程的主要因素有:(1)pH值当pH值为8.0~8.4时(20℃),硝化作用速度最快。
由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上;(2)温度温度高时,硝化速度快。
亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;(3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d-1(温度20℃,pH8.0~8.4)。
为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。
在实际运行中,一般应取>2 ;(4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。
一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上;(5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。
反硝化控制条件

反硝化控制条件反硝化是一种微生物过程,可以将硝酸盐还原为氮气,从而实现氮的去除。
在污水处理和土壤修复等领域,反硝化被广泛应用于氮的去除和环境保护。
本文将介绍反硝化的控制条件,包括温度、pH值、有机物质和氧气含量等因素。
1. 温度:温度是影响反硝化过程的重要因素之一。
一般来说,反硝化微生物的适宜生长温度为20-30摄氏度。
过低或过高的温度都会影响反硝化过程的效率。
因此,在实际应用中,需要根据环境条件进行温度控制,以保证反硝化微生物的活性和生长。
2. pH值:pH值是指溶液的酸碱性程度,也是反硝化过程中需要控制的重要参数之一。
一般来说,反硝化微生物的适宜pH范围为6.5-8.5。
过低或过高的pH值都会抑制反硝化微生物的生长和活性,从而影响反硝化过程的效果。
因此,需要根据实际情况进行pH值的调节,以维持适宜的反硝化环境。
3. 有机物质:有机物质是反硝化微生物生长和代谢的重要营养源。
适量的有机物质可以提供反硝化微生物所需的能量和碳源,促进其生长和活性。
然而,过高的有机物质浓度会导致反硝化过程过程中产生大量的亚硝酸盐,进一步形成亚硝胺等对人体有害的物质。
因此,在控制反硝化过程中,需要适量添加有机物质,确保营养需求的同时避免过高的有机负荷。
4. 氧气含量:氧气是反硝化过程中的抑制因子,高浓度的氧气会抑制反硝化微生物的活性和生长。
因此,在实际应用中,需要控制反硝化系统中的氧气含量,可以通过减少通气量、增加氮气的供应等方式来降低氧气浓度,从而提高反硝化过程的效率。
除了以上几个主要的控制条件外,还有其他一些辅助条件也会影响反硝化过程的效果,例如微生物的种类和菌群组成、底物浓度、反应时间等。
在实际应用中,需要根据具体情况进行综合考虑和控制。
反硝化是一种重要的氮去除过程,可以通过微生物的作用将硝酸盐还原为氮气。
在控制反硝化过程中,温度、pH值、有机物质和氧气含量等因素起着重要的作用。
合理调控这些条件,可以提高反硝化过程的效率,实现氮的去除和环境保护的目标。
硝化反硝化脱氮机理及影响因素研究 (1)

同步硝化反硝化脱氮机理及影响因素研究贾艳萍*贾心倩马姣(东北电力大学化学工程学院,吉林吉林132012)摘要:本文结合国内外研究,从宏观环境理论、微环境理论以及微生物学理论三方面阐明了同步硝化反硝化的脱氮机理,并对同步硝化反硝化的影响因素进行了综述,提出了该技术今后的研究方向。
关键词:同步硝化反硝化;脱氮机理;影响因素引言氮、磷等物质排入江河易导致水体的富营养化,传统脱氮理论认为,废水中氨氮必须经硝化反应和反硝化反应过程,才能够达到脱氮目的,这是因为硝化和反硝化过程中微生物生长的环境有很大差异,硝化反应需要有氧气存在的环境,而反硝化则需在厌氧或缺氧环境中进行。
近年来,国内外学者通过大量的试验对工程实践中遇到的现象和问题进行了研究,以传统的生物法脱氮理论作基础,发现硝化反应和反硝化反应可以在同一操作条件下同一反应器内进行,即同步硝化反硝化(简称SND),它使传统工艺中分离的硝化和反硝化两个过程合并在同一个反应器中,避免了亚硝酸盐氧化成硝酸盐及硝酸盐再还原成亚硝酸盐这两个多余的反应,从而可节省约25%的氧气和40%以上的有机碳,在反应过程中不需要添加碱度和外加碳源。
与传统工艺相同处理效果情况下减少了20%的反应池体积,需要更低的溶解氧浓度(1.0mg/L左右),无混合液的回流以及反硝化搅拌设施[1,2]。
因此,SND简化了生物脱氮工艺流程,减少了运行成本。
它突破了传统的生物脱氮理论,简化了脱氮反应发生的条件和顺序,强化了生物脱氮过程,使传统的生物脱氮理论发生了质的飞跃。
1 同步硝化反硝化作用机理SND的脱氮机理可以从宏观环境理论、微环境理论和微生物学理论三个方面加以解释1.1宏观环境理论一般来说,反应中所需的DO都是通过曝气来供给,不同的曝气装置会导致反应器内DO的分布状态不同。
但是在好氧条件下的活性污泥脱氮系统中,无论哪种曝气装置都无法保证反应器中的DO在废水中分布均匀,例如:在SBR反应器中,曝气并不能保证整个反应器中DO完全处于均匀的混合状态,缺氧区域的存在就为该反应器中成功实现SND提供了可能。
污水处理技术之短程硝化反硝化概述

1.短程硝化反硝化原理及优点短程硝化反硝化生物脱氮就是将硝化过程控制在HNO2阶段,随后在缺氧条件下进行反硝化,也就是不完全硝化反硝化生物脱氮。
短程硝化反硝化与传统硝化反硝化生物脱氮相比,具有许多优点:对于活性污泥法,可节省氧供应量约25%,降低能耗,节省反硝化所需碳源,在C/N比一定的情况下提高TN去除率,减少污泥生成量可达50%,减少投碱量,缩短反应时间,相应反应器容积减少。
2. 短程硝化反硝化的影响因素在短程硝化和反硝化过程中,起作用的两种菌为氨氧化菌和亚硝酸氧化菌。
因此,对这两种微生物的生命活动产生影响的因素都会影响整个短程硝化反硝化过程的效果。
2.1 温度微生物的最大比增长速率与温度之间的关系可用修正的阿伦尼乌斯方程来描述:其中μ mt 为温度为 t℃时的微生物最大比增长速率,μm20为标准温度20℃时的微生物最大比增长速率。
E为反应活化能,R为气体常数。
在 20℃以下,硝化细菌的生产速率大于亚硝化细菌,亚硝化细菌产生的亚硝酸盐很容易被硝化细菌继续氧化成硝酸盐。
国内学者王淑莹做过实验表明,水温保持在30℃时水中氨氮的转化类型为短程硝化过程;当水温在20.5~24.5℃时硝化类型由短程硝化转化为全程硝化;随着温度再次升高,硝化类型又逐渐转变为短程硝化;当温度达到29~30℃时,硝化反应为稳定的亚硝酸型硝化。
但在实际中,通过加热提高污水温度会消耗大量的能源,这样,短程硝化工艺的优点将不能得到充分发挥。
因此,通过控制温度实现短程硝化脱氮工艺仅适用于某些特种废水(水温在30℃左右)。
2.2 pH 值通常条件下,亚硝化细菌和硝化细菌适宜生长的pH值范围分别是7.0~7.5 和6.5 ~7.5。
在混合体系中,亚硝化细菌和硝化细菌的pH分别在8.0 和7.0 附近。
因此,可根据这两种细菌适宜pH的差异来控制反应的类型和消化的产物。
国内学者王红武等通过实验对常温下生活废水短程硝化反硝化生物脱氮的研究表明:最佳短程硝化反硝化反应条件为pH值大于8.5,大于该值时会抑制硝化细菌的生长, 而不抑制亚硝化细菌的生长。
影响硝化反硝化的因素

1、温度:温度愈高,可使硝化作用的活性增加,但这不表示温度越高越好,因为温度越高,溶氧的饱和度会降低,因此硝化作用仅能在温度与溶氧之间取得一个平衡关系以获得最高的效率。
一般的建议是以不超过30℃,不低于20℃为原则。
2、PH值:在一般的生物处理程序中,硝化反应系统受pH影响很大。
硝化细菌在生长过程中会消耗大量碱度,故pH稍高于7~8,有利于硝化作用(张镇南等,1995)。
一般的建议是以介于7.5~8.2之间最佳,若高于9.0或低于6.0都要避免,因为那已超过硝化细菌正常生长的范围,必然会影响硝化作用的效率(Alleman,1992)。
3、溶氧:当溶氧(DO)浓度低时,硝化反应受溶氧浓度影响很大。
但在一般的生物处理程中,溶氧则较不容易控制,因此必须作处理水之溶氧测试,并控制至少不低于2~3ppm的范围内(Alleman,1992)。
4、氨和亚硝酸:分子性的氨和游离的亚硝酸均会对硝化反应产生抑制作用(Anthonisen,1976)。
分子性的氨浓度如果高于10~150ppm,可能对亚硝酸化作用产生抑制作用,高于0.1~1.0ppm对硝酸化作用即产生抑制作用(Anthonisen,1976)。
亚硝酸浓度若大于0.22~2.8ppm亦会抑制硝酸化作用(Anthonisen et al.,1976)。
5、碳氮比:硝化细菌之存在比率取决于污水中含碳物质及含氮物质之相对数量。
含氮营养物浓度之测定可利用凯氏法(Kjeldahl method)测得所谓的总凯氏氮(Totol Kjeldahl Nitrogen),简称TKN,其值包含氨及有机氮化物。
含碳物质浓度之测定可利用生化需氧量BOD(Biochemical Oxygen Demand)行之,它代表有机污染之程度。
BOD/TKN简称碳氮比。
碳氮比愈高,异营性氧化菌的活性较大,大量繁殖,消耗溶氧速率快,使硝化细菌无法生存竞争。
反之,如果碳氮比愈低,则有利于硝化细菌之增殖。
其反硝化条件

其反硝化条件一、引言反硝化是指将硝酸盐还原成氮气或其他氮化物的过程,是自然界中氮循环的重要环节之一。
在农业生产和城市污水处理等领域,反硝化也被广泛应用。
本文旨在介绍反硝化条件及其影响因素。
二、反硝化条件1.缺氧条件反硝化需要在缺氧或微氧的环境中进行,因为硝酸盐还原需要消耗电子接受体,而在缺氧环境中,电子接受体如氧分子不足,因此可以被还原成更稳定的产物。
2.有机质供给有机质是反硝化过程中的碳源,通过微生物分解产生的有机质可以提供能量和电子给还原过程。
3.适宜温度和pH值反硝化需要适宜的温度和pH值来保证微生物代谢正常。
通常情况下,最适宜温度为25-35℃,最适pH为6.5-7.5。
三、影响因素1.底泥类型和厚度底泥中含有大量有机质和微生物群落,对于反硝化过程具有重要影响。
底泥厚度越大,有机质含量越高,反硝化效果也越好。
2.水体温度和流速水体温度和流速对于微生物的代谢活动有重要影响。
较高的水温和适宜的流速可以提高微生物代谢速率,从而促进反硝化过程。
3.氧化还原电位氧化还原电位是指溶液中还原剂和氧化剂之间的电子转移能力。
在较低的氧化还原电位下,还原剂更容易接受电子,因此反硝化效果更好。
4.碳氮比碳氮比是指有机质中碳元素和氮元素的摩尔比值。
当碳氮比适宜时,可以提供足够的有机质来维持微生物代谢活动,并保证反硝化效果。
四、结论反硝化是一种重要的环境修复技术,在农业生产和城市污水处理等领域有着广泛应用。
反硝化需要在缺氧环境下进行,并需要适宜的温度、pH值、底泥类型和厚度、水体温度和流速、氧化还原电位以及碳氮比等条件的支持。
通过合理控制这些影响因素,可以提高反硝化效果,从而达到环境修复和资源利用的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、温度:温度愈高,可使硝化作用的活性增加,但这不表示温度越高越好,因为温度越高,溶氧的饱和度会降低,因此硝化作用仅能在温度与溶氧之间取得一个平衡关系以获得最高的效率。
一般的建议是以不超过30℃,不低于20℃为原则。
2、PH值:在一般的生物处理程序中,硝化反应系统受pH影响很大。
硝化细菌在生长过程中会消耗大量碱度,故pH稍高于7~8,有利于硝化作用(张镇南等,1995)。
一般的建议是以介于7.5~8.2之间最佳,若高于9.0或低于6.0都要避免,因为那已超过硝化细菌正常生长的范围,必然会影响硝化作用的效率(Alleman,1992)。
3、溶氧:当溶氧(DO)浓度低时,硝化反应受溶氧浓度影响很大。
但在一般的生物处理程中,溶氧则较不容易控制,因此必须作处理水之溶氧测试,并控制至少不低于2~3ppm的范围内(Alleman,1992)。
4、氨和亚硝酸:分子性的氨和游离的亚硝酸均会对硝化反应产生抑制作用(Anthonisen,1976)。
分子性的氨浓度如果高于10~150ppm,可能对亚硝酸化作用产生抑制作用,高于0.1~1.0ppm对硝酸化作用即产生抑制作用(Anthonisen,1976)。
亚硝酸浓度若大于0.22~2.8ppm亦会抑制硝酸化作用(Anthonisen et al.,1976)。
5、碳氮比:硝化细菌之存在比率取决于污水中含碳物质及含氮物质之相对数量。
含氮营养物浓度之测定可利用凯氏法(Kjeldahl method)测得所谓的总凯氏氮(Totol Kjeldahl Nitrogen),简称TKN,其值包含氨及有机氮化物。
含碳物质浓度之测定可利用生化需氧量BOD(Biochemical Oxygen Demand)行之,它代表有机污染之程度。
BOD/TKN简称碳氮比。
碳氮比愈高,异营性氧化菌的活性较大,大量繁殖,消耗溶氧速率快,使硝化细菌无法生存竞争。
反之,如果碳氮比愈低,则有利于硝化细菌之增殖。