空间统计分析方法
地理信息系统下的空间分析——第六章_空间数据的量算及统计分析方法0

地理信息系统下的空间分析——第六章_空间数据的量算及统计分析方法0地理信息系统 (Geographic Information System, 简称GIS) 是一种用于捕捉、存储、管理、分析和展示地理数据的技术。
GIS的空间分析是指对地理数据进行计量和统计分析的过程。
本文将介绍GIS中空间数据的量算及统计分析方法。
一、空间数据的量算方法1.面积量算:面积量算是对地理空间对象的面积进行计算的方法。
常见的面积量算方法有几何方法、计算公式等。
在GIS中,可以通过点、线、面等要素的矢量数据来计算其面积。
2.距离量算:距离量算是对地理空间对象之间的距离进行计算的方法。
常见的距离量算方法包括欧氏距离、曼哈顿距离、最短路径距离等。
在GIS中,可以通过点、线、面等要素的矢量数据来计算其之间的距离。
3.方位角量算:方位角量算是对地理空间对象之间的方向角进行计算的方法。
常见的方位角量算方法有方位角计算公式等。
在GIS中,可以通过点、线要素的矢量数据来计算其之间的方位角。
二、空间数据的统计分析方法1.面状数据的统计分析:对面状数据进行统计分析是研究地理空间对象在空间范围内的分布情况和特征的方法。
常见的面状数据的统计分析方法有面积统计分析、面积比例统计分析、分区统计分析等。
2.点状数据的统计分析:对点状数据进行统计分析是研究地理空间对象在空间位置上的分布情况和特征的方法。
常见的点状数据的统计分析方法有点密度统计分析、距离统计分析、聚类统计分析等。
3.线状数据的统计分析:对线状数据进行统计分析是研究地理空间对象在空间路径上的分布情况和特征的方法。
常见的线状数据的统计分析方法有长度统计分析、方向统计分析、曲率统计分析等。
三、GIS空间分析的应用场景1.环境保护:通过对空间数据的量算和统计分析,可以评估环境状况和监测环境污染等问题。
2.城市规划:通过对地理空间对象的量算和统计分析,可以评估城市土地利用情况、交通网络等,为城市规划提供科学依据。
空间统计方法概述

空间统计方法概述空间计量探索性空间分析截面数据空间计量模型地理加权回归模型空间面板计量模型一、探索性空间分析:1.探索性空间分析步骤1)对空间单元进行配对和采样,建立起空间权重矩阵。
2)计算空间自相关系数,包括全域空间自相关系数、局域空间自相关系数。
3)空间自相关系数的显著性检验。
2.空间权重矩阵1)空间权重矩阵是一种与被解释变量及被解释变量的空间自回归过程相联系的矩阵,用符号W表示。
2)空间权重矩阵的设定可依据观测对象的地理空间关联或者经济联系来设定权值,W ij衡量地理联系的方法通常有邻近标准和距离标准,按照此种方法确定的W ij为二进制的邻近空间权值矩阵,表示其中的任一元素,采用邻近标准或距离标准。
3)邻近空间矩阵相关概念分为一阶邻近和高阶邻近,在一阶邻近中,当两个地区有共同边界时才会发生空间关联,用1表示,否则用0表示。
邻近规则有线性相邻、车相邻、象相邻、和王后相邻。
邻近空间矩阵对称且计算简单,适用于测算地理空间效应的影响。
4)距离空间矩阵相关概念此方法是假定空间相互作用的强度是决定于地区间的质心距离或者区域行政中心所在地之间的距离。
不同的权值指标随着距离d ij的定义而变化,其取值取决于选定的函数形式,有距离的倒数或倒数的平方、欧式距离等。
空间自相关测度点数据基于密度的方法样方计数法核密度估计基于距离的方法最近邻指数、G-函数、F-函数K-函数、M-函数面数据全局H指数、Moran’s IGeary C、广义G统计量局域局部Moran’s I、局部Geary C局部G统计量、Moran散点图3.空间数据1)空间数据的特征A.观测对象并不独立,所以具有空间依赖性。
B.空间异质性,表示数据的不平稳性。
C.可塑面积单元问题,表示因面积单元的定义不同而导致数据分析结果的不同。
D.空间数据的不确定性,来源于测量上、数据表示方法上、数据分析方法上的不确定性。
2)点数据点数据是零维的,可以是单独对象目标的抽象表达,也可以是地理单元的抽象表达。
第七章空间数据的统计分析方法

第七章空间数据的统计分析方法空间数据的统计分析方法是指利用统计学的方法对空间数据进行分析和解释的技术和方法。
在空间数据分析中,空间自相关性分析、空间插值、空间聚类以及地图分析等都是常见的统计分析方法。
本章将介绍空间数据的统计分析方法。
1. 空间自相关性分析:空间自相关性是指空间上相邻区域之间的相似程度。
空间自相关性分析可以通过计算空间数据的空间自相关指标来评估空间数据的空间分布特征。
常用的空间自相关指标包括Moran's I指数和Geary's C指数等。
Moran's I指数可以衡量空间数据的聚集程度和离散程度,范围为-1到1,正值表示正相关,负值表示负相关,0表示无相关。
Geary's C指数则可以衡量空间数据的相似度,范围也为0到1,值越接近1表示越相似。
2.空间插值:空间插值是指根据已知的地点数据推断未知地点数据的值。
在地理信息系统中,常见的空间插值方法有逆距离加权插值、克里金插值和样条插值等。
逆距离加权插值是一种简单的插值方法,它假设周围数据点对未知点的影响程度与距离的倒数成正比。
克里金插值则更加复杂,它通过拟合半变异函数来估计未知点的值。
样条插值是一种基于局部多项式拟合的插值方法,它可以生成平滑的曲面。
3.空间聚类:空间聚类是指根据空间数据的相似性将地理区域分组的过程。
常见的空间聚类方法有基于网格的聚类、基于密度的聚类和基于层次的聚类等。
基于网格的聚类将地理空间划分为网格单元,然后根据网格单元内部的数据特征进行聚类。
基于密度的聚类则将地理空间划分为高密度区域和低密度区域,根据区域内部的数据分布进行聚类。
基于层次的聚类则是根据距离或相似度对地理区域进行分层聚类。
4.地图分析:地图分析是指利用地图和空间数据进行分析的方法。
在地图分析中,常见的方法包括热点分析、缓冲区分析和网络分析等。
热点分析可以用来识别具有显著高于或低于平均值的区域,帮助分析空间数据的高度聚集性。
空间统计分析在应用统计学中的方法与应用案例

空间统计分析在应用统计学中的方法与应用案例统计学是一门研究如何从数据中提取信息和做出决策的学科。
它以数理统计学为基础,通过概率论、数理逻辑和计算机科学等方法,对数据进行收集、整理、分析和解释。
然而,在应用统计学中,空间统计分析作为一种重要的分析方法,为我们提供了更深入的理解和细致的分析空间数据的能力。
在本文中,我们将介绍空间统计分析的方法和应用案例。
一、空间统计分析的方法1.地理加权回归(Geographically Weighted Regression,GWR)地理加权回归是一种利用空间自相关性来调整回归模型的方法。
传统的回归分析假设所有样本点之间是相互独立的,而地理加权回归则利用样本点之间的空间关系进行模型拟合。
它可以用于解释城市规划、环境分析等领域中的空间数据。
例如,在研究城市犯罪率时,我们可以使用地理加权回归来考虑不同地区之间的犯罪率差异,从而更准确地预测犯罪发生的可能性。
2.空间插值(Spatial Interpolation)空间插值是一种通过已知的离散点数据,推断未知位置上的值的方法。
它可以用于填充缺失的数据、生成等高线图等空间分布信息。
最常见的空间插值方法包括反距离加权插值(Inverse Distance Weighting,IDW)、克里金插值(Kriging)等。
例如,在农业领域,我们可以利用空间插值方法来预测农田各点的产量,为农民提供种植方案和管理建议。
3.空间聚类分析(Spatial Clustering Analysis)空间聚类分析是一种识别数据中聚集模式的方法。
它通过将数据点分组为空间上相邻或相似的簇,以揭示空间分布的规律。
常用的空间聚类算法包括DBSCAN(Density-Based Spatial Clustering of Applications with Noise)、K-means等。
例如,在流行病学研究中,我们可以利用空间聚类分析来识别疾病高发区域,从而更好地采取防控措施。
空间数据分析方法有哪些(两篇)2024

空间数据分析方法有哪些(二)引言概述空间数据分析是一种重要的数据分析方法,在众多领域包括城市规划、地理信息系统、环境管理和农业等方面具有广泛应用。
本文将就空间数据分析方法进行详细的介绍和阐述,希望能够帮助读者更好地了解和运用这些方法。
正文内容一、地理分析工具1. 空间插值方法- 空间插值方法是一种将已知数据点的值推断到未知区域的方法。
常用的空间插值方法有反距离权重法、克里金法和径向基函数插值法。
这些方法可以通过数学模型推断出未知区域的值,从而帮助分析人员进行更加准确的决策。
- 反距离权重法假设周围已知点的权重与距离的倒数成正比,通过加权平均的方式来估计未知点的值。
克里金法则基于空间半变异函数对已知点进行插值,可以得到更加平滑的结果。
径向基函数插值法则使用基函数对已知点进行插值,可以灵活地应用于不同类型的数据。
2. 空间聚类方法- 空间聚类方法是对空间数据进行聚类分析的方法。
常用的空间聚类方法有基于密度的聚类和基于网格的聚类。
基于密度的聚类方法将空间数据划分为高密度和低密度区域,从而得到聚类结果。
基于网格的聚类方法则将空间数据划分为网格,并且根据网格内数据的特征进行聚类分析。
- 空间聚类方法在城市规划和地理信息系统等领域具有重要的应用。
通过空间聚类,可以发现具有相似特征的空间对象,从而更好地理解和分析空间数据。
3. 空间相关性分析- 空间相关性分析是研究空间数据之间关系的分析方法。
常用的空间相关性分析方法有空间自相关分析和空间回归分析。
空间自相关分析可以帮助分析人员理解空间数据的空间分布模式,了解空间数据之间的依赖关系。
空间回归分析则是研究空间数据之间的线性关系,并进行回归分析。
- 空间数据的相关性分析可以帮助分析人员发现隐藏在数据背后的规律和关系,从而做出更加准确的决策。
4. 空间网络分析- 空间网络分析是研究网络结构和空间数据之间关系的分析方法。
常用的空间网络分析方法有路径分析、中心性分析和聚类分析。
空间统计分析方法

空间统计分析方法空间统计分析是一种统计学方法,旨在研究和分析地理空间上的模式和变化。
它结合了地理信息系统(GIS)和统计学的原理和技术,通过空间数据的收集、整理、分析和解释,揭示地理现象背后的模式和规律。
空间统计分析可以应用于环境科学、城市规划、农业、地质学等领域,帮助研究人员更好地理解和解决空间问题。
在空间统计分析中,主要涉及的方法包括空间自相关分析、空间插值、地理加权回归、空间点模式分析、空间聚类分析等。
首先,空间自相关分析用于研究地理空间数据中的相关性。
它主要包括全局自相关和局部自相关两种方法。
全局自相关分析通过计算全局指标,如Moran's I指数,来衡量地理空间的整体相关性。
局部自相关分析则用于检测地理空间中的局部聚集现象,如LISA (Local Indicators of Spatial Association)等方法可以识别出热点区域和冷点区域。
其次,空间插值是一种通过已知空间点数据来估计未知区域值的方法。
最常用的插值方法包括反距离权重法 (Inverse Distance Weighting)、克里金插值 (Kriging)、三角网插值法 (TIN interpolation)等。
空间插值在环境监测和资源管理中具有重要作用,可以有效地填补空间数据的空白。
地理加权回归 (Geographically Weighted Regression, GWR) 是一种用于空间数据建模的统计方法。
它考虑了空间数据的异质性和空间自相关性,通过在回归模型中引入空间权重矩阵,可以在不同地理位置上建立不同的回归关系。
GWR方法在城市研究和社会经济学中应用广泛,可以更精确地分析空间数据的影响因素。
空间点模式分析是一种用于研究点状空间数据分布的方法,旨在揭示点状数据背后的空间模式和聚集程度。
常用的点模式分析方法包括Ripley's K函数、Moran's I函数、Clark-Evans聚集指数等。
统计学中的空间统计方法

统计学中的空间统计方法统计学是一门研究收集、整理、分析和解释数据的学科。
空间统计方法是统计学中的一个重要分支,它研究的是以地理区域为基础的数据模式和变异性。
本文将介绍几种常用的空间统计方法,并探讨它们在实际应用中的价值和局限性。
一、克里金插值法克里金插值法是一种用于空间数据插值和预测的统计方法。
它基于克里金理论,通过建立空间半变函数模型,将已知的观测点上的值插值到未知点上,从而推断未知地点的属性值。
克里金插值法在地质勘探、环境监测等领域得到广泛应用。
克里金插值法的优点是能够根据空间位置的接近程度进行权重分配,更加准确地估计未知点的属性值。
然而,克里金插值法也存在着一些局限性,如对数据的空间平稳性要求较高,对异常值敏感等。
二、空间自相关分析空间自相关分析是用于研究空间数据的相关性和空间依赖性的统计方法。
它通过计算空间邻近点之间的相关系数,来评估数据的空间分布模式。
常用的空间自相关指标包括莫兰指数和地理加权回归。
空间自相关分析可以帮助我们了解数据的空间趋势和空间集聚情况。
例如,在城市规划中,通过空间自相关分析可以确定某个特定区域的人口密度是否呈现出明显的空间集聚效应。
然而,空间自相关分析也需要注意空间尺度的选择和数据的平稳性等问题。
三、地形指数分析地形指数分析是一种基于地形数据的统计方法,用于表征地表形态特征和地理过程。
常用的地形指数包括高程指数、坡度指数和流量指数等。
地形指数分析能够提供关于地貌特征和水文过程的定量信息。
例如,通过高程指数可以判断区域的地势起伏程度,有助于土地利用规划和资源管理。
然而,地形指数分析也存在着对数据分辨率和精度要求较高的限制。
四、空间回归分析空间回归分析是一种用于建立空间数据之间关系的统计方法。
它将经典的回归模型拓展到空间领域,考虑了空间位置之间的相互影响。
常用的空间回归模型包括空间滞后模型和空间误差模型。
空间回归分析可以帮助我们理解空间数据之间的因果关系和空间影响。
例如,在经济学中,通过空间回归分析可以评估不同地区经济发展与邻近地区的相关性,为区域发展制定相关政策提供参考。
第10章空间统计分析

第10章空间统计分析空间统计分析是一种地理信息系统(GIS)中的工具和方法,用于研究和分析地理现象的空间分布模式。
它结合了统计学和地理学的原理,能够帮助我们理解和解释地理现象之间的关系,并为决策制定者提供有关地理现象的更全面和准确的信息。
本章将介绍空间统计分析的基本概念、常用方法和应用案例。
空间统计分析的基本概念包括空间自相关、空间聚集和空间差异。
空间自相关指的是地理现象在空间上的相似性和相关性,例如城市人口分布的集中性和扩散性。
空间聚集是指地理现象在空间上的聚集和集群现象,例如城市的主要商业区域和住宅区域。
空间差异是指地理现象在空间上的差异和变化,例如不同地区的气候和生态环境的差异。
常用的空间统计分析方法包括空间自相关分析、空间插值分析和空间聚类分析。
空间自相关分析通过计算地理现象之间的相似性和相关性来研究其空间分布模式,例如计算城市之间的距离和相关性。
空间插值分析通过将已知的地理现象数据点推算到未知的区域,来估计未知区域的数值,例如将气温观测点的数据插值到整个地区。
空间聚类分析通过计算地理现象之间的距离和相似性来研究其聚集和集群现象,例如将商业建筑和住宅区域进行聚类分析。
空间统计分析在很多领域有广泛的应用。
在城市规划和土地利用方面,空间统计分析可以帮助我们了解不同地区的人口分布、经济活动和交通状况,从而指导城市规划和土地开发。
在环境保护和资源管理方面,空间统计分析可以帮助我们了解不同地区的生态环境和自然资源的分布,从而制定有效的环保和资源管理策略。
在流行病学和卫生地理学方面,空间统计分析可以帮助我们了解不同地区的疾病传播和健康状况,从而指导公共卫生政策和疾病预防控制。
总之,空间统计分析是一种有助于我们理解和解释地理现象的工具和方法。
它能够帮助我们揭示地理现象之间的关系和模式,为决策制定者提供有关地理现象的更全面和准确的信息。
通过空间统计分析,我们能够更好地理解和管理我们的地球。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Moran散点图
以(Wz,z)为坐标点的Moran散点图,常来研究局部的 空间不稳定性,它对空间滞后因子Wz和z数据对进行了可视 化的二维图示。
全局Moran指数,可以看作是Wz对于z的线性回归系数, 对界外值以及对Moran指数具有强烈影响的区域单元,可通 过标准回归来诊断出。
由于数据对(Wz,z)经过了标准化,因此界外值可易由 2-sigma规则可视化地识别出来。
空 间 联 系 的 局 部 指 标 ( local indicators of spatial association ,缩写为LISA)满足下列两个条件:
(1)每个区域单元的LISA,是描述该区域单元周围 显著的相似值区域单元之间空间集聚程度的指标;
(2)所有区域单元LISA的总和与全局的空间联系指 标成比例。
《地理信息系统科研方法》课程
第5讲 空间统计分析
授课人:王 杰 Email: wangjie09@
安徽大学 资源与环境工程学院
本讲内容
➢探索性空间统计分析 ➢地统计分析方法
空间统计分析
✓ 空间统计分析,即空间数据(spatial data)的统 计分析,是现代计量地理学中一个快速发展的方向 和领域。
一. 探索性空间统计分析
➢基本原理与方法 ➢应用实例
探索性空间数据分析(ESDA)
ESDA是指利用统计学原理和图形图表相结合对空 间信息的性质进行分析、鉴别,用以引导确定性模 型的结构和解法。
ESDA与EDA区别在于它考虑了数据的空间特性, 在方法上它将数据分解为一般趋势和叠加于其上的 局部变化两部分。然后用一定的数学函数去拟合由 样本点产生的经验变率函数,进行诸如克立格内插 等空间操作。
FLG的一般性: 自然地理、人文地理、社会经济
空间自相关是普遍存在的,否则地理分 析便没有多大意义。 经典统计:独立
空间自相关的存在,使得经典统计学所要求的样 本独立性假设不满足。
如果地理学从根本上值得研究,必然是 因为地理现象在空间上的变化不是随机 的。 经典统计:随机
为什么要用空间统计
nn
wij (xi x)(x j x)
i1 ji
nn
S 2
wij
i1 ji
式中: I 为Moran指数;
S 2 1
n
i
(xi x)2 ;
x
1 n
n i 1
xi
。
✓
Geary 系数C计算公式如下
n n
n 1
wij xi x j 2
C
i1 j1
nn
n
2 wij xi x2
上图进一步显示了30个省级行政区人均GDP局部集聚的空间结构。 可以看出,从人均GDP水平相对地来看:
高值被高值包围的高高集聚省(直辖市)有:北京、天津、河 南、安徽、湖北、江西、海南、广东、福建、浙江、山东、上海、 江苏;
低值被低值包围的低低集聚省(自治区)有:黑龙江、内蒙古、 新疆、吉林、甘肃、山西、陕西、青海、西藏、四川、云南、辽宁、 贵州;
东部的江苏、上海、浙江三省市的Z值在0.05的显著性水 平下显著,天津的Z值在0.1的显著性水平下显著。而东部 上海、江浙等发达省市趋于为一些相邻经济发展水平相对 较高的省份所包围,东部发达地区的空间集聚分布特征也 显现出来。
以(Wz,z)为坐标,进一步绘制Moran散点图
可以发现,多数省(直辖市、自治区)位于第1和第3象限内, 为正的空间联系,属于低低集聚和高高集聚类型,而且位于第3象 限内的低低集聚类型的省(直辖市、自治区)比位于第1象限内的 高高集聚类型的省(直辖市、自治区)更多一些。
1. 基本原理与方法
(一)空间权重矩阵
✓ 通常定义一个二元对称空间权重矩阵W,来表达n个 位置的空间区域的邻近关系,其形式如下
w11 w12 W w21 w22
wn1 wn2
w1n
w2
n
wnn
式中:Wij表示区域i与j的临近关系,它可以根据邻接标准 或距离标准来度量。
两种最常用的确定空间权重矩阵的规则
(三)局部空间自相关
描述一个空间单元与其领域的相似程度,能够 表示每个局部单元服从全局总趋势的程度(包括 方向和量级),反映了空间异质性,说明空间依 赖是如何随位置变化的。
局部空间自相关分析方法包括3种: 空间联系的局部指标(LISA); G统计量; Moran散点图
空间联系的局部指标(LISA)
I i
j
(xi x)2
j
zT z
zi wij zj
j
i
式中:zi 和 z j是经过标准差标准化的观测值。
✓ 局部Moran指数检验的标准化统计量为
Z(Ii )
Ii E(Ii ) VAR(Ii )
G统计量
探测区域单元是属于高值集聚还是低值集聚的空 间分布模式.
❖ 全局G统计量的计算公式为
i1 j1
i 1
式中:C为Geary系数;其他变量同上式。
✓
如果引入记号
nn
S0
wij
i1 j 1
z j (xj x)
zi (xi x)
zT [z1, z2 , , zn ]
则全局Moran指数I的计算公式也可以进一步写成
nn
nn
I n
wij (xi x)(x j x)
i1 j1
✓ 空间统计分析,其核心就是认识与地理位置相关的 数据间的空间依赖、空间关联或空间自相关,通过 空间位置建立数据间的统计关系。
✓ 空间统计分析的任务,就是运用有关统计方法,建 立空间统计模型,从凌乱的数据中挖掘空间自相关 与空间变异规律。
空间统计 VS. 经典统计
空间数据分析与传统统计分析主要有两大差异: (1)空间数据间并非独立,而是在维空间中具有某种空间相关
①简单的二进制邻接矩阵
1 当区域i和j相邻接
wij 0
其他
②基于距离的二进制空间权重矩阵
1 当区域i和j的距离小于d时
wij 0
其他
(二)全局空间自相关
全局空间自相关概括了在一个总的空间范围内空间 依赖的程度。
✓ Moran指数和Geary系数是两个用来度量空间自相
关的全局指标。
✓ Moran指数反映的是空间邻接或 空间邻近的区域单元属性值的相 似程度。
Moran散点图的4个象限, 分别对应于区域单元与其邻居 之间4种类型的局部空间联系 形式:
第1象限代表了高观测值的 区域单元被高值的区域所包围 的空间联系形式;
第2象限代表了低观测值的 区域单元被高值的区域所包围 的空间联系形式;
第3象限代表了低观测值 的区域单元被低值的区域所 包围的空间联系形式;
年份 1998 1999 2000 2001 2002
I 0.5001 0.506 9 0.511 2 0.505 9 0.501 3
Z 4.503 5 4.555 1 4.597 8 4.553 2 4.532 6
P 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0
从表中可以看出,在1998—2002年期间,中国大陆30 个省级行政区人均GDP的全局Moran指数均为正值;在正 态分布假设之上,对Moran指数检验的结果也高度显著。这 就是说,在1998—2002年期间,中国大陆30个省级行政区 人均GDP存在着显著的、正的空间自相关,也就是说各省 级行政区人均GDP水平的空间分布表现出相似值之间的空 间集聚,其空间联系的特征是:较高人均GDP水平的省级 行政区相对地趋于和较高人均GDP水平的省级行政区相邻, 或者较低人均GDP水平的省级行政区相对地趋于和较低人 均GDP水平的省级行政区相邻。
➢ 可以借助空间统计更好地理解地理现象。
或许学习空间统计最重要的原因是我们不仅仅想知道问题“怎么
样”,更想知道“哪里怎么样”
➢ 空间统计学可以帮助我们准确地判断具体地理模 式的原因。
John Snow的霍乱地图 当发现某种病仅仅发生在靠近河流的村庄时,河流中的寄生物可
能是病源。
➢ 空间统计学可以帮助我们处理大的复杂数据集, 这是GIS经常面对的事情。
选取2001年我国30个省级行政区人均GDP数据,计算 局部Gi统计量和局部Gi统计量的检验值Z(Gi),并绘制统计 地图如下。
检验结果表明,贵州、四川、云南西部3省的Z值在0.05的显著 性水平下显著,重庆的Z值在0.1的显著性水平下显著,该4省市在 空间上相连成片分布,而且从统计学意义上来说,与该区域相邻的 省区,其人均GDP趋于为同样是人均GDP低值的省区所包围。由此 形成人均GDP低值与低值的空间集聚,据此可认识到西部落后省区 趋于空间集聚的分布特征。
性,且在不同的空间分辨率下呈现不同之相关程度; (2)地球只有一个,大多数空间问题仅有一组(空间分布不规
则的)观测值,而无重复观测数据。因此,空间现象的了 解与描述是极为复杂的,而传统方法,尤其是建立在独立 样本上的统计方法,不适合分析空间数据。
经典统计:独立性、随机性假设 空间统计:自相关、依赖性、异质性
G
wij xi x j /
xi x j
ijBiblioteka ij❖ 对每一个区域单元的统计量为
Gi wij x j / x j
i
j
✓ 对统计量的检验与局部Moran指数相似,其检验值为
Z
(Gi
)
Gi E(Gi ) VAR(Gi )
✓ 显著的正值表示在该区域单元周围,高观测值的区域单 元趋于空间集聚,而显著的负值表示低观测值的区域单元趋 于空间集聚,与Moran指数只能发现相似值(正关联)或非相似 性观测值(负关联)的空间集聚模式相比,具有能够探测出区 域单元属于高值集聚还是低值集聚的空间分布模式。
空间统计的基本思想:
地理学第一定律(FLG): everything is related to everything else, but near things are more related than distant things (Tobler,1970).