探索性数据分析
探索性数据分析

探索性数据分析简介 探索性数据分析所谓探索性数据分析( Exploratory Data Analysis )以下简称EDA,是指对已有的数据(特别是调查或观察得来的原始数据)在尽量少的先验假定下进⾏探索通过作图、制表、⽅程拟合、计算特征量等⼿段探索数据的结构和规律的⼀种数据分析⽅法。
⽬录 1. 探索性数据分析的简要介绍 2. 探索性数据分析的必要性和意义 3. 探索分析的内容和考察⽅法1. 探索性数据分析的简要介绍 探索性数据分析的简要介绍探索性数据分析的简要介绍探索性数据分析的简要介绍探索性数据分析(Exploratory Data Analysis, EDA)⾸先由 J.W.Tukey提出的。
Tukey从⽣物学家那⾥学了许多分析数据的⽅法,并引⼊统计学中。
1977年,Tukey出版了他的名著《探索性数据分析》(UNDERSTANDING ROBUST AND EXPLORATORY DATA ANALYSIS),引起了统计学界的关注,成为探索分析的第⼀个正式出版物。
80年代后期,我国⼀些统计学者将这本著作介绍给我国统计学界,对我国统计学理论研究和统计事业的实践起到了积极作⽤。
此后,国内也有不少关于探索性数据分析⽅法的⽂章发表到各种统计刊物。
随着计算机技术的飞跃发展,以及数据的复杂性越来越强,实施探索性数据分析成为数据分析中不可替代的⼀部分,从⽽在统计分析的过程中发挥着越来重要的作⽤。
2. 探索性数据分析的必要性和意义 统计学原理告诉我们,搜集到的数据在建⽴数据⽂件以后,并⾮⽴即投⼊统计分析,因为数据结构、数据中隐含的内在统计规律等尚不清楚,需要对数据进⾏考察和探索。
因此,应⽤数据分析的整个操作步骤⼤体可以划分为两⼤阶段:探索阶段和证实阶段。
探索性数据分析分分离出数据的模式和特点,把他们有⼒地显⽰给分析者。
常常,分析者现对数据做探索性数据分析,⽽后才能有把握地选择结构分量或随机分量的模型;探索性数据分析还可以⽤来揭⽰:数据对于常见模型的意想不到的偏离。
探索性数据分析

探索性数据分析探索性数据分析(Exploratory Data Analysis,简称EDA)是指在进行统计分析之前对原始数据进行了解、探究和可视化的过程。
EDA是研究者对于原始数据的初步感知,帮助研究者更好地理解数据特征,从而进行进一步的分析预测和建模。
EDA主要包含了数据摘要、单变量分析和多变量分析三个部分。
1. 数据摘要数据摘要是指将数据整体概括成一般性描述性统计量的方法,通常采用以下统计量:(1)中心趋势度量:平均值、中位数、众数等;(2)离中趋势度量:方差、标准差、中位数绝对偏差等;(3)分布形态度量:偏度、峰度和频数分布图等。
这些统计量可以帮助我们了解数据的整体特征和分布情况,然后利用图表展现出来,便于直观地理解数据的基本属性和规律。
2. 单变量分析单变量分析是指对单一变量(即数据集中的一个字段)进行统计描述和可视化展示。
通过单变量分析,我们可以得到以下信息:(1)数据类型:对于定量数据可以得到最大值、最小值、平均数等,对于定性数据可以得到类别的名称和频率分布情况。
(2)数据分布:绘制频率分布表格或统计图,如直方图、核密度图等,以此判断数据是否符合正态分布或其他分布规律。
单变量分析能够帮助我们从一个维度出发,探究单个变量的差异性和分布特征,为后续多变量分析创造条件。
3. 多变量分析多变量分析是指在研究对象中同时考虑两个或多个变量,找出它们之间的相互关系和作用。
多变量分析通常采用散点图、折线图、箱形图、气泡图等统计图形展现数据之间的相互影响及相关性,其主要目的是确定各变量之间的关系强弱,进而展示不同因素之间的相互作用,辅助研究者选择不同的预测模型,提高研究的准确性。
总结探索性数据分析不仅可以用于理解基础统计知识,更能发掘先前未被发现的信息,为接下来的深入统计分析和建模提供依据和契机。
EDA旨在通过基本的统计方法、图表展示结合常识判断和领域知识,使数据具有更深入、丰富的信息价值,提高数据处理后的可信度和准确度。
数据探索性分析

数据探索性分析数据探索性分析(Exploratory Data Analysis, EDA)指的是针对数据的分布、异常值、缺失值等进行的初步分析,以便更好地理解数据、发现数据背后隐含的规律和特征、规避数据分析的误区和偏差,并为后续的数据建模、回归分析和机器学习等提供基础。
1. 数据的可视化数据的可视化是EDA中最重要的一个环节,它能够清晰地向分析者展示数据的分布规律、异常点和异常值,并引导分析者进一步探索数据的特征和规律。
常见的数据可视化方式包括:直方图、散点图、箱型图、饼图、条形图、折线图等。
以直方图为例,它可以通过统计数据落在连续范围内的频次,将数据分布情况展现在分析者面前。
直方图的横纵坐标分别表示数值范围和该范围内的频率(或密度),直方图主要被用来展现数值型数据的分布,其中,分布的“峰度”可以从直方图中直观地观察到。
2. 数据的清理数据的清理是EDA中另一个重要的环节,它主要是为了处理数据中的异常值、缺失值、重复值、格式不一致的数据等,以便更好地准备和处理数据,并为后续的分析提供基础。
在数据清理时,需要注意以下要点:(1)异常值处理。
异常值是指数据中与大部分数据存在显著偏差或数量级差异较大的点。
例如,一批房价数据中存在一个房价高达1亿的异常点,这时需要依据业务逻辑或分析目的,将其判定为异常值并进行处理,例如剔除、替换、平滑等。
(2)缺失值处理。
缺失值是指数据中出现空值或NaN值的情况。
在数据分析过程中,需要考虑如何填充缺失值、删除含有缺失值的行或列、设置默认值等。
(3)重复值处理。
重复值是指数据中同一个样本出现了多次的情况。
处理重复值时,需要根据具体业务逻辑和数据需求,确定重复值的处理策略,例如保留一个、剔除所有、合并等。
3. 特征提取与工程特征提取是指从原始数据中提取与目标变量具有相关性并能够代表样本的特征变量,以便更好地训练模型并进行数据分析。
在特征提取时,需要从多个方面考虑特征的筛选和提取,包括:(1)特征的重要性。
数据探索性分析报告

数据探索性分析报告数据探索性分析(Exploratory Data Analysis,简称EDA)是数据科学中非常重要的一项任务,其目的是通过对数据的初步探索和可视化来了解数据集的基本特征、关联性和异常情况。
通过EDA,我们可以发现数据中的潜在模式和趋势,为后续的数据建模和决策提供基础。
数据初探在进行数据探索性分析之前,首先要对数据集进行初步的了解。
我们需要了解数据的来源、结构、格式以及变量的含义。
这样能够帮助我们正确理解数据,并针对性地选择合适的分析方法和技巧。
数据集概览首先,我们来看一下数据集的概览。
通过查看数据集的前几行和数据的基本统计信息,可以对数据的整体情况有一个初步的了解。
同时,我们还可以观察到数据集中是否存在缺失值、异常值等问题。
数据的基本统计信息利用常见的统计指标,如平均值、中位数、标准差等,可以了解数据的集中趋势、离散程度等。
这些指标能够帮助我们对数据的整体特征有一个直观的了解。
缺失值和异常值的处理当数据集中存在缺失值时,我们需要进行相应的处理。
常见的方法包括删除缺失值、使用均值或中位数填充缺失值等。
对于异常值的处理,可以使用统计方法或可视化工具来检测和处理异常值。
数据分布分析在进行数据探索性分析时,我们通常关注的是数据的分布情况。
通过对数据的分布进行分析,我们可以判断数据是否服从某一特定的分布,并了解数据的偏度、峰度等特征。
这对于选择合适的建模方法和参数调整非常重要。
单变量分布分析对于单一变量的分布分析,可以使用直方图、箱线图、密度图等工具。
通过这些图表,我们可以观察数据的分布形态、峰度、偏度等特征,并根据需要进行数据预处理,如数据平滑、变换等操作。
多变量分布分析在多变量分布分析中,我们通常关注的是变量之间的关系和影响。
通过散点图、热力图、相关系数等工具,可以发现变量之间的线性、非线性关系,并进一步了解变量之间的相关性。
数据可视化是进行数据探索性分析的重要手段之一。
通过合适的图表和可视化工具,可以将复杂的数据转化为直观的视觉表达,便于我们直观地发现数据的模式和趋势。
探索性数据分析

探索性数据分析探索性数据分析是利用ArcGIS提供的一系列图形工具和适用于数据的插值方法,确定插值统计数据属性、探测数据分布、全局和局部异常值(过大值或过小值)、寻求全局的变化趋势、研究空间自相关和理解多种数据集之间相关性。
探索性空间数据分析对于深入了解数据,认识研究对象,从而对与其数据相关的问题做出更好的决策。
一数据分析工具1.刷光(Brushing)与链接(Linking)刷光指在ArcMap数据视图或某个ESDA工具中选取对象,被选择的对象高亮度显示。
链接指在ArcMap数据视图或某个ESDA工具中的选取对象操作。
在所有视图中被选取对象均会执行刷光操作。
如在下面章节将要叙述的探索性数据分析过程中,当某些ESDA工具(如直方图、V oronoi图、QQplot图以及趋势分析)中执行刷光时,ArcMap数据视图中相应的样点均会被高亮度显示。
当在半变异/协方差函数云中刷光时,ArcMap数据视图中相应的样点对及每对之间的连线均被高亮度显示。
反之,当样点对在ArcMap数据视图中被选中,在半变异/协方差函数云中相应的点也将高亮度显示。
2.直方图直方图指对采样数据按一定的分级方案(等间隔分级、标准差分级)进行分级,统计采样点落入各个级别中的个数或占总采样数的百分比,并通过条带图或柱状图表现出来。
直方图可以直观地反映采样数据分布特征、总体规律,可以用来检验数据分布和寻找数据离群值。
在ArcGIS中,可以方便的提取采样点数据的直方图,基本步骤为:1)在ArcMap中加载地统计数据点图层。
2)单击Geostatistical Analyst模块的下拉箭头选择Explore Data并单击Histogram。
3)设置相关参数,生成直方图。
A.Bars:直方图条带个数,也就是分级数。
B.Translation:数据变换方式。
None:对原始采样数据的值不作变换,直接生成直方图。
Log:首先对原始数据取对数,再生成直方图。
探索性数据分析的重要性

探索性数据分析的重要性数据分析是一种通过收集、整理、解释和展示数据来获取有关现象、趋势和关系的信息的过程。
在数据分析中,探索性数据分析(Exploratory Data Analysis,简称EDA)是一种重要的方法,它通过可视化和统计技术来揭示数据中的模式、异常和趋势,帮助我们更好地理解数据并做出合理的决策。
一、揭示数据的基本特征探索性数据分析可以帮助我们揭示数据的基本特征,包括数据的分布、中心趋势和离散程度。
通过绘制直方图、箱线图和散点图等可视化工具,我们可以直观地了解数据的分布情况,判断数据是否服从正态分布或其他特定的分布模型。
同时,通过计算均值、中位数、标准差等统计指标,我们可以了解数据的中心趋势和离散程度,进一步分析数据的特点和规律。
二、发现数据的关联关系探索性数据分析可以帮助我们发现数据之间的关联关系。
通过绘制散点图、热力图和相关系数矩阵等可视化工具,我们可以直观地了解不同变量之间的相关性。
这有助于我们发现变量之间的线性或非线性关系,进一步分析变量之间的因果关系或相互影响,为后续的建模和预测提供依据。
三、识别数据的异常值和缺失值探索性数据分析可以帮助我们识别数据中的异常值和缺失值。
异常值是指与其他观测值明显不同的观测值,可能是由于测量误差或数据录入错误导致的。
通过绘制箱线图和散点图等可视化工具,我们可以直观地发现异常值,并进一步分析其原因和影响。
缺失值是指数据中缺少某些观测值的情况,可能是由于数据采集过程中的遗漏或数据处理过程中的错误导致的。
通过计算缺失值的比例和分布情况,我们可以评估数据的完整性,并采取相应的处理方法。
四、支持决策和预测探索性数据分析可以为决策和预测提供支持。
通过对数据的探索和分析,我们可以了解数据的特点和规律,为决策提供依据。
例如,在市场营销中,通过对客户数据的探索性数据分析,我们可以了解不同客户群体的特点和需求,为制定精准的营销策略提供参考。
在金融风控中,通过对历史交易数据的探索性数据分析,我们可以发现不同变量之间的关联关系,为建立风险模型和预测未来风险提供依据。
关于EDA的概述

关于EDA的概述探索性数据分析(Exploratory Data Analysis,EDA)是指对收集到的数据进行初步观察、分析、总结和可视化的过程。
它是数据分析的第一步,通过这一步骤,我们可以对数据有一个整体的认识,发现数据中的模式和趋势,为下一步的建模和预测提供一定的指导。
EDA可以包括以下几个主要步骤:1.数据清理:数据清理是EDA的关键步骤之一,它涉及数据集中的缺失值、异常值、重复值等问题的处理。
缺失值是指数据集中一些变量的部分观测值缺失的情况,异常值是指数据集中与其他观测值相比具有明显差异的观测值,重复值是指数据集中出现多次的相同观测值。
通过清除这些问题数据,可以提高后续分析的准确性和可靠性。
2.描述统计分析:描述统计分析是对数据集的基本统计特征进行总结和描述的过程。
通过计算数据的均值、中位数、标准差、极值等统计指标,可以直观地了解数据的中心趋势、分散程度、数据分布形态等情况。
此外,还可以通过制作直方图、箱线图、散点图等可视化图形来展示数据的分布和关系。
3.变量关系分析:变量关系分析是研究不同变量之间关系的过程。
通过计算变量之间的相关系数、绘制散点图、矩阵图等可视化图形,可以了解变量之间的线性相关性、非线性相关性、正负相关性等情况。
进一步分析不同变量之间的关系,可以帮助我们发现变量之间的潜在模式和规律。
4.探索性可视化:探索性可视化是通过制作各种图表来呈现数据的分布、关系和趋势的过程。
常用的探索性可视化图形包括直方图、箱线图、散点图、折线图、热力图等。
这些图形可以帮助我们更好地理解数据的特征和结构,发现数据中的模式和趋势。
5.假设检验:在数据分析中,我们常常会提出一些假设,然后通过统计方法进行假设检验。
假设检验的目的是判断从样本中得到的统计结果是否支持我们所提出的假设。
在EDA中,可以使用T检验、卡方检验、方差分析等常见的假设检验方法来对数据进行验证。
6.结论总结:完成以上步骤后,我们可以对数据进行总结和结论。
探索性数据分析

易于普及 。
第一章 导 言
四、四个主题 1、耐抗性(Resistnace) 即对数据的不良表现(如极端值或称 奇异点)不敏感,也就是说对于数据的任 意一个小部分的很大的改变,或者对于 数据的大部分的很小改变,(统计)分析或 概括仅产生很小的变化。
2、残差(Residuals)
第一章 导 言
一、问题的提出 1962年发表《The Future of Data
Analysis》,做了奠基性的工作 。 《 Exploratory Data Analysis》成为探索性
数据分析((EDA)的第一个正式出版物。 1983年出版的《Understanding Robust
and Exploratory Data Anolysis》,本书是它的 翻译与发展。
第一章 导 言
五、用数据分析技术的整个操作步骤大体可划分 成两大阶段:
探索阶段 证实阶段
探索性数据分析强调灵活探求线索和证据; 而证实性数据分析则着重评估现有证据。无论 是对一大组数据,还是对相继的几小组数据作 分析,一般都要经过这两个阶段;通常还要交 替的使用探索性技术和证实性技术,循环 反复多次,才能得到满意的结果。
第二章 茎叶图
二、基本茎叶图的构造 把一批数据从小到大排序并且显示这
个批。 现在用一个例子说明茎叶图的构造过
程。表2一1给出21个妇女的平均月经周 期。
二、基本茎叶图的构造
表2一1 21名妇女的平均月经周期
以下我们构造最简单形式的茎叶图。
7
6Hale Waihona Puke 5432
1
0
22
26
27
28
29
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分布的概念
一个变量的分布是该变量的取值的具体表现形式,它不仅描述了该变量的不同取值,同时也描述了其每个值的可能性。
一、变量类型及其分布
1、首先我们打开life expectancy这个数据表。
本例中的每个国家都有13年的年度观察
数据,并且每个国家的13年数据都是以年份为序依次排序。
JMP将这种编排方式称为堆叠数据。
区分四类变量:定类变量(定名型、定序型),定量变量(定距型、定比型)
二、定类变量的分布
2、选择菜单---分析。
将region作为Y,列变量。
点击确定,得到如下结果。
JMP构造出了一个简单的矩形条形图,列出了六个大陆地区,并用直方条显示出相应区域在数据中出现的次数。
虽然不能在图表中准确的获悉每个区域中国家的数目,却能清晰的得知south Asia国家数目最少,Europe&Central Asia国家数目最多。
图形下方的频数分布表提供了一个更加详细的变量概要。
3、菜单选择图形---图表。
图表对话框如下图,可生成很多其他格式的图表。
默认设置是
竖直方向的条形图。
4、选择列框中点击Region,并点击按钮统计量,选择数量。
结果得到一张可以显示每个区域观察对象数量的条形图。
可以通过点击图表右侧的红色三角形按钮进行更改和自定义图形。
5.JMP自动按照字母顺序对定类数据进行结果输出。
我们也可以修改输出结果。
6.在数据表格中或者在列框中右击Region,选择列信息。
7.点击列属性,选择值排序。
8.选择一个变量值名,使用按钮上移和下移,最后确定。
9.需要点击图表标题右侧的红色三角形按钮,选择脚本——重新运行分析。
最后才得到我们需要的顺序的图形。
三、定量变量的分布
1、选择数据表的一部分
某些时候我们需要从数据表中选择某一些特定的行进行分析。
JMP为我们提供了在分析包含和剔除行的多种方法。
菜单选择行—行选择—选择符合条件的行。
如下图所示,选择那些year等于2010的行,点击添加条件,最后点击确定。
菜单选择表---子集。
在子集对话框中要确保做出的选择是选定行选项,并点击确定。
窗口中会显示出第二张打开的数据表。
该表中有与第一张表相同的四个变量,但仅有195行。
在每个案例中,观察年份都是2010年,并且每个国家只有一行数据。
2、连续型数据直方图的构建
●菜单选择分析——分布。
将LifeExp选入Y,列框中。
●当分布窗口打开时,点击LifeExp左侧的红色三角形按钮,选择直方图选项——
垂直。
该操作会清空垂直选项前的复选框,将直方图变成更加符合传统的水平方
向。
、
上面的直方图是世界各国预期寿命分布的一种表示方法,它给我们提供了关于寿命预期是如何变动的视图,直方图上方是一个箱线图。
寿命预期在40~45岁的国家很少,相对的,许多国家预期寿命在70~75岁之间。
形状:涉及以下两个方面:直方图的对称性和图形中峰值的数目。
显然图中可以看出,是一个非对称图形,图形左侧尾部的观察值很少,而右侧聚集了大量的观察值。
我们称具有该形状的图形是左偏分布。
峰值在70~75岁。
中心:分布的中心有多种定义,包括统计意义上的均值、中位数、众数。
从视觉上看,我们可以将直方图的中心定义为横轴的中心值(中位数该例接近60~65岁),或有最大频数的区间(众数,该例为70~75岁),或视觉上的均衡点(均值,该例中接近65~70岁)或其他方式的定义。
离散程度:中心的概念注重于变量取值的代表性,离散程度的概念则注重于对代表性取值的偏离程度。
1、返回至原始的Life Expectancy数据表。
2、菜单选择行—数据过滤器。
添加Year作为过滤器列。
3、数据过滤器能帮助我们确定所需行。
4、同时选择如上所示复选框中的包括;默认设置是选择。
5、从主菜单栏中,选择分析—分布。
6、如下图所示,选择LifeExp作为Y,列。
7、由于我们想要对各个年份分别进行分析,因此选择Year作为依据,并点击确
定。
上述操作将会产生两个垂直方向的直方图。
观察可知,第一个分布的数轴
变化在25岁~75岁,而第二个则是从40岁~85岁。
8、在分布的输出中,按住Ctrl键的同时点击分布左侧的红色三角形标志便选择
统一尺度。
9、再次点击红色三角形,选择堆叠。
此时显示的图形如上图所示。
与2010年的分布相比,1950年的分布的形状有哪些不同?造成这两个分布形状上的差异是什么?
从两个直方图可以看出,人们现在比1950年时生存时间更长。
2010年寿命的预期分布的位置远比1950年的偏右。
我们可以得知1950年的预期分布比2010年更加分散。
以上分析可以揭示过去60年间寿命预期发生了什么变化。
Welcome !!! 欢迎您的下载,资料仅供参考!。