最新人教版高一数学第一单元知识点及测试题

合集下载

完整版)人教版高一数学必修一集合知识点以及习题

完整版)人教版高一数学必修一集合知识点以及习题

完整版)人教版高一数学必修一集合知识点以及习题高一数学必修第一章集合1.集合的概念集合是指一定范围内、确定的、可区别的事物,将其作为一个整体来看待,就叫做集合,简称集。

其中的各事物叫作集合的元素或简称元。

集合的元素具有三个特性:确定性、互异性和无序性。

确定性指元素是明确的,如世界上最高的山。

互异性指元素是不同的,如由HAPPY的字母组成的集合{H,A,P,Y}。

无序性指元素的排列顺序不影响集合的本质,如{a,b,c}和{a,c,b}是同一个集合。

集合可以用大括号{…}表示,如{我校的篮球队员}、{太平洋,大西洋,印度洋,北冰洋}。

集合也可以用拉丁字母表示,如A={我校的篮球队员},B={1,2,3,4,5}。

集合的表示方法有列举法和描述法。

常用的数集及其记法有:非负整数集(即自然数集)记作N,正整数集记作N*或N+,整数集记作Z,有理数集记作Q,实数集记作R。

2.集合间的关系集合间有包含关系和相等关系。

包含关系又称为“子集”,表示一个集合的所有元素都属于另一个集合。

如果集合A的所有元素都属于集合B,则称A是B的子集,记作A⊆B。

如果A和B是同一集合,则称A是B的子集,记作A⊆B。

反之,如果集合A不包含于集合B,或集合B不包含于集合A,则记作A⊈B或B⊈A。

相等关系表示两个集合的元素完全相同,记作A=B。

真子集是指如果A⊆B,且A≠B,则集合A是集合B的真子集,记作A⊂B(或B⊃A)。

如果XXX且B⊆C,则A⊆C。

如果XXX且B⊆A,则A=B。

空集是不含任何元素的集合,记为Φ。

规定空集是任何集合的子集,空集是任何非空集合的真子集。

3.集合的运算集合的运算包括交集、并集和补集。

交集是由所有属于A 且属于B的元素所组成的集合,记作A∩B。

并集是由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B。

补集是由S中所有不属于A的元素所组成的集合,记作A的补集。

如果S是一个集合,A是S的一个子集,则A的补集为由S中所有不属于A的元素组成的集合。

最新人教版高中数学必修第一册第一单元《集合与常用逻辑用语》测试卷(含答案解析)

最新人教版高中数学必修第一册第一单元《集合与常用逻辑用语》测试卷(含答案解析)

一、选择题1.若a 、b 是两个单位向量,其夹角是θ,则“32ππθ<<”是“1a b ->”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.若命题P :1x ≠或2y ≠,命题Q :3x y +≠,则P 是Q 的( )条件 A .充分不必要B .必要不充分C .充要D .既不充分又不必有3.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.命题“ax 2-2ax + 3 > 0恒成立”是假命题, 则实数a 的取值范围是( ) A .a < 0或a ≥3B .a ≤0或a ≥3C .a < 0或a >3D .0<a <35.已知集合{}220A x x x =-->,则A =RA .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥6.设集合{}125S x x x =-++>,{}4T x x a =-≤,S T R ⋃=,则a 的取值范围为( ) A .2a ≤-或1a ≥ B .21a -≤≤ C .21a -<<D .2a <-或1a >7.“1x >”是“12log (2)0x +<”的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件8.全集U =R ,集合04xA x x ⎧⎫=≤⎨⎬-⎩⎭,集合(){}2log 12B x x =->,图中阴影部分所表示的集合为( )A .(][],04,5-∞B .()(],04,5-∞C .()[],04,5-∞D .(](),45,-∞+∞9.已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β”是“m ⊥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.设向量(sin2,cos )a θθ=,(cos ,1)b θ=,则“//a b ”是“1tan 2θ=”成立的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件11.已知ξ服从正态分布()21,N σ,a ∈R ,则“P (ξ>a )=0.5”是“关于x 的二项式321()ax x +的展开式的常数项为3”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分又不必要条件D .充要条件12.设集合{}1,0,1,2,3A =-, 2{|30}B x x x =->,则()R A C B ( )A .{-1}B .{0,1,2,3}C .{1,2,3}D .{0,1,2}二、填空题13.已知条件:21p x ⌝-<<,条件:q x a ⌝>,且q 是p 的充分不必要条件,则a 的取值范围是_________.14.已知集合{}3A x x =≤,{}2B x x =<,则RA B =__________.15.方程2210ax x 至少有一个正实数根的充要条件是________;16.已知集合{}2,M y y x x R ==∈,221,4y N y x x R ⎧⎫⎪⎪=+=∈⎨⎬⎪⎪⎩⎭,则M N =__________.17.设集合{1,2,3,4}I =,选择I 的两个非空子集A 和B ,使得A 中最大的数不大于B 中最小的数,则可组成不同的子集对(,)A B __________个. 18.已知命题p :∀x ∈R,2x >0,则p ⌝为__________.19.某学校举办运动会时,高一(1)班共有26名学生参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时游泳比赛和球类比赛的有3人,没有人同时参加三项比赛,则同时参加球类比赛和田径比赛的学生有__人.参考答案20.对于各数互不相等的正数数组()12,,,n i i i ⋅⋅⋅(n 是不小于2的正整数),如果在p q <时有p q i i >,则称p i 与q i 是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为此数组的“逆序数”.若各数互不相等的正数数组()1234567,,,,,,a a a a a a a 的“逆序数”是4,则()7654321,,,,,,a a a a a a a 的“逆序数”是______.三、解答题21.解关于x 的不等式ax 2-2(a +1)x +4>0.22.设命题0:p x R ∃∈,2020x -=;命题:q 函数22sin y x =在,62ππ⎛⎫-⎪⎝⎭上先增后减. (1)判断p ,q 的真假,并说明理由; (2)判断p q ∨,p q ∧,()p q ∧⌝的真假.23.已知命题p :实数x 满足()225400x ax a a -+<>;命题q :实数x 满足2560x x -+<.(1)当1a =时,若P 和q 都为真,求x 的取值范围;(2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围. 24.若集合A={x|x 2+5x ﹣6=0},B={x|x 2+2(m+1)x+m 2﹣3=0}. (1)若m=0,写出A ∪B 的子集; (2)若A∩B=B ,求实数m 的取值范围.25.已知命题p :2320x x -+≤,命题q :()222100x x m m -+-≤>(1)若p 是q 的充分条件,求实数m 的取值范围;(2)若4m =,p q ∨为真命题,p q ∧为假命题,求实数x 的取值范围. 26.已知非空集合(){}2230A x x a a x a =-++<,集合211xB xx ⎧⎫=<⎨⎬-⎩⎭,命题:p x A ∈.命题:q x B ∈.(1)若p 是q 的充分不必要条件,求实数a 的取值范围; (2)当实数a 为何值时,p 是q 的充要条件.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】求出1a b ->时θ的范围,然后由充分必要条件的定义判断. 【详解】由题意222()222cos a b a b a a b b -=-=-⋅+=-1>,则1cos 2θ<,∴,3πθπ⎛⎤∈ ⎥⎝⎦, 因此32ππθ<<时,满足,3πθπ⎛⎤∈⎥⎝⎦,但,3πθπ⎛⎤∈ ⎥⎝⎦时不一定满足32ππθ<<.应为充分不必要条件. 故选:A . 【点睛】本题考查充分必要条件的判断,实际上可以根据充分必要条件与集合包含之间的关系判断.命题p 对应集合A ,命题q 对应的集合B ,则(1)p 是q 的充分条件⇔A B ⊆; (2)p 是q 的必要条件⇔A B ⊇;(3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.2.B解析:B 【分析】通过举反例,判断出P 成立推不出Q 成立,通过判断逆否命题的真假,判断出原命题的真假得到后者成立能推出前者成立,由充分条件、必要条件的定义得到结论. 【详解】当0x =,3y =时,Q 不成立,即P Q ⇒不成立,即充分性不成立; 判断必要性时,写出原命题:3x y +≠时,则1x ≠或2y ≠, 由于原命题不好判断,故转化为逆否命题进行判断,即原命题变为:若1x =且2y =,则有3x y +=,对于该命题,明显成立,所以,原命题也成立;即必要性成立;所以P 是Q 的必要而不充分条件, 故选:B 【点睛】关键点睛:判断一个命题是另一个命题的什么条件,一般先判断前者成立是否能推出后者成立,再判断后者成立能否推出前者成立;本题难点在于:利用逆否命题的真假性判断原命题的真假性,属于中档题.3.A解析:A 【详解】因为:1213p x x x +>⇔><-或,p ⌝:31x -≤≤;22:5656023q x x x x x ->⇔-+<⇔<<,q ⌝:23x x ≤≥或, 因此从集合角度分析可知p ⌝是q ⌝的充分不必要条件,选A.4.A解析:A 【分析】根据题意得出命题“x R ∃∈,2230ax ax -+≤”是真命题,然后对a 分情况讨论,根据题意得出关于a 的不等式,即可得出实数a 的取值范围. 【详解】命题“2230ax ax -+>恒成立”是假命题,即命题“x R ∃∈,2230ax ax -+≤”是真命题. 当0a =时,2230ax ax -+≤不成立; 当0a <时,合乎题意;当0a >时,则24120a a ∆=-≥,解得3a ≥. 综上所述,实数a 的取值范围是0a <或3a ≥. 故选:A. 【点睛】本题考查由全称命题的真假求参数,考查计算能力,属于中等题.5.B解析:B 【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式220x x -->得12x x <->或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.6.B解析:B 【解析】{|32},[4,=4]S x x x T a a =-=-或 ,所以432142a a a -≤-⎧⇒-≤≤⎨+≥⎩ ,选A. 点睛:形如|x -a |+|x -b |≥c (或≤c )型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a ],(a ,b ],(b ,+∞)(此处设a <b )三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x -a |+|x -b |>c (c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体;(3)图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.7.B解析:B【详解】 试题分析:12log (2)0x +<211x x ⇒+>⇒>-,故正确答案是充分不必要条件,故选B.考点:充分必要条件.8.C解析:C 【分析】由图可得,阴影部分表示的集合为()U C A B ⋃.求出集合,,A B A B ⋃,即求()U C A B ⋃. 【详解】∵集合{}04A x x =≤<,{}5B x x =>,由Venn 图可知阴影部分对应的集合为()U C A B ⋃,又{04A B x x ⋃=≤<或}5x >,()()[],04,5U C A B ∴=-∞⋃.故选:C . 【点睛】本题考查集合的运算,属于基础题.9.B解析:B 【解析】当α⊥β时,平面α内的直线m 不一定和平面β垂直,但当直线m 垂直于平面β时,根据面面垂直的判定定理,知两个平面一定垂直,故“α⊥β”是“m ⊥β”的必要不充分条件.10.B解析:B 【分析】先将//a b 等价化简为cos 0θ=或1tan 2θ=,再判断解题即可. 【详解】//a b ⇔(sin 2,cos )//(cos ,1)θθθ⇔2sin 2cos θθ=⇔cos 0θ=或1tan 2θ=,所以“//a b ”是“1tan 2θ=”成立的必要不充分条件. 故选:B. 【点睛】本题考查向量平行的坐标表示、判断p 是q 的什么条件、三角恒等变换化简,是中档题.11.A解析:A 【解析】试题分析:由,知1a =.因为二项式321()ax x +展开式的通项公式为31321()()r r rr T C ax x-+==3333r r r a C x --,令330r -=,得1r =,所以其常数项为212333a C a ==,解得1a =±,所以“”是“关于x 的二项式321()ax x +的展开式的常数项为3”的充分不必要条件,故选A .考点:1、正态分布;2、二项式定理;3、充分条件与必要条件.12.B解析:B 【分析】解出集合B ,进而求出R C B ,即可得到()R A C B ⋂. 【详解】{}{}{}23003,03,R B x x x x x x C B x x =->=∴=≤≤或故(){}{}{}1,0,1,2,3030,1,2,3R A C B x x ⋂=-⋂≤≤=. 故选B. 【点睛】本题考查集合的综合运算,属基础题.二、填空题13.【分析】根据得出由是的充分不必要条件得出根据包含关系得出的范围【详解】由题设得或设或由得设因为是的充分不必要条件所以因此故答案为:【点睛】本题主要考查了由充分不必要条件求参数范围属于中档题解析:(],2-∞-【分析】根据p ⌝,q ⌝得出,p q ,由q 是p 的充分不必要条件,得出Q P ,根据包含关系得出a 的范围. 【详解】由题设:21p x ⌝-<<,得:1p x ≥或2x -≤,设{|1P x x =≥或}2x ≤- 由:q x a ⌝>,得:q xa ,设{}|Q x x a =≤因为q 是p 的充分不必要条件,所以Q P ,因此2a ≤-. 故答案为:(],2-∞- 【点睛】本题主要考查了由充分不必要条件求参数范围,属于中档题.14.【分析】根据集合的交集补集运算即可求解【详解】因为所以因此故答案为【点睛】本题主要考查了集合的补集交集运算属于中档题 解析:[]2,3【分析】根据集合的交集补集运算即可求解. 【详解】因为{}2B x x =<, 所以RB ={}2x x ≥因此RAB ={}{}32=[2,3]x x x x ≤⋂≥.故答案为[]2,3 【点睛】本题主要考查了集合的补集,交集运算,属于中档题.15.【分析】讨论和三种情况计算得到答案【详解】当时方程为满足条件当时方程恒有两个解且两根一正一负满足条件当时即此时两根均为正数满足条件综上所述:故答案为:【点睛】本题考查了充要条件分类讨论是一个常用的方 解析:[)1,a ∈-+∞【分析】讨论0a =,0a >和0a <三种情况,计算得到答案. 【详解】当0a =时,方程为1210,2x x -==满足条件. 当0a >时,2210,440axx a 方程恒有两个解,且1210x x a=-<,两根一正一负,满足条件 当0a <时,2210,4401axx a a ,即01a ,此时,1210x x a=->, 1220x x a+=->,两根均为正数,满足条件 综上所述:1a ≥- 故答案为:[)1,a ∈-+∞ 【点睛】本题考查了充要条件,分类讨论是一个常用的方法,需要同学们熟练掌握.16.【分析】根据函数的值域以及椭圆的性质求得集合再根据集合的运算即可求解【详解】由题意集合所以【点睛】本题主要考查了集合的运算其中解答中根据函数的值域以及椭圆的性质求得集合是解答的关键着重考查了推理与运 解析:[]0,2【分析】根据函数的值域,以及椭圆的性质求得集合,M N ,再根据集合的运算,即可求解. 【详解】由题意,集合{}2,{|0}M y y x x R y y ==∈=≥,221,{|22}4y N y x x R y y ⎧⎫⎪⎪=+=∈=-≤≤⎨⎬⎪⎪⎩⎭,所以{|02}[0,2]M N y y =≤≤=.【点睛】本题主要考查了集合的运算,其中解答中根据函数的值域,以及椭圆的性质求得集合,M N 是解答的关键,着重考查了推理与运算能力,属于基础题.17.49【解析】分析:根据题意进行列举即可得出结果详解:①若则可以表示为共种若则可以表示为共种若则可以表示为共种若则可以表示为共种计种②若则可以表示为共种若则可以表示为共种则可以表示为共种则有种则有种则解析:49 【解析】分析:根据题意进行列举,即可得出结果详解:①若{}1A =,则B 可以表示为{}1,{}12,,{}13,,{}14,,{}123,,,{}124,,,{}134,,,{}1234,,,,{}2,{}23,,{}24,,{}234,,, {}3,{}34,,{}4,共15种 若{}2A =,则B 可以表示为{}2,{}23,,{}24,,{}234,,,{}3,{}34,,{}4,共7种 若{}3A =,则B 可以表示为{}3,{}34,,{}4,共3种 若{}4A =,则B 可以表示为{}4,共1种计1573126+++=种②若{}12A =,,则B 可以表示为{}2,{}23,,{}24,,{}234,,,{}3,{}34,,{}4,共7种若{}13A =,,则B 可以表示为{}3,{}34,,{}4,共3种 {}14A =,,则B 可以表示为{}4,共1种{}23A =,,则B 有3种 {}24A =,,则B 有1种{}34A =,,则B 有1种计73131116+++++=种③{}123A =,,,则B 有3种 {}124A =,,,则B 有1种 {}134A =,,,则B 有1种 {}234A =,,,则B 有1种计31116+++=种④若{}1234A =,,,,则B 有1种 综上所述,共有26166149+++=种 故答案为49种点睛:本题主要考查的知识点是排列组合的实际应用,本题解题的关键是理解题意,能够看懂A 中最大的数不大于B 中最小的数的意义,本题是一个难题也是一个易错题,需要认真解答18.【详解】根据全称命题的否定的概念可知p 为解析:00R,20xx ∃∈≤【详解】根据全称命题的否定的概念,可知⌝p 为00R,20x x ∃∈≤.19.5【解析】【分析】根据15人参加游泳比赛有8人参加田径比赛同时参加游泳和田径的有3人同时参加游泳和球类比赛的有3人可以求得只参加游泳比赛的人数;再结合总人数即可求得同时参加田径和球类比赛的人数【详解解析:5 【解析】 【分析】根据15人参加游泳比赛,有8人参加田径比赛,同时参加游泳和田径的有3人,同时参加游泳和球类比赛的有3人,可以求得只参加游泳比赛的人数;再结合总人数即可求得同时参加田径和球类比赛的人数. 【详解】解:有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,这三项累加时,比全班人数多算了三部分,即同时参加游泳比赛和田径比赛的、同时参加游泳比赛和球类比赛的和同时参加田径比赛和球类比赛的重复算了两次所以15+8+14﹣3﹣3﹣26=5,就是同时参加田径比赛和球类比赛的人数, 所以同时参加田径比赛和球类比赛的有5人. 故答案为5. 【点睛】本题主要考查集合之间的元素关系,注意每两种比赛的公共部分,属于中档题.20.17【分析】用减去4即得【详解】由题意知正数数组的逆序数与的逆序数和为所以的逆序数为故答案为:17【点睛】本题考查新定义问题考查排列组合的应用解题关键是理解认识到数组与中逆序数的和为解析:17【分析】用27C 减去4即得.【详解】由题意知正数数组()1234567,,,,,,a a a a a a a 的“逆序数”与()7654321,,,,,,a a a a a a a 的“逆序数”和为27C ,所以()7654321,,,,,,a a a a a a a 的“逆序数”为27417C -=. 故答案为:17.【点睛】本题考查新定义问题,考查排列组合的应用.解题关键是理解认识到数组()12,,,n i i i ⋅⋅⋅与()11,,,n n i i i -⋅⋅⋅中逆序数的和为2n C .三、解答题21.答案见解析.【分析】二次项含参,先对a 分0,0,0a a a =><三类讨论,当0a =时,直接代入化简得到解集;当0a >时,不等式可化为(ax -2)(x -2)>0,其对方程两个根为2,2a,需比较两根大小,再分01a <<,1a =,1a >三类求出解集;当0a <时,原不等式可化为(-ax +2)(x -2)<0,直接判断两根大小,得到解集,最后综合,求得答案.【详解】解:(1)当a =0时,原不等式可化为-2x +4>0,解得x <2,所以原不等式的解集为{x |x <2}.(2)当a >0时,原不等式可化为(ax -2)(x -2)>0,对应方程的两个根为x 1=2a ,x 2=2. ①当0<a <1时,2a >2,所以原不等式的解集为2{|x x a >或2}x <; ②当a =1时,2a =2,所以原不等式的解集为{x |x ≠2}; ③当a >1时,2a <2,所以原不等式的解集为2{|x x a<或2}x >. (3)当a <0时,原不等式可化为(-ax +2)(x -2)<0,对应方程的两个根为x 1=2a ,x 2=2, 则2a <2,所以原不等式的解集为2{|2}x x a<<.综上,a <0时,原不等式的解集为2{|2}x x a <<; a =0时,原不等式的解集为{x |x <2};0<a ≤1时,原不等式的解集为2{|x x a >或2}x <; 当a >1时,原不等式的解集为2{|x x a<或2}x >. 【点睛】 本题考查了含参一元二次不等式的解法,对二次项系数分类讨论,在需要时对两根大小分类讨论,属于中档题.22.(1)p 为真,q 为假,理由见解析;(2)p q ∨为真,p q ∧为假,()p q ∧⌝为真.【分析】(1)由22x =有解知命题p 为真命题,22sin 1cos 2y x x ==-,在(,)62ππ-上先减后增.即命题q 为假命题;(2)由p 为真q 为假,结合复合命题的真假可得.【详解】(1)易知0x R ∃=,故p 为真.∵22sin 1cos2y x x ==-,且23x ππ⎛⎫∈-⎪⎝⎭,, ∴1cos2y x =-在,62ππ⎛⎫-⎪⎝⎭上先减后增,故q 为假. (2)∵p 真q 假,∴p q ∨为真,p q ∧为假,()p q ∧⌝为真.【点睛】本题考查了三角函数的单调性及复合命题的真假,属中档题.23.(1)()2,3:(2)324a ≤≤. 【分析】(1)先化简命题,p q ,再求集合的交集得解; (2)先求出p ⌝和q ⌝,再解不等式组243a a ≤⎧⎨≥⎩,即得解. 【详解】(1)命题p :实数x 满足()225400x ax a a -+<>, 所以4a x a <<,设{}4A x a x a =<<,命题q :实数x 满足2560x x -+<,解得23x <<,设{}23B x x =<<,1a =时,若p q ∧为真,则{}23A B x x ⋂=<<. 故x 的取值范围为()2,3;(2)(][):,4,p a a ⌝-∞⋃+∞,(][):,23,q ⌝-∞⋃+∞,若p ⌝是q ⌝的充分不必要条件,可得243a a ≤⎧⎨≥⎩,解得324a ≤≤, 故实数a 的取值范围为324a ≤≤. 【点睛】方法点睛:利用集合法分析判断充分必要条件,首先分清条件和结论;然后化简每一个命题,建立命题p q 、和集合A B 、的对应关系.:{|()p A x p x =成立},:{|()q B x q x =成立};最后利用下面的结论判断:(1)若A B ⊆,则p 是q 的充分条件,若A B ⊂,则p 是q 的充分非必要条件;(2)若B A ⊆,则p 是q 的必要条件,若B A ⊂,则p 是q 的必要非充分条件;(3)若A B ⊆且B A ⊆,即A B =时,则p 是q 的充要条件.24.(1)A ∪B 的子集:Φ,{﹣6},{﹣3},{1},{﹣6,﹣3},{﹣6,1},{﹣3,1},{﹣6,﹣3,1}(2)m 的取值范围是(﹣∞,﹣2].【分析】(1)由x 2+5x ﹣6=0得6,1x x =-=或,所以{1-6}A =,,当0m =时,化简{}1,3B =-,求出A ∪B {}6,3,1=--,写出子集即可(2)由A B B ⋂=知B A ⊆,对判别式进行分类讨论即可.【详解】(1)根据题意,m=0时,B={1,﹣3},A ∪B={﹣6,﹣3,1};∴A ∪B 的子集:Φ,{﹣6},{﹣3},{1},{﹣6,﹣3},{﹣6,1},{﹣3,1},{﹣6,﹣3,1},(2)由已知B ⊆A , •①m <﹣2时,B=Φ,成立‚②m=﹣2时,B={1}⊆A ,成立ƒ③m >﹣2时,若B ⊆A ,则B={﹣6,1};∴⇒m 无解,综上所述:m 的取值范围是(﹣∞,﹣2].【点睛】本题主要考查了集合的并集运算,子集的概念,分类讨论的思想,属于中档题. 25.(1)1m ≥;(2)[)(]3,12,5-⋃.【分析】(1)先解不等式,再根据充分条件得集合之间包含关系,最后解不等式得结果;(2)根据p q ∨为真命题,p q ∧为假命题,得,p q 一真一假,再分别求对应x 的取值范围.【详解】(1)p :232012x x x -+≤∴≤≤,q :()22210011x x m m m x m -+-≤>∴-≤≤+因为p 是q 的充分条件,所以11112m p q m m -≤⎧⊆∴∴≥⎨+≥⎩; (2)4m =时,q :35x -≤≤因为p q ∨为真命题,p q ∧为假命题,所以,p q 一真一假,1253x x x ≤≤⎧∴⎨><-⎩或或3521x x x -≤≤⎧⎨><⎩或 x ∴∈∅或31x -≤<或25x <≤实数x 的取值范围为[)(]3,12,5-⋃【点睛】本题考查根据充分条件求参数、根据复合命题真假求参数,考查基本分析求解能力,属中档题.26.(1)1001-⋃(,)(,);(2)1a =-. 【分析】(1)解出集合B ,由题意得出A B ,可得出关于实数a 的不等式组,即可求得实数a 的取值范围;(2)由题意可知A B =,进而可得出1-和1是方程()2230x a a x a -++=的两根,利用韦达定理可求得实数a 的值.【详解】(1)解不等式211x x <-,即101x x +<-,解得11x -<<,则{}11B x x =-<<. 由于p 是q 的充分不必要条件,则A B ,()(){}20A x x a x a=--<, ①当2a a =时,即当0a =或1a =时,A =∅,不合题意;②当2a a <时,即当0a <或1a >时,{}2A x a x a =<<, A B ,则211a a ≥-⎧⎨≤⎩,解得10a -≤<, 又当1a =-,{}11A x x B =-<<=,不合乎题意.所以10a -<<;③当2a a <时,即当01a <<时,A B ,则211a a ⎧≥-⎨≤⎩,此时01a <<.综上所述,实数a 的取值范围是1001-⋃(,)(,); (2)由于p 是q 的充要条件,则()1,1A B ==-, 所以,1-和1是方程()2230x a a x a -++=的两根, 由韦达定理得2301a a a ⎧+=⎨=-⎩,解得1a =-. 【点睛】本题考查利用充分不必要条件、充要条件求参数,考查运算求解能力,属于中等题.。

人教版高一数学必修一-第一章练习测试题与参考答案

人教版高一数学必修一-第一章练习测试题与参考答案

集合与函数基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.函数y ==x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .选递增再递减.2.方程组20{=+=-y x y x 的解构成的集合是 ()A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是()14.函数y =1+x 的单调区间为___________. 15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a . 16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分)17.已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18.设f (x )是定义在R 上的增函数,f (xy )=f (x )+f (y ),f (3)=1,求解不等式f (x )+f (x -2)>1.19.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.20.已知二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,写出函数的解析表达式,并求出函数)(x f 的单调递增区间.必修1第一章集合测试集合测试参考答案:一、1~5CABCB6~10ABACC11~12cB二、13[0,43],(-∞,-43) 14(-∞,-1),(-1,+∞)15-11603|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ;三、17所以f x >3或x 19.. f (x 当x < ∴f (20. ∴1=m .。

高一数学第一单元综合练习及解答人教版 知识精讲 试题

高一数学第一单元综合练习及解答人教版 知识精讲 试题

高一数学第一单元综合练习及解答人教版【同步教育信息】一. 本周教学内容:第一单元综合练习及解答【模拟试题】一. 单选题:1.(89全)如果U={a , b , c , d , e},M={a , c , d},N={b , d , e},其中U 是全集,那么)()(N C M C U U ⋂等于( )A. φB. {d}C. {a , c}D. {b , e}2.(96全)已知全集*=N U ,集合},2|{*∈==N n n x x A ,},4|{*∈==N n n x x B ,则( )A. B A U ⋃=B. B A C U U ⋃=)(C. )(B C A U U ⋃=D. )()(B C A C U U U ⋃=3.(90全文)设全集},|),{(R y x y x U ∈=,集合}123|),{(=--=x y y x M ,}1|),{(+≠=x y y x N ,那么)()(N C M C U U ⋂等于( )A. φB. )}3,2{(C. )3,2(D. }1|),{(+=x y y x4.(96上)已知集合}2|),{(=+=y x y x M ,}4|),{(=-=y x y x N ,那么集合Q b ∈,则( )A. Q P b a ⋃∈+B. Q P b a ⋂∈+C. )()(Q C P C b a I I ⋂∈+D. I b a ∉+7. 已知}023|{2<+-=x x x A ,}|{a x x B <=,且B A ⊆,则实数a 的取值X 围是( )A. ),2[∞+B. ]1,(-∞C. ),1[∞+D. ]2,(-∞8. 若集合},3,1{x A =,}1,{2x B =,并且},3,1{x B A =⋃,则满足条件的实数x 的个数有( )A. 1B. 2C. 3D. 49. 已知}5,53,2{2+-=a a M ,}3,106,1{2+-=a a N ,且}3,2{=⋂N M ,则a 的值是( )A. 1或2B. 2或4C. 2D. 110. 下面六个关系式:①}{a ⊂φ,②}{a a ⊂,③}{}{a a ⊆,④},{}{b a a ∈, ⑤},,{c b a a ∈,⑥},{b a ∈φ,正确的是( )A. ①②③④B. ③⑤⑥C. ①④⑤D. ①③⑤二. 填空题:11.(99某某)已知集合}2|{<-=a x x A ,}1212|{<+-=x x x B 且B A ⊆,则实数a 的取值X 围是______。

人教版高一数学必修一第一章测试题含答案

人教版高一数学必修一第一章测试题含答案

人教版高一数学必修一第一章测试题含答案一、选择题1.下列数中,是正数且有理数的是____。

A.根号2B.根号3C.-0.8D.- 3/4答案:D2.在数轴上,数-3,-2,0,2所在的点的次序是____。

A.-2 < -3 < 0 < 2B.-3 < -2 < 2 < 0C.-3 < -2 < 0 < 2D.-2 < -3 < 2 < 0答案:C3.下列各数中,最小的是____。

A.-0.8B.-1/2C.-1D.-0.9999答案:C4.已知-3<x<5,则-2x的取值范围是____。

A.6<x<30B.15<x<30C.-30<x<-6D.-30<x<15答案:D二、填空题1.将-0.25用分数表示为________。

答案:-1/42.-13的绝对值是________。

答案:133.已知-5<x<4,那么|x+7|的取值范围是________。

答案:2<|x+7|<124.如果a>b>0,那么a²和b²的大小关系是________。

答案:a²>b²三、解答题1.已知x<2y,2y≤4z,z≤5,求满足以上条件的x的取值范围。

解:由条件可得:x<2y≤4z≤20故x<20。

2.已知-2<x<3,求满足0<2x-1<5的x的取值范围。

解:0<2x-1<51<2x<6由x的取值范围-2<x<3得1/2<x<3,故满足条件的x的取值范围为1/2<x<3。

3.小明的体重是58kg,如果减轻了1/8,减轻后的体重是多少?解:减轻了1/8,体重减轻的量为1/8×58=7.25kg。

减轻后的体重为58-7.25=50.75kg。

新教材人教版高一数学上册单元测试题含答案全套

新教材人教版高一数学上册单元测试题含答案全套

新教材人教版高一数学上册单元测试题含答案全套人教版高中数学必修第一册第一章测试题集合与常用逻辑用语注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,,则等于( )A .B .C .D .【答案】B【解析】集合,,.2.是的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 【答案】B【解析】由不能推得,反之由可推得, 所以是的必要不充分条件. 3.已知集合,,若,则实数的值为( )A .B .C .D .【答案】B【解析】∵集合,,且,∴,因此. 4.下列命题中正确的是( ){}1,2,3,4,5A ={}21,B y y x x A ==-∈A B {2,4}{1,3,5}{2,4,7,9}{1,2,3,4,5,7,9}{}1,2,3,4,5A ={}{}21,1,3,5,7,9B y y x x A ==-∈={}1,3,5A B =1x >4x >1x >4x >4x >1x >1x >4x >{1,3}A =-2{2,}B a ={1,2,3,9}A B =-a 1±3±1-3{1,3}A =-2{2,}B a ={1,2,3,9}A B =-29a =3a =±A .任何一个集合必有两个以上的子集B .空集是任何集合的子集C .空集没有子集D .空集是任何集合的真子集 【答案】B【解析】空集只有一个子集,故A 错;B 正确; 空集是本身的子集,故C 错;空集不能是空集的真子集,故D 错. 5.已知集合,则中元素的个数为( )A .B .C .D .【答案】A【解析】因为集合,所以满足且,的点有,,,,,,,,共个.6.已知,则( )A .B .C .D .【答案】B 【解析】,故A 错,B 对,显然,所以C 不对,而,所以D 也不对,故本题选B .7.命题“存在实数,使”的否定是( ) A .对任意实数,都有 B .对任意实数,都有 C .不存在实数,使 D .存在实数, 【答案】B【解析】命题“存在实数,使”的否定是“对任意实数,都有”. 8.集合中的不能取的值的个数是( ) A .B .C .D .【答案】B【解析】由题意可知,且且, 故集合中的不能取的值的个数是个. 9.下列集合中,是空集的是( ) A . B .C .D .【答案】B(){}22,3,,A x y xy x y =+≤∈∈Z Z A 9854(){}22,3,,A x y xy x y =+≤∈∈Z Z 223x y +≤x ∈Z y ∈Z (1,1)--(1,0)-(1,1)-(0,1)-(0,0)(0,1)(1,1)-(1,0)(1,1)9a ={A x x =≥a A ∉a A ∈{}a A ={}a a ∉>a A ∈{}a A ≠{}a a ∈x 1x >x 1x >x 1x ≤x 1x ≤x 1x ≤x 1x >x 1x ≤{}22,4,0x x --x 2345222040224x x x x x -≠-≠⇒≠-≠⎧⎪⎨⎪⎩-2x ≠-1x ≠-{}22,4,0x x --x 3{}0|2x x +={}210,x x x +=∈R {}1|x x <(){}22,,,x y yx x y =-∈R【解析】对于A 选项,,不是空集, 对于B 选项,没有实数根,故为空集, 对于C 选项,显然不是空集,对于D 选项,集合为,故不是空集. 10.下列各组集合中表示同一集合的是( ) A ., B ., C ., D .,【答案】B【解析】对于A ,,表示点集,,表示数集,故不是同一集合; 对于B ,,,根据集合的无序性,集合表示同一集合; 对于C ,集合的元素是数,集合的元素是等式;对于D ,,集合的元素是点,, 集合的元素是点,集合不表示同一集合.11.学校先举办了一次田径运动会,某班共有名同学参赛,又举办了一次球类运动会,这个班有名同学参赛,两次运动会都参赛的有人.两次运动会中,这个班总共的参赛人数为( ) A . B . C . D . 【答案】B【解析】因为参加田径运动会的有名同学,参加球类运动会的有名同学,两次运动会都参加的有人,所以两次运动会中,这个班总共的参赛人数为.12.已知集合,.若, 则实数的取值范围为( ) A . B .C .D .【答案】D【解析】, 当为空集时,;当不为空集时,,综上所述得.第Ⅱ卷二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.集合,则集合的子集的个数为 个.2x =-210x +={(0,0)}{(3,2)}M ={3,2}N ={2,3}M ={3,2}N ={2,3}M ={2,3}N x y ==={(2,3)}M ={(5,4)}N ={(3,2)}M =M {3,2}N =N {2,3}M ={3,2}N =,M N M N {(2,3)}M =M (2,3){(5,4)}N =N (5,4),M N 8123201714238123812317+-={}|25A x x =-≤≤{}|121B x m x m =+≤≤-B A ⊆m 3m ≥23m ≤≤2m ≥3m ≤{}|121B x m x m =+≤≤-B 2112m m m -<+⇒<B 22152312m m m m ≥⎧⎪-≤⇒≤≤⎨⎪+≥-⎩3m ≤2{}1,A =A【答案】【解析】由已知,集合的子集个数为.14.命题“”是命题“”的 (“充分不必要,必要不充分,充要,既不充分也不必要”)条件. 【答案】必要不充分【解析】的解为或,所以当“”成立时,则“”未必成立; 若“”,则“”成立,故命题“”是命题“”的必要不充分条件.15.命题“,”的否定是 .【答案】,【解析】由全称量词命题的否定是存在量词命题可知,命题“,”的否定是“,”.16.设全集是实数集,,, 则图中阴影部分所表示的集合是 .【答案】【解析】由图可知,阴影部分为,∵,∴,∴.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知集合,且,求的取值集合. 【答案】.【解析】∵,∴或,即或.4A 224=220x x --=1x =-220x x --=1x =-2x =220x x --=1x =-1x =-220x x --=220x x --=1x =-x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤U R {}22M x x x =<->或{}13N x x =<<{}12x x <≤Venn ()UN M {}22M x x x =<->或{}22UM x x -=≤≤(){}12UNM x x =<≤{}21,2,4M m m =++5M ∈m {}1,3{}251,2,4m m ∈++25m +=245m +=3m =1m =±当时,;当时,; 当时,不满足互异性, ∴的取值集合为{}1,3.18.(12分)已知集合,,若,求实数,的值.【答案】或.【解析】由已知,得①,解得或, 当时,集合不满足互异性, 当时,集合,集合,符合题意; ②,解得(舍)或,当时,集合,集合符合题意,综上所述,可得或.19.(12分)设集合,. (1)若,试判定集合与的关系; (2)若,求实数的取值集合.【答案】(1)是的真子集;(2).3m ={}1,5,13M =1m ={}1,3,5M =1m =-{}1,1,5M =m {,,2}A a b =2{2,,2}B b a =A B =a b 01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩A B =22a a b b =⎧⎨=⎩00a b =⎧⎨=⎩01a b =⎧⎨=⎩00a b =⎧⎨=⎩{0,0,2}A =01a b =⎧⎨=⎩{0,1,2}A ={2,1,0}B =22a b b a ⎧=⎨=⎩00a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩11{,,2}42A =11{2,,}42B =01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩{}28150A x x x =-+={}10B x ax =-=15a =A B B A ⊆a B A 110,,35⎧⎫⎨⎬⎩⎭【解析】(1),,∴是的真子集. (2)当时,满足,此时;当时,,集合,又,得或,解得或. 综上,实数的取值集合为.20.(12分)已知全集,集合,.求: (1),,;(2),;(3)设集合且,求的取值范围.【答案】(1)见解析;(2)见解析;(3). 【解析】(1),∵,,.(2),∴.(3)由(2)可知,∵,∴,解得.21.(12分)已知集合为全体实数集,,. (1)若,求;(2)若,求实数的取值范围. 【答案】(1);(2).【解析】(1)当时,,所以,所以.(2)①,即时,,此时满足.②当,即时,,由得,或, 所以.{3,5}A ={5}B =B A B =∅B A ⊆0a =B ≠∅0a ≠1B a ⎧⎫=⎨⎬⎩⎭B A ⊆13a =15a=13a =15a 110,,35⎧⎫⎨⎬⎩⎭{}6U x x =∈<N {}1,2,3A ={}2,4B =A B UA UB AB ()UA B {|21}C x a x a =-<≤-()UA CB ⊆a 3a ≥2A B ={0,1,2,3,4,5}U ={0,4,5}UA ={0,1,3,5}UB ={1,2,3,4}AB =(){0,5}UA B =(){0,5}UA B =()U A C B ⊆021521a a a a -<⎧⎪-≥⎨⎪->-⎩3a ≥U {}25M x x x =≤-≥或{}121N x a x a =+≤≤-3a =UMN N M ⊆a {}45Ux x x MN =<≥或{}24a a a <≥或3a ={}45|N x x =≤≤{}45UN x x x =<>或{}45Ux x x MN =<≥或211a a -<+2a <N =∅N M ⊆211a a -≥+2a ≥N ≠∅N M ⊆15a +≥212a -≤-4a ≥综上,实数的取值范围为.22.(12分)已知二次函数,非空集合.(1)当时,二次函数的最小值为,求实数的取值范围;(2)是否存在整数的值,使得“”是“二次函数的大值为”的充分条件, 如果存在,求出一个整数的值,如果不存在,请说明理由. 【答案】(1);(2)见解析.【解析】(1),当且仅当时,二次函数有最小值为,由已知时,二次函数的最小值为,则,所以. (2)二次函数,开口向上,对称轴为,作出二次函数图象如图所示,由“”是“二次函数的大值为”的充分条件, 即时,二次函数的最大值为,,即为,令,解得或,由图像可知,当或时,二次函数的最大值不等于,不符合充分条件, 则,即可取的整数值为,,,,任意一个.第一册第二章测试题一元二次函数、方程和不等式注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

人教版高一数学必修一-第一章练习题与答案

人教版高一数学必修一-第一章练习题与答案

精品文档集合与函数基础测试一、选择题 ( 共 12 小题,每题 5 分,四个选项中只有一个符合要求).函数 y== x2-x+10在区间(,)上是()1624A.递减函数B.递增函数C.先递减再递增D.选递增再递减.x y22.方程组{x y 0 A.{( 1,1)}的解构成的集合是()B.{1,1}C.(1,1)D.{1}3.已知集合 A a,b,c},下列可以作为集合 A 的子集的是()={A. aB. {a,c}C. {a, e}D.{a, b,c,d}4.下列图形中,表示M N 的是()M NN M M N MNAB C D5.下列表述正确的是()A.{ 0}B.{ 0}C.{ 0}D.{ 0}6、设集合 A={x|x 参加自由泳的运动员 } ,B={x|x 参加蛙泳的运动员 } ,对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为()A.A∩BB.A BC.A∪BD.A B7. 集合 A={x x2k, k Z } ,B={x x2k1, k Z } ,C={ x x 4k1, k Z } 又a A,b B, 则有()A. ( a+b) AB. (a+b)BC.(a+b) CD. (a+b)A、B、C任一个)8.函数 f (x)=- x2+( a-) x+2在(-∞,)上是增函数,则 a 的范围是(214A. a≥5B.a≥3C.a≤3D.a≤- 59. 满足条件 {1,2,3}M{1,2,3,4,5,6}的集合 M的个数是()A. 8B. 7C. 6D.510.全集 U={1,2 ,3,4 ,5 ,6 ,7,8},A={3 ,4,5} ,B={1 ,3 ,6} ,那么集合 { 2,7 ,8}是()A.ABB. A BC.C U A C U BD.C U A C U B11. 下列函数中为偶函数的是()A.y x B. y x C. y x2D. y x31 12. 如果集合 A={ x | ax 2+ 2x + 1=0}中只有一个元素,则 a 的值是()A.0B.0 或1C.1D.不能确定二、填空题 ( 共 4 小题,每题 4分,把答案填在题中横线上 ).函数 f (x)=× -| x|的单调减区间是.13223___________.函数 y= 1 的单调区间为___________.14x+115. 含有三个实数的集合既可表示成{ a,b,1},又可表示成{ a2, a b,0},则a2 0 0 3 b2 0 0 4a .。

人教版高中数学必修一第一单元(集合)知识点测试卷

人教版高中数学必修一第一单元(集合)知识点测试卷
题型:填空题
难易程度:中档
答案:
解析:由 可知 ,所以可知 ,由集合元素的互异性舍掉-1.
12.对于平面上的点集 ,如果连接 中任意两点的线段必定包含于 ,则称 为平面上的凸集,给出平面上4个点集的图形如下(阴影区域及其边界):
其中为凸集的是(写出所有凸集相应图形的序号).
知识点:集合新概念的问题,开放题,考查学生的应用能力
C.3 D.4
知识点:本题考查的基本知识点是辨析元素与集合以及集合与集合之间的关系,并运用适当的符号表示出来
题型:选择题
难易程度:容易
答案:A
解析: 用于集合与集合的关系, 用于元素与集合的关系.
2.表示图中阴影部分的是下列集合………………………………………………………
A.
B.
C.
D.
知识点:考查利Leabharlann Venn图解决简单的集合问题题型:选择题
难易程度:较难
答案:B
解析:依题列出Venn图,由图可知选B.
8.设集合 , ,若 ,则 的取值范围是( )
A. B.
C. D.
知识点:利用集合的基本关系求未知量的取值范围
题型:选择题
难易程度:较难
答案:C
解析:利用数轴可知若 ,则 应位于-1的右侧,不含端点.
二、填空题:本大题共4小题,每小题5分,共20分.
9.已知集合 ,那么集合 为.
知识点:集合的关系以及集合的表示法
题型:填空题
难易程度:容易
答案:
解析:解 得 ∴ .
10.满足 的集合A的个数是个.
知识点:集合的基本关系
题型:填空题
难易程度:中档
答案:7
解析:依题可知集合A必含0,1,2,且至少含3,4,5中一个元素.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章集合与函数概念
一、集合有关概念
1.集合的含义:一般,我们把研究对象统称为元素,把一些元素组成的总
体叫做集合,简称集。

2.集合的中元素的三个特性:
(1)元素的确定性如:世界上最高的山
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,
北冰洋}
集合的表示方法:列举法与描述法。

1)列举法:{a,b,c……}
2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x R| x-3>2} ,{x| x-3>2}
3)Venn图
注意:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R
4、集合的分类:
(1)有限集含有有限个元素的集合
(2)无限集含有无限个元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
A⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

注意:B
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”
即:①任何一个集合是它本身的子集。

A⊆A
②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作
A B(或
B A)
③如果 A⊆B, B⊆C ,那么 A⊆C
④如果A⊆B 同时 B⊆A 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集
三、集合的运算
一、选择题
1.用列举法表示集合{x|x2-2x+1=0}为()
A.{1,1}
B.{1}
C.{x=1}
D.{x2-2x+1=0}
2.已知集合A={x∈N+|-5≤x≤5},则必有()
A.-1∈A
B.0∈A
C.3∈A
D.1∈A
3.集合A中的元素y满足y∈N且y=-x2+1,若t∈A,则t的值为()
A.0
B. 1
C.0或1
D.小于等于1
4.已知集合A含有三个元素2,4,6,且当a∈A,有6-a∈A,那么a为()
A. 2
B.2或4
C. 4
D.0
二、填空题
1.已知M={x|x≤22},且a=32,则a与M的关系是
2.已知P={x|2<x<a,x∈N},已知集合P中恰有3个元素,则整数a=.
三、解答题
1. 已知集合A={x|ax2-2x+1=0}.
(1)若A中恰好只有一个元素,求实数a的值;
(2)若A中至少有一个元素,求实数a的取值范围.
一、选择题
1.下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家
C 一切很大的书
D 倒数等于它自身的实数 2.下列关系正确的是( ) A.3∈{y|y =x2+π,x ∈R} B.{(a ,b)}={(b ,a)}
C.{(x ,y)|x2-y2=1} {(x ,y)|(x2-y2)2=1}
D.
{x ∈R|x2-2=0}=
3.已知集合M ={(x ,y)|x +y <0,xy >0}和集合P ={(x ,y)|x <0,y <0},那么( ) A.P M B.M P C.
M =P D.
M P
3.集合B ={a ,b ,c},C ={a ,b ,d}(c≠d),集合A 满足A B ,A C.则集 合A 的个数是( ) A.
8
B.
3 C.
4 D.
1
5.设A ={x|1<x <2},B ={x|x <a},若A B ,则实数a 的取值范围是 ( ) A.a≥2 B.
a≤1
C.
a≥1
D.a≤2
二、填空题
1.已知集合A ={-1,3,2m -1},集合B ={3,m2},若B A ,则实数m
2.集合{a ,b ,c }的真子集共有 个
3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .
4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是
5. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M= .
§3 集合的基本运算练习题
一、选择
(A∩B)中1.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合C
u
的元素共有( )
A.3个 B.4个
C.5个 D.6个
2.已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是( )
三、填空
1.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A
B)等于________.
∩(C
u
2.设全集U=A∪B={x|1≤x<10,x∈N+},若A∩(C
B)
u
={m|m=2n+1,n=0,1,2,3,4},则集合B=________.
3.已知A={x|x≤1或x>3},B={x|x>2},则(C R A)∪B=________.
三、解答题(每小题10分,共20分)
4.设全集为R,A={x|3≤x<7},B={x|2<x<10},求C R (A∪B)及(C R A)∩B.
5.集合A={x|x≤-2或x≥3},B={x|a<x<b},若A∩B=Ø,
A∪B=R,求实数a,b. 中考文言文阅读精选1 00题(附答案)
(一)阅读下列文言文语段,完成1- 5题。

(连云港)
[甲]先帝知臣谨慎,故临崩寄臣以大事也。

受命以来,夙夜忧叹,恐托付不效,以伤先帝之明,故五月渡泸,深入不毛。

今南方已定,兵甲已足,妆奖率三军,北定中原,庶竭驽钝,攘除奸凶,兴复汉室,还于旧都。

此臣所以报先帝而忠陛下之职分也。

(节选自诸葛亮《出师表》)
[乙]臣受命之日,寝不安席,食不甘味。

思惟北征,宜先入南。

故五月渡沪,深入不毛,并日而食。

臣非不自惜也,顾王业不可偏安于蜀都,故冒危难,以奉先帝之遗愿,而议者谓为非计。

今贼适疲于西,又务于东,兵法乘劳,此进趋之时也。

(节选自诸葛亮《后出师表》)
1.解释下列句子中加点的词语。

①故临崩寄.臣以大事也②庶竭驽钝,攘除
..奸凶
③思惟北征,宜.先入南④今贼适.疲于西
2.下列各组句子中加点词语的意义和用法相同的一项是:()
A.先帝知臣谨慎
B.阡陌交通,鸡犬相闻
C.故冒危难,以奉先帝之遗愿
D.每有会意,便欣然忘食
3.下列各组句子中加点词语的意义和用法相同的一项是()
A.兴复汉室,还于旧都 B. 以奉先帝之遗愿
顾王业不可偏安于蜀都辍耕之垄上
C.而议者谓为非计 D. 故临崩寄臣以大事也水落而石出者以是人多以书假余
4.翻译下面句子。

①此臣所以报先帝而忠陛下之职分也
②故五月渡沪,深入不毛,并日而食
5.纵观甲乙两段内容,简要概括诸葛亮请求兴北伐的三个理由


③(连云港)
答案: 1、①寄:托付②攘除:铲除③宜:应该④适:正好,正逢
2、D 3.A 4、①这就是用来报答先帝、尽忠陛下的职责。

②。

相关文档
最新文档