安徽省池州市东至县2018-2019学年七年级下学期数学期末考试试卷及参考答案
2018—2019学年度第二学期期末考试七年级数学试卷

2018—2019学年度第二学期期末考试七年级数学试题(90分钟完成,满分100分)题号 一 二 19 20 21 22 23 24 25 26 总分 等级 分数一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入下表中.每选对一个得3分,选错、不选或选出的答案多于一个均得0分.本大题共30分)题号12345678 9 10 答案一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,△ABC=500,△ACB=800,BP 平分△ABC ,CP 平分△ACB ,则△BPC的大小是( )A .1000B .1100C .1150D .1200(1) (2) (3)PCBA 小刚小军小华得分 评卷人C 1A 1ABB 1CD7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(△0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x -9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,△为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,△则△ABC=_______度.16.如图,AD△BC,△D=100°,CA 平分△BCD,则△DAC=_______.17.给出下列正多边形:△ 正三角形;△ 正方形;△ 正六边形;△ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.C B A D20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD△BC , AD 平分△EAC,你能确定△B 与△C 的数量关系吗?请说明理由。
2018-2019年安徽省七年级(下)期末数学试卷(含答案解析)

2018-2019学年安徽省七年级(下)期末数学试卷姓名:得分:日期:一、选择题(本大题共 10 小题,共 40 分)1、(4分) 25的算术平方根是()A.5B.√5C.-5D.±52、(4分) 如图,同位角是()A.∠1和∠2B.∠3和∠4C.∠2和∠4D.∠1和∠43、(4分) 如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A. B. C. D.4、(4分) 如图,若AB∥CD,CD∥EF,那么AB和EF的位置关系是()A.平行B.相交C.垂直D.不能确定5、(4分) 由x<y得到ax>ay的条件是()A.a≥0B.a≤0C.a>0D.a<0A.m=-7,n=3B.m=7,n=-3C.m=-7,n=-3D.m=7,n=37、(4分) 计算-a2÷(a2b )•(b2a)的结果是()A.1B.−b3a C.-abD.-148、(4分) 设a=999999,b=119990,则a、b的大小关系是()A.a=bB.a>bC.a<bD.以上三种都不对9、(4分) 一个长方形的长增加50%,宽减少50%,那么长方形的面积()A.不变B.增加50%C.减少25%D.不能确定10、(4分) 有游客m人,如果每n个人住一个房间,结果还有一个人无房住,则客房的间数为()A.m−1n B.mn−1 C.m+1nD.mn+1二、填空题(本大题共 4 小题,共 20 分)11、(5分) √64的立方根是______.12、(5分) 如图所示,直线AB,CD相交于点O,已知∠AOC=70°,OE平分∠BOD,则∠EOD=______.13、(5分) 观察下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,9×4+5=41,…猜想第n个等式(n为正整数)应为9(n-1)+n=______.14、(5分) 若关于x的不等式2x-a≤0只有六个正整数解,则a应满足______.三、计算题(本大题共 3 小题,共 28 分)15、(8分) 解不等式组{x−32+3≥x+11−3(x−1)<8−x.16、(8分) 先化简,再求值:x 2−4x 2+4x+4÷(x-2-2x−4x+2),其中x=3.17、(12分) 北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68 000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率=利润成本×100%)四、解答题(本大题共 6 小题,共 62 分)18、(8分) 解方程:x−3x−2+1=32−x .19、(8分) 根据提示,完成推理:已知,AC⊥AB ,EF⊥BC ,AD⊥BC ,∠1=∠2,请问AC⊥DG 吗?请写出推理过程解:AC⊥DG ,理由如下:∵EF⊥BC ,AD⊥BC ,∴AD∥EF .∴∠2=∠3.……请完成以上推理过程.20、(10分) (1)请把下面的小船图案先向上平移3格,再向右平移4格,画出平移后的小船的图形;(2)若方格是由边长为1的小正方形构成的,试求小船所占的面积.21、(10分) 完成下面的证明:已知,如图,AB∥CD∥GH ,EG 平分∠BEF ,FG 平分∠EFD 求证:∠EGF=90°证明:∵HG∥AB (已知)∴∠1=∠3______又∵HG∥CD (已知)∴∠2=∠4∵AB∥CD (已知)∴∠BEF+______=180°______又∵EG 平分∠BEF (已知)∴∠1=12∠______又∵FG 平分∠EFD (已知)∴∠2=12∠______∴∠1+∠2=12(______)∴∠3+∠4=90°______即∠EGF=90°.22、(12分) 雅美服装厂有A种布料70m,B种布料52米.现计划用这两种布料生产M、N两种型号的时装共80套,已知做一套M型号的时装共需A种布料0.6m,B种布料0.9m;做一套N型号的时装需要A种布料1.1m,B种布料0.4m.(1)设生产x套M型号的时装,写出x应满足的不等式组;(2)有哪几种符合题意的生产方案?请你帮助设计出来.23、(14分) 直线AB∥CD,点P在其所在平面上,且不在直线AB,CD,AC上,设∠PAB=α,∠PCD=β,∠APC=γ(α,β,γ,均不大于180°,且不小于0°)(1)如图1,当点P在两条平行直线AB,CD之间、直线AC的右边时试确定α,β,γ的数量关系;(2)如图2,当点P在直线AB的上面、直线AC的右边时试确定α,β,γ的数量关系;(3)α,β,γ的数量关系除了上面的两种关系之外,还有其他的数量关系,请直接写出这些.2018-2019学年安徽省七年级(下)期末数学试卷【第 1 题】A【解析】解:∵5的平方是25,∴25的算术平方根是5.故选:A.如果一个非负数x的平方等于a,那么x是a的算术平方根,根据此定义即可求出结果.本题主要考查的是算术平方根的定义,难度不大,比较简单.【第 2 题】【答案】D【解析】解:图中∠1和∠4是同位角,故选:D.根据同位角定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.此题主要考查了同位角,关键是掌握同位角的边构成“F“形.【第 3 题】【答案】A【解析】解:由图示得A>1,A<2,故选:A.根据图示,可得不等式组的解集,可得答案.本题考查了在数轴上表示不等式的解集,先求出不等式的解集,再在数轴上表示出来,注意,不包括点1、2,用空心点表示.【第 4 题】【答案】A【解析】解:∵AB∥CD,CD∥EF,∴AB∥EF.故选:A.根据平行于同一条直线的两直线平行作答.解决本题的关键是灵活运用“平行于同一条直线的两直线平行”.【第 5 题】【答案】D【解析】解:∵由x<y得到ax>ay,不等号的方向发生了可改变,∴a<0.故选:D.根据不等式的基本性质进行解答即可.本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.【第 6 题】【答案】D【解析】解:∵(x+5)(2x-n)=2x2+(10-n)x-5n,而(x+5)(2x-n)=2x2+mx-15,∴2x2+(10-n)x-5n=2x2+mx-15,∴10-n=m,-5n=-15,∴m=7,n=3.故选:D.首先根据多项式的乘法法则展开(x+5)(2x-n),然后利用根据对应项的系数相等列式求解即可.此题主要考查了多项式的乘法法则,利用多项式的乘法法则展开多项式,再利用对应项的系数相等就可以解决问题.【第 7 题】【答案】B【解析】解:原式=-a 2•b a 2•b 2a=-b 3a , 故选:B .根据分式的运算法则即可求出答案.本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.【 第 8 题 】【 答 案 】A【 解析 】解:a÷b=999999÷119990=999999×990119=99999×119=999(9×11)9=1;∵a÷b=1;∴a=b .故选:A .先求出a 除以b 所得的商,再根据商与1的关系确定a 与b 的大小关系.此题主要考查了实数的大小的比较,其中此题主要利用作商法比较大小,其中合理化简是正确解题的关键,比较分数时化简成同分母的数,比较两个无理数时把根号外的移到根号内,只需比较被开方数的大小.【 第 9 题 】【 答 案 】C【 解析 】解:设原来长方形的长与宽分别为a ,b ,根据题意得:(1+50%)a.(1−50%)b−ab ab =75%,则长方形面积减少25%.故选:C .设原来长方形的长与宽分别为a ,b ,根据题意列出算式,计算即可得到结果.此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.【 第 10 题 】【 答 案 】A解:住进房间的人数为:m-1,依题意得,客房的间数为m−1n故选:A.房间数=住进房间人数÷每个房间能住的人数;一人无房住,那么住进房间的人数为:m-1.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.【第 11 题】【答案】2【解析】【解答】解:∵√64=8,∴√64的立方根是2;故答案为2.【分析】根据算术平方根的定义先求出√64,再根据立方根的定义即可得出答案.此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.【第 12 题】【答案】35°【解析】解:∵直线AB,CD相交于点O,∴∠AOC=∠BOD,∵∠AOC=70°,∴∠BOD=70°,∵OE平分∠BOD,∴∠EOD=35°;故答案为35°.由直线相交可知对顶角相等,即∠AOC=∠BOD,再由角平分线的性质可得∠EOD的度数.本题考查对顶角,邻补角的性质;熟练掌握对顶角的性质,角平方线的性质是解题的关键.【第 13 题】10n-9或10(n-1)+1【 解析 】解:根据分析:即第n 个式子是9(n-1)+n=10(n-1)+1=10n-9.或9(n-1)+n=10 (n-1)+1.故答案为:10n-9或10 (n-1)+1.根据数据所显示的规律可知:第一数列都是9,第2数列开始有顺序且都是所对序号的数减去1,加号后的数据有顺序且与所在的序号项吻合,等号右端是10 (n-1)+1的规律,所以第n 个等式(n 为正整数)应为9(n-1)+n=10 (n-1)+1主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解.【 第 14 题 】【 答 案 】12≤a <14【 解析 】解:不等式2x-a≤0的解集为:x≤12a ,其正整数解为1,2,3,4,5,6,则6≤12a <7, 解得:12≤a <14.故答案为:12≤a <14.首先利用不等式的基本性质解不等式,根据正整数解有6个,那么可知这些解就是1、2、3、4、5、6,进而可知6≤12a <7,求解即可.本题考查了一元一次不等式的整数解,解题的关键是注意题目中的条件正整数解只有6个,要理解此条件表达的意思.【 第 15 题 】【 答 案 】解:{x−32+3≥x +1①1−3(x −1)<8−x②, ∵解不等式①得:x≤1,解不等式②得:x >-2,∴不等式组的解集为-2<x≤1.【 解析 】根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出即可.本题考查了不等式的性质,解一元一次不等式(组)的应用,关键是能根据不等式的解集找出不等式组的解集,题目比较好,难度也适中.【 第 16 题 】【 答 案 】解:x 2−4x 2+4x+4÷(x-2-2x−4x+2)=(x+2)(x−2)(x+2)2÷(x−2)(x+2)−(2x−4)x+2=x−2x+2.x+2x −4−2x+4=x−2x(x−2)=1x ,当x=3时,原式=13. 【 解析 】根据分式的剑法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题. 本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.【 第 17 题 】【 答 案 】解:(1)设商场第一次购进x 套运动服,由题意得:680002x −32000x=10,(3分) 解这个方程,得x=200,经检验,x=200是所列方程的根,2x+x=2×200+200=600,所以商场两次共购进这种运动服600套;(5分)(2)设每套运动服的售价为y 元,由题意得:600y−32000−6800032000+68000≥20%, 解这个不等式,得y≥200,所以每套运动服的售价至少是200元.(8分)【 解析 】(1)求的是数量,总价明显,一定是根据单价来列等量关系,本题的关键描述语是:每套进价多了10元.等量关系为:第二批的每件进价-第一批的每件进价=10;(2)等量关系为:(总售价-总进价)÷总进价≥20%.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关×100%的应用.键.注意利润率=利润成本【第 18 题】【答案】解:方程两边同乘(x-2)得:x-3+x-2=-3解得:x=1,检验:当x=1时,x-2≠0,故x=1是此方程的解.【解析】直接找出公分母进而去分母解方程即可.此题主要考查了分式方程的解法,正确掌握解题方法是解题关键.【第 19 题】【答案】解:AC⊥DG,理由如下:∵EF⊥BC,AD⊥BC,∴AD∥EF.∴∠2=∠3.又∵∠1=∠2,∴∠1=∠3,∴AB∥DG,∵AC⊥AB,∴DG⊥AC.【解析】利用平行线的性质证明AB∥DG即可.本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.【第 20 题】【答案】解:(1)如图所示:(2)小船所占的面积为:12×(1+4)×1+12×1×2=3.5.【 解析 】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用三角形以及梯形面积求法得出答案.此题主要考查了利用平移设计图案,正确得出对应点位置是解题关键.【 第 21 题 】【 答 案 】两直线平行、内错角相等 ∠EFD 两直线平行、同旁内角互补 ∠BEF ∠EFD ∠BEF+∠EFD 等量代换【 解析 】解:∵HG∥AB (已知)∴∠1=∠3 (两直线平行、内错角相等)又∵HG∥CD (已知)∴∠2=∠4∵AB∥CD (已知)∴∠BEF+∠EFD=180°(两直线平行、同旁内角互补)又∵EG 平分∠BEF ,FG 平分∠EFD∴∠1=12∠BEF ,∠2=12∠EFD ,∴∠1+∠2=12(∠BEF+∠EFD ), ∴∠1+∠2=90°∴∠3+∠4=90° (等量代换),即∠EGF=90°.故答案分别为:两直线平行、内错角相等,∠EFD ,两直线平行、同旁内角互补,∠BEF ,∠EFD ,∠BEF+∠EFD ,等量代换.此题首先由平行线的性质得出∠1=∠3,∠2=∠4,∠BEF+∠EFD=180°,再由EG 平分∠BEF ,FG 平分∠EFD 得出∠1+∠2=90°,然后通过等量代换证出∠EGF=90°.此题考查的知识点是平行的性质,关键是运用好平行线的性质及角平分线的性质.【 第 22 题 】【 答 案 】解:(1)设生产M 型号的时装为x 套,y=50x+45(80-x )=5x+3600, 由题意得{1.1x +0.6(80−x)≤700.4x +0.9(80−x)≤52; (2)由(1)得:{1.1x +0.6(80−x)≤700.4x +0.9(80−x)≤52; 解得:40≤x≤44.∵x 为整数,∴x 取40,41,42,43,44.∴有5种方案:方案1:M 型号40套,N 型号40套;方案2:M 型号39套,N 型号41套;方案3:M 型号38套,N 型号42套;方案4:M 型号37套,N 型号43套;方案5:M 型号36套,N 型号44套.【 解析 】(1)设生产M 型号的时装为x 套,根据总利润等于M 、N 两种型号时装的利润之和列出函数解析式,再根据M 、N 两种时装所用A 、B 两种布料不超过现有布料列出不等式组;(2)根据条件建立不等式组求出其解即可.本题考查了列一元一次不等式组解实际问题的运用及一元一次不等式组的解法的运用,设计方案的运用,解答时求出一次函数的解析式是关键.【 第 23 题 】【 答 案 】解:(1)如图1中,结论:γ=α+β.理由:作PE∥AB ,∵AB∥CD ,∴PE∥CD ,∴∠BAP=∠APE ,∠PCD=∠CPE ,∴∠APC=∠APE+∠CPE=∠BAP+∠PCD ,∴γ=α+β.(2)如图2中,结论:γ=β-α.理由:作PE∥AB,∵AB∥CD,∴PE∥CD,∴∠BAP=∠APE,∠PCD=∠CPE,∴∠APC=∠CPE-∠APE,∴γ=β-α.(3)如图3中,有γ=α-β.如图4中,有γ=β-α.如图5中,有γ=360°=β-α.如图6中,有γ=α-β.综上所述,γ=α-β,γ=β-α,γ=360°-β-α.【解析】(1)如图1中,结论:γ=α+β.作PE∥AB,利用平行线的性质解决问题即可.(2)如图2中,结论:γ=β-α.作PE∥AB,利用平行线的性质解决问题即可.(3)分四种情形分别画出图形,利用平行线的性质解决问题即可.本题考查平行线的判定和性质,解题的关键是熟练掌握本知识,属于中考常考题型.。
2018-2019学年七年级下学期期末考试数学试卷含答案解析

20、(1 题 5 分、2 题 6 分满分 11 分)
(1)解方程组
3x 3x
y2 11 2
y
(2)解不等式组
轴上表示出来。
并把它的解集在数
21、(5 分)下面是某同学给出一种证法,请你将解答中缺少的条件、结论或证明理由补充 完整:
证明: CD与EF相交于点H , (已知) 1 2 (_________________________)
B、2 个
C、3 个
D、 4 个
5、在“同一平面”条件下,下列说法中错误的个数是( )
(1)过一点有且只有一条直线与已知直线平行;
(2)过一点有且只有一条直线与已知直线垂直;
(3)平移只改变图形的位置,不改变图形的形状和大小;
(4)有公共顶点且有一条公共边的两个角互为邻补角.
A、 1 个
B、2 个
C、3 个
根据以上提供的信息,解答下列问题:
(1)补全频数分布表;
(2)补全频数分布直方图; (3)请你估计该居民小区家庭属于中等收入(大于或等于1000不足1600元)的大约有多少 户?
分组 600≤x<800 800≤x<1000 1000≤x<1200 1200≤x<1400 1400≤x<1600 1600≤x<1800
8m+4n=20 (2 分)
当 m=1 时, n=3;当 m=2 时 n=1
汉 堡 店 可 以 配 送 的 方 案 是 一 个 汉 堡 包 和 3 杯 橙 汁 ;或 2 个 汉 堡 和 一 杯 橙 汁 。( 2 分 )
26.解 :( 1) 设 购 买 甲 种 树 苗 x 棵 , 合用全面调查的是( )
A、了解全班同学每周体育锻炼的时间
2018-2019学年新课标最新安徽省七年级下册期末数学试卷及答案解析-精品试卷

最新安徽省七年 级(下)期末数学试卷一、选择题.本题共有10道小题,每小题3分,共30分1 .与无理数J 五最接近的整数是( )A. 4B.5C.6D.72 .在0,2, (-3)0, -5这四个数中,最大的 数是( )A. 0B. 2C. (-3)0 D . - 53 .当1 <x<2时,ax+2 >0,则a 的取值范围是( )A. a> - 1B. a>-2C. a>0D. a> - 1 且 aw04 .下列运算中,正确的是( )A. x 3+x=x 4B. (x 2) 3=x 6C. 3x - 2x=1D. (a - b ) 2=a 2 - b 25 .若(x - 2) (x 2+ax+b )的积中不含x 的二次项和一次 项,则a 和b 的值(7 .分式-可变形为( )1 - X1 I 1 1 1A.------- r B- C. -7^ D .——-x -1 1+K L+X x -18.若关于x 的分式方程 一-=2的解为非负数,则m 的取值范围是(x - 1A . m> —1 B. m >1 C. m> —1 且 mw1 D. m>— 1 且 mw19 .如 图,AB // CD, / 1=58° , FG 平分/ EFD ,贝U / FGB 的度数等于(A. 122 B . 151° C, 116° D, 97°10 .如图,^DEF 是由△ ABC 通过平移得到,且点B, E, C, F 在同一条直线上.若BF=14 , EC=6 .则A. a=0 ; b=2 B . a=2 ; b=0 6 .把a 2-2a 分解因式,正确的是( A. a (a - 2) B . a ( a+2 ) C. a= T ; b=2 D. a=2 ; b=4)C. a a a - 2)D. a (2-a)A. 2 B . 4 C. 5 D. 316 .计算:(-3) 2+幻2_ 2016 0 _«+ (羡)1「Bn -17 .解不等式组 「 、 .[4(x- 1)+332K四、本题满分10分,每小题5分18 .先化简,再求值:a (a - 3) +(1 - a) ( 1+a ),其中 a=4r.J19 .将a 2+ (a+1 ) 2+ (a 2+a) 2分解因式,并用分解结果计算62+7 2+42 2五、本题满分12分,每小题6分20 .化简+9_2+福),并从—2,1 , 2三个数中选择一个合适的数作为^+2| a*2 21 .已知,如图,/ 1= ZABC= /ADC , / 3=/5, / 2= Z4, / ABC+ /BCD=180 ,补充完整:(1 ) 1= Z ABC (已知)AD // BC ()(2) .一/ 3=/5 (已知) 、填空题.本题共有5道小题,每小题4分,共20分)11 .已知 m+n=mn ,则(m —1) (n —1)= .12 .多项式 x 2+mx+5 因式分解得(x+5 ) ( x+n ),贝U m=, n=八_ 2工46 /日13 .化简予 -------- 得14 .如图,点 A 、C 、F 、B 在同一直 线上,CD 平分/ ECB , FG // CD .若/ ECA=58 ,则/GFB 的大小 a 的值代入求值. 将下列推理过程/ ABC=35 , 则/ 1的度数为三、本题满分8分,每小题4分.//(内错角相等,两直线平行)(3) .. /ABC+ /BCD=180 (已知)六、阅读填空,并按要求解答,本 题满分8分22 .阅读理解题 阅读下列解题过程,并按要求填空: 已知:J ②- y ),=1,飞飞二为尸=T ,求*^的值.解:根据算 术平方根的意 义,由出[7P =1,得(2x - y ) 2=1 , 2x -y=1第一步根据立方根的意 义,由 比[2y )力-1,得x - 2y= - 1…第二步忽略了;正确的 结论是 (直接 写出答案)七、应用题.本题满分12分23 .计划在某广场内种植A 、B 两种花木共6600棵,若A 花木数量是B 花木数量的2倍少600棵.(1) A 、B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能 种植A 花木610棵或B 花木40棵,应分别 安排多少人 种植A 花木和B 花木,才能确保同 时完成各自的任 务?参考答案与试题解析一、选择题.本题共有10道小题,每小题3分,共30分1 .与无理数J 史最接近的整数是()A. 4B.5C.6D.7【考点】估算无理 数的大小. 【分析】根据无理 数的意义和二次根式的性 质得出J 强品,即可求出答案.【解答】解::亚V 疽〈同,•••万最接近的整数是丁丞,后=6,故选:C.【点评】本题考查了二次根式的性 质和估计无理数的大小等知 识点,主要考 查学生能否知道何在5和6 之间,题目比较典型.2K -产 1由①、②,得 L 2干1解得 K=1 …第三步把x 、y 的值分别代入分式包上中,得X - y 3打y ---- =0 K - y …第四步以上解题过程中有两处错误,一处是第 步,忽略了 处是第 ______________ 步, // , ()2.在0,2, (-3)0, -5这四个数中,最大的数是( )A. 0B. 2C. (-3)0 D . - 5【考点】实数大小比较;零指数哥.【分析】先利用a0=1 (aw0)得(-3) 0=1 ,再利用两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可得出结果.【解答】解:在0,2, (-3)0, -5这四个数中,最大的数是2,故选B.【点评】本题考查了有理数的大小比较和零指数哥,掌握有理数大小比较的法则和a0=1 (aw0)是解答本题的关键.3.当1 <x<2时,ax+2 >0,则a的取值范围是( )A. a> - 1B. a>-2C. a>0D. a> - 1 且aw0【考点】不等式的性质.【分析】当x=1时,a+2 >0;当x=2 , 2a+2 >0,解两个不等式,得到a的范围,最后综合得到a的取值范围. 【解答】解:当x=1时,a+2 >0解得:a> - 2;当x=2 , 2a+2 >0 ,解得:a> - 1 , ,a的取值范围为:a> - 1.【点评】本题考查了不等式的性质,解决本题的关键是熟记不等式的性质.4.下列运算中,正确的是( )A. x3+x=x 4B. ( x2) 3=x 6C. 3x - 2x=1D. ( a - b) 2=a2- b2【考点】哥的乘方与积的乘方;合并同类项;完全平方公式.【分析】根据同类项、哥的乘方和完全平方公式计算即可.【解答】解:A、x3与x不能合并,错误;B、(x2) 3=x6,正确;C、3x — 2x=x ,错误;D、( a—b) 2=a2—2ab+b 2 ,错误;故选B【点评】此题考查同类项、哥的乘方和完全平方公式,关键是根据法则进行计算.5.若(x-2) (x2+ax+b )的积中不含x的二次项和一次项,则a和b的值( )A . a=0 ; b=2B . a=2 ; b=0 C. a= - 1 ; b=2 D. a=2 ; b=4【考点】多项式乘多项式.【分析】把式子展开,找出所有关于x的二次项,以及所有一次项的系数,令它们分别为0,解即可.【解答】解:-.1 ( x - 2) ( x2+ax+b ) =x3+ax 2+bx - 2x2 - 2ax - 2b=x 3+ (a-2)x2+ (b-2a) x - 2b,又「积中不含x的二次项和一次项,卜- 2=0%一加丁解得a=2 , b=4 .故选D.【点评】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.6.把a2-2a分解因式,正确的是( )A . a (a-2)B . a ( a+2 ) C. a(a2-2) D. a(2-a)【考点】因式分解-提公因式法.【专题】计算题.【分析】原式提取公因式得到结果,即可做出判断.【解答】解:原式=a (a-2),故选A .【点评】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.•可变形为( )【考点】分式的基本性质.【分析】先提取-1,再根据分式的符 号变化规律得出即可.故选D.【点评】本题考查了分式的基本性 质的应用,能正确根据分式的基本性 质进行变形是解此题的关键,注意: 分式本身的符 号,分子的符 号,分母的符 号,变换其中的两个,分式的值不变.8 .若关于x 的分式方程 工二工=2的解为非负数,则m 的取值范围是()x - 1 A . m> —1 B. m >1 C. m> —1 且 mwl D. m>— 1 且 mwl【考点】分式方程的解.【专题】计算题.【分析】分式方程去分母 转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不 为0 求出m 的范围即可.【解答】解:去分母得:m - 1=2x -2, 解得:乂二典3, ,口H ZQ LI# 1 1由题思得:~o ~ >0且一厂W1 ,解得:m > - 1且m w1 ,故选D【点评】此题考查了分式方程的解,需注意在任何 时候都要考 虑分母不为0.9.如 图,AB // CD , / 1=58° , FG 平分/ EFD ,贝U / FGB 的度数等于(A. 122° B , 151° C, 116° D, 97°【考点】平行线的性质.【分析】根据 两直线平行,同位角相等求出/ EFD,再根据角平分 线的定义求出/ GFD,然后根据 两直线 平行,同旁内角互补解答.【解答】解:: AB II CD , 1 1=58° , EFD= Z 1=58° ,A.B. 1 1+sC. 1 1+xD.【解答】解:-- 1)••• FG 平分/ EFD ,,/GFD==/ EFD= —X58° =29° , :■••• AB // CD, ・ ./ FGB=180 - ZGFD=151 .故选B.【点评】题考查了平行线的性质,角平分线的定义,比较简单,准确识图并熟记性质是解题的关键.10 .如图,4DEF是由△ ABC通过平移得到,且点B, E, C, F在同一条直线上.若BF=14 , EC=6 .则BE的长度是( )A. 2 B . 4 C. 5 D.3【考点】平移的性质.【分析】根据平移的性质可得BE=CF ,然后列式其解即可.【解答】解:.「△ DEF是由△ ABC通过平移得到,BE=CF ,BE= — (BF - EC),BF=14 , EC=6 ,BE= y (14-6) =4 .故选B.【点评】本题考查了平移的性质,根据对应点间的距离等于平移的长度得到BE=CF是解题的关键.二、填空题.本题共有5道小题,每小题4分,共20分)11.已知m+n=mn ,贝U (m —1) (n —1) = 1 .【考点】整式的混合运算一化简求值.【分析】先根据多项式乘以多项式的运算法则去掉括号,然后整体代值计算.【解答】解:(m — 1) ( n — 1) =mn — (m+n ) +1 ,m+n=mn ,( m - 1 ) ( n T ) =mn — (m+n ) +1=1 ,故答案为1.【点评】本题主要考查了整式的化简求值的知识,解答本题的关键是掌握多项式乘以多项式的运算法则, 此题难度不大.12.多项式x2+mx+5 因式分解得(x+5 ) (x+n ),贝U m= 6 , n= 1 .【考点】因式分解的意义.【专题】计算题;压轴题.【分析】 将(x+5 ) (x+n )展开,得到,使得x2+ (n+5 ) x+5n 与x 2+mx+5 的系数对应相等即可. 【解答】解:-.1 ( x+5 ) (x+n ) =x 2+ (n+5 ) x+5n ,1-x 2+mx+5=x 2+ (n+5 ) x+5n ■区二面忑n 二5%二1 np6故答案为:6 , 1 .【点评】本题考查了因式分解的意 义,使得系数对应相等即可.13 •化简了——【考点】约分.【分析】首先分 别把分式的分母、分子因式分解,然后 约去分式的分子 与分母的公因式即可.| 2 (K +3)Q+3) G - 3)【点评】此题主要考查了约分问题,要熟练掌握,解答此 题的关键是要明确:①分式 约分的结果可能是最 简分式,也可能是整式.② 当分子与分母含有负号时,一般把负号提到分式本身的前面.③ 约分时,分子 与分母都必须是乘积式,如果是多 项式的,必 须先分解因式. 14 .如图,点A 、C 、F 、B 在同一直 线上,CD 平分/ ECB , FG // CD .若/ ECA=58 , 则/ GFB 的大小为 61 ;【解答】解:【分析】求出/ DCF ,根据两直线平行同位角相等即可求出/ GFB .【解答】解:.一/ ECA=58 ,ECD=180 - /ECA=122 ,. CD 平分/ ECF ,,/DCF= —Z ECF= —X122° =61° , 2 2••• CD // GF,/ GFB= / DCF=61 .故答案为61 ° .【点评】本题考查平行线的性质、角平分线的定义、邻补角的性质等知识.解题的关键是利用两直线平行 同位角相等解 决问题,属于中考常考 题型.15 .如图,AB // CD , AC ± BC , / ABC=35 , 【分析】首先根据平行 线的性质可得/ ABC= /BCD=35 ,再根据垂 线的定义可得/ ACB=90 ,再利用平 角的定义计算出/ 1的度数.【解答】解:= AB // CD ,/ ABC= / BCD=35 , . AC ± BC,・・./ACB=90 ,・ ・/ 1=180° — 90° — 35° =55° ,故答案为:55° .【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.三、本题满分8分,每小题4分16 .计算:(-3) 2+[( _ 2] > 2016 0 —①+ (y)1 【考点】实数的运算;零指数哥;负整数指数哥.则/1的度数为 55°【考点】平行线的性质;垂线.【专题】计算题.【分析】此 题涉及负整数指数哥、零指数哥、有理数的乘方、平方根的求法,在 计算时,需要针对每个考 点分别进行计算,然后根据 实数的运算法则求得计算结果即可.【解答】解:(-3) 2+2 - 2016 0 -百 + (y) 1=9+2 -1-3+2=11 - 1 - 3+2=9【点评】此题主要考查了实数的综合运算能力,解 决此类题目的关键是熟练掌握负整数指数哥、零指数哥、 有理数的乘方、平方根的运算.3<4sMx-【考点】解一元一次不等式组.【专题】计算题.【分析】分 别求出不等式 组中两不等式的解集,找出解集的公共部分即可.5K -① 4Cz- D+3>2i@i ,由①得:x < 3 ,由②得:x >4,则不等式组的解集为序wx<3.【点评】此题考查了解一元一次不等式 组,熟练掌握运算法则是解本题的关键.四、本题满分10分,每小题5分18 .先化简,再求值:a (a - 3) +(1 - a) ( 1+a ),其中 a=4r . J【考点】整式的混合运算一化简求值.【分析】根据 单项式乘多项式的法则、平方差公式把原式化 简,把已知数据代入计算即可.【解答】解:原式=a 2 - 3a+1 - a 2=1 — 3a,当a= $寸,原式=1-3 x 亍=0 .【点评】本题考查的是整式的化 简求值,掌握整式的混合 运算法则、灵活运用平方差公式和完全平方公式 是解题的关键.19 .将a 2+ (a+1 ) 2+ (a 2+a) 2分解因式,并用分解结果计算62+7 2+42 2.【考点】因式分解的应用.【分析】先 将a 2+ (a+1 ) 2+ (a 2+a ) 2去括号,进行变形,分解因式 为(a 2+a+1 ) 2,根据结果计算 62+7 2+42 2. 【解答】解:a 2+ (a+1 ) 2+ (a 2+a ) 2, 17 .解不等式组 解:=a2+a 2+2a+1+ (a2+a ) 2 ,=(a2+a ) 2+2 (a2+a ) +1 ,=(a2+a+1 ) 2,.•.62+7 2+42 2= (36+6+1 ) 2=43 2=1849 ,【点评】本题是分解因式的应用,主要考查了利用因式分解简化计算问题;具体做法是:①根据题目的特点,先通过因式分解将式子变形,然后再进行整体代入;②用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.五、本题满分12分,每小题6分20.化简+ (a-2+—I),并从-2, 1, 2三个数中选择一个合适的数作为a的值代入求值.a+2 a+2【考点】分式的化简求值.【分析】先将括号内的部分统分,再将除法转化为乘法,同时因式分解,然后约分,再代入求值. 21 2 I【解答】解:原式=(时' 屈一堂3a+2 a+2=:口 1 ’?a+2 (afl) (□ 1)a+1~ a -1一⑶1/=―X - • - -a+Z (a+1) (a-1)a+1当a=2 时,I 2+1]原式=5二丁=3 -【点评】本题考查了分式的化简求值,熟悉因式分解同时要注意分母不为0.21 ,已知,如图,/ 1= /ABC= / ADC , /3=/5, / 2= / 4 , / ABC+ /BCD=18 0 , 将下列推理过程补充完整:(1 ) 1= Z ABC (已知),AD//BC(同位角相等,两直线平行)(2).一/ 3=/5 (已知)・ AB // CD (内错角相等,两直线平行)(3).. /ABC+ /BCD=180 (已知)同旁内角互补,两直线平行)【考点】平行线的判定.【专题】推理填空题.【分析】(1)根据同位角相等,两直线平行得出结论;(2 )根据内错角相等,两直线平行得出结论;(3)根据同旁内角互补,两直线平行得出结论.【解答】解:(1))•••/ 1=Z ABC (已知)• .AD // BC (同位角相等,两直线平行).故答案为:同位角相等,两直线平行;(2),一/ 3=/5,・♦.AB // CD (内错角相等,两直线平行)故答案为:AB , CD ;(3))/ ABC+ ZBCD=180 (已知)•.AB // CD,(同旁内角互补,两直线平行).故答案为:AB , CD ,同旁内角互补,两直线平行.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.六、阅读填空,并按要求解答,本题满分8分22 .阅读理解题阅读下列解题过程,并按要求填空:已知:J⑵- y),=1 ,可%12V)* = T,求聿差的值. 舄J解:根据算术平方根的意义,由必二彳=1,得(2x - y)2=1 , 2x -y=1第一步根据立方根的意义,由区[2*)- T ,得x - 2y= - 1…第二步步,忽略了 2x - y= - 1 ; 一处是第 四 步,忽略了 x 3工4y0c=1 (直接写出答案).K - y 【考点】实数的运算;解二元一次方程 组. 【专题】阅读型.【分析】熟悉平方根和立方根的性 质:正数的平方根有 两个,且它们互为相反数;负数没有平方根;0的平方根是0.正数有一个正的立方根,负数有一个负的立方根,0的立方根是0.【解答】解:在第一步中,由(2x — y ) 2=1 应得到 2x — y= ±1 , 忽略了 2x - y= - 1 ;在第四步中,当时,分式 也匕无意义,忽略了分式有意 义的条件的检验,K - y【点评】此题主要考查了平方根、立方根的性 质,同时还要注意求分式的 值时,首先要保 证分式有意义.七、应用题.本题满分12分23 .计划在某广场内种植A 、B 两种花木共6600棵,若A 花木数量是B 花木数量的2倍少600棵.(1) A 、B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能 种植A 花木610棵或B 花木40棵,应分别 安排多少人 种植A 花木和B 花木,才能确保同 时完成各自的任 务?【考点】分式方程的 应用;一元一次方程的 应用.【分析】(1)首先设A 种花木的数量为x 棵,B 种花木的数量为y 棵,根据题意可得等量关系:①A 、 B 两种花木共6600棵;②A 花木数量=8花木数量的2倍- 600棵,根据等量 关系列出方程,再解即可;(2)首先设应安排a 人种植A 花木,则安排(26 - a )人种植B 花木,由题意可等量关系:种植A 花木 所用时间=种植B 花木所用时间,根据等量 关系列出方程,再解即可.【解答】解:(1)设A 种花木的数量为x 棵,B 种花木的数量为y 棵,由题意得:由①、②,得 以一尸1 X- 2y=1…第三步把x 、y 的值分别代入分式…第四步以上解题过程中有 两处错误,一处是第-y=0 ;正确的结论是 所以正确的结论是:;:=1.卜+产6800(x=2y-60Q,加曰「产42。
2018-2019学年人教版七年级下册期末数学试卷含答案

2018-2019学年七年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的答案的序号填入下面表格内)1.点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是()A.(﹣1,3)B.(,5)C.(0,4)D.(﹣,﹣)2.4的平方根是()A.2B.﹣2C.±2D.163.不等式组的解集在数轴上表示为()A.B.C.D.4.下列说法正确的()A.调查春节联欢晚会收视率适宜用全面调查B.要调查一批灯泡的使用寿命适宜用全面调查C.要调查七年一班学生的年龄适宜全面调查D.要调查第一小组一次数测评学成绩适宜用抽样调查5.在实数,π,,3.5,,0,3.02002,中,无理数共有()A.4个B.5个C.6个D.7个6.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°7.下列方程组是二元一次方程组的是()A.B.C.D.8.下列命题中,真命题是()A.垂线段最短B.相等的角是对顶角C.同旁内角互补D.0没有立方根9.确定一个地点的位置,下列说法正确的是()A.偏西50°,1000米B.东南方向,距此800米C.距此1000米D.正北方向10.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线L∥x轴,点C直线L上的一个动点,则线段BC的长度最小时点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)二、填空题(本大题共8个小题,每小题2分,共6分,把答案写在题中横线上)面全直的步11.不等式x+3<2的解集是.12.5(填“>”或“<”).13.的相反数是.14.如图,直线AB、CD相交于点O,OE⊥AB,垂足是点O,∠BOC=140°,则∠DOE=.15.把命题“内错角相等,两直线平行”改写成“如果…,那么……”的形式为:两条直线被第三条直线所截,如果,那么.16.一组数据,最大值与最小值的差为16,取组距为4,则组数为.17.点A在x轴上,到原点的距离为3,则点A的坐标为.18.如图,点A(0,0),向右平移1个单位,再向上平移1个单位,得到点A1:点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3:点A3向上平移4个单位,再向右平移8个单位,得到点A4:……按这个规律平移得到点A n,则点A n的横坐标为.三、解答题(本大题共8个小题,共64分,解答应写出文字说明、证明过程或演算步骤)19.(本小题满分64分)19.(7分)计算:|﹣|+(=1.414,结果保留2位小数).20.(7分)新课程改革十分关注学生的社会实践活动,小明在一次社会实践活动中负责了解他所居住的小区500户居民的家庭月人均收入情况,他从中随机调查了40户居民家庭的“家庭月人均收入情况”(收入取整数,单位:元),并绘制了频数分布表和频数分布直方图(如图).(1)频数分布表中,a=,b=,C=,请根据题中已有信息补全频数分布直方图;(2)观察已绘制的频数分布直方图,可以看出组距是,这个组距选择得(填“好”或“不好”),并请说明理由.(3)如果家庭人均月收入“大于3000元不足6000元”的为中等收入家庭,则用样本估计总体中的中等收入家庭大约有户.21.(7分)解不等式组,并求它的整数解.22.(7分)阅读并完成下列证明:如图,已知AB∥CD,若∠B=55°,∠D=125°,请根据所学的知识判断BC与DE的位置关系,并证明你的结论.解:BC∥DE证明:∵AB∥CD(已知)∴∠C=∠B()又∵∠B=55°(已知)∠C=°()∵∠D=125°(已知)∴∴BC∥DE()23.(8分)如图,三角形ABC在直角坐标系中.(1)请直接写出点A、C两点的坐标:(2)三角形ABC的面积是;(3)若把三角形ABC向上平移1个单位,再向右平移1个单位得三角形A′B′C′在图中画出三角形A′B′C’,这时点B′的坐标为.24.(8分)已知关于x、y的方程组的解x比y的值大1,求方程组的解及k的值.25.(10分)我县某初中为了创建书香校园,购进了一批图书.其中的20本某种科普书和30本某种文学书共花了1080元,经了解,购买的科普书的单价比文学书的单价多4元.(1)购买的科普书和文学书的单价各多少元?(2)另一所学校打算用800元购买这两种图书,问购进25本文学书后至多还能购进多少本科普书?26.(10分)如图1,AB∥CD,点E是直线AB、CD之间的一点,连接EA、EC.(1)探究猜想:①若∠A=20°,∠C=50°,则∠AEC=.②若∠A=25°,∠C=40°,则∠AEC=.③猜想图1中∠EAB、∠ECD、∠AEC的关系,并证明你的结论(提示:作EF∥AB).(2)拓展应用:如图2,AB∥CD,线段MN把ABCD这个封闭区域分为I、Ⅱ两部分(不含边界),点E是位于这两个区域内的任意一点,请直接写出∠EMB、∠END、∠MEN的关系.2018-2019学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的答案的序号填入下面表格内)1.点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是()A.(﹣1,3)B.(,5)C.(0,4)D.(﹣,﹣)【分析】根据第一象限内点的横坐标与纵坐标都是正数即可求解.【解答】解:点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是(,5).故选:B.【点评】本题考查了点的坐标,掌握第一象限内点的坐标特征是解题的关键.2.4的平方根是()A.2B.﹣2C.±2D.16【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.不等式组的解集在数轴上表示为()A.B.C.D.【分析】同大取大;同小取小;大小小大中间找;大大小小找不到;依此可求不等式组的解集,再在数轴上表示出来即可求解.【解答】解:不等式组的解集在数轴上表示为.故选:D.【点评】考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.下列说法正确的()A.调查春节联欢晚会收视率适宜用全面调查B.要调查一批灯泡的使用寿命适宜用全面调查C.要调查七年一班学生的年龄适宜全面调查D.要调查第一小组一次数测评学成绩适宜用抽样调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查春节联欢晚会收视率适宜用抽样调查,错误;B、要调查一批灯泡的使用寿命适宜用抽样调查,错误;C、要调查七年一班学生的年龄适宜全面调查,正确;D、要调查第一小组一次数测评学成绩适宜用全面调查,错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.在实数,π,,3.5,,0,3.02002,中,无理数共有()A.4个B.5个C.6个D.7个【分析】根据无理数的定义进行解答即可.【解答】解:在实数,π,,3.5,,0,3.02002,中,无理数有,π,,,共有4个.故选:A.【点评】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数,含有π的绝大部分数,如2π.注意:判断一个数是否为无理数,不能只看形式,要看化简结果,是解题的关键.6.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°【分析】因∠1和∠2是邻补角,且∠1=30°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣30°=150°.【解答】解:∵∠1+∠2=180°,且∠1=30°,∴∠2=150°,故选:D.【点评】此题主要考查了对顶角和邻补角的特征和应用,要熟练掌握,解答此题的关键是要明确:①有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.②邻补角互补,即和为180°.7.下列方程组是二元一次方程组的是()A.B.C.D.【分析】分析各个方程组是否满足二元一次方程组的定义“1、只有两个未知数;2、未知数的项最高次数都应是一次;3、都是整式方程”.【解答】解:A、此方程组有3个未知数x,y,z.不符合二元一次方程组的定义;B、不是整式方程,不符合二元一次方程组的定义;C、此方程组正好符合二元一次方程组的定义;D、此方程组属于二次.不符合二元一次方程组的定义;故选:C.【点评】本题是考查对二元一次方程组的识别,掌握二元一次方程组的定义,就很容易判断.8.下列命题中,真命题是()A.垂线段最短B.相等的角是对顶角C.同旁内角互补D.0没有立方根【分析】根据垂线段的性质、对顶角、同旁内角和立方根的概念判断即可.【解答】解:A、垂线段最短,是真命题;B、相等的角不一定是对顶角,是假命题;C、两直线平行,同旁内角互补,是假命题;D、0有立方根,它的立方根是0,是假命题;故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.确定一个地点的位置,下列说法正确的是()A.偏西50°,1000米B.东南方向,距此800米C.距此1000米D.正北方向【分析】根据地点的位置确定应该有方向角以及相对距离据此回答.【解答】解:根据地点确定的方法得出:只有东南方向,距此800米,可以确定一个地点的位置,其它选项都不准确.故选:B.【点评】此题主要考查了坐标确定位置,根据已知得出一个地点确定需要两个元素得出是解题关键.10.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线L∥x轴,点C直线L上的一个动点,则线段BC的长度最小时点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)【分析】如图,根据垂线段最短可知,BC⊥AC时BC最短;【解答】解:如图,根据垂线段最短可知,BC⊥AC时BC最短.∵A(﹣3,2),B(1,4),AC∥x轴,∴BC=2,∴C(1,2),故选:C.【点评】本题考查坐标与图形的性质、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(本大题共8个小题,每小题2分,共6分,把答案写在题中横线上)面全直的步11.不等式x+3<2的解集是x<﹣1.【分析】不等式经过移项即可得到答案.【解答】解:x+3<2,移项得:x<﹣1,即不等式的解集为:x<﹣1,故答案为:x<﹣1.【点评】本题考查解一元一次不等式,熟悉解一元一次不等式的步骤是解题的关键.12.<5(填“>”或“<”).【分析】直接利用二次根式的性质比较得出答案.【解答】解:∵5=,∴<5.故答案为:<.【点评】此题主要考查了实数大小比较,正确得出5=是解题关键.13.的相反数是﹣2.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:2﹣的相反数是﹣2.故答案为:﹣2.【点评】本题考查了实数的性质,主要利用了负数的绝对值等于它的相反数,是基础题.14.如图,直线AB、CD相交于点O,OE⊥AB,垂足是点O,∠BOC=140°,则∠DOE=50°.【分析】运用垂线的定义,对顶角的性质进行计算即可.【解答】解:∵直线AB、CD相交于点O,∴∠BOC=∠AOD=140°,又∵OE⊥AB,∴∠DOE=140°﹣90°=50°,故答案为:50°.【点评】本题主要考查了对顶角和垂线的定义,解题的关键是运用对顶角的性质:对顶角相等.15.把命题“内错角相等,两直线平行”改写成“如果…,那么……”的形式为:两条直线被第三条直线所截,如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.【分析】先分清命题“内错角相等,两直线平行”的题设与结论,然后把题设写在如果的后面,结论部分写在那么的后面.【解答】解:“内错角相等,两直线平行”改写成“如果…那么…”的形式为如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.故答案为:两条直线被第三条直线所截,截得的内错角相等;这两条直线平行.【点评】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题;命题由题设和结论两部分组成.16.一组数据,最大值与最小值的差为16,取组距为4,则组数为5.【分析】在样本数据中最大值与最小值的差为16,已知组距为4,那么由于16÷4=4,且要求包含两个端点在内;故可以分成5组.【解答】解:∵16÷4=4,∴组数为5,故答案为:5.【点评】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.17.点A在x轴上,到原点的距离为3,则点A的坐标为(±3,0).【分析】根据在x轴上点的纵坐标是0,横坐标是±3解答.【解答】解:∵点A在x轴上,到原点的距离为3,∴此点的坐标是(±3,0).故答案为:(±3,0).【点评】本题考查了点的坐标,主要利用了x轴上点的坐标特征.18.如图,点A(0,0),向右平移1个单位,再向上平移1个单位,得到点A1:点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3:点A3向上平移4个单位,再向右平移8个单位,得到点A4:……按这个规律平移得到点A n,则点A n的横坐标为2n﹣1.【分析】从特殊到一般探究规律后,利用规律即可解决问题;【解答】解:点A1的横坐标为1=21﹣1,点A2的横坐为标3=22﹣1,点A3:的横坐标为7=23﹣1,点A4的横坐标为15=24﹣1,按这个规律平移得到点A n为2n﹣1,故答案为2n﹣1【点评】本题考查坐标与图形变化﹣平移、规律型问题等知识,解题的关键是学会探究规律的方法,属于中考常考题型.三、解答题(本大题共8个小题,共64分,解答应写出文字说明、证明过程或演算步骤)19.(本小题满分64分)19.(7分)计算:|﹣|+(=1.414,结果保留2位小数).【分析】直接利用绝对值以及二次根式、立方根的性质分别化简得出答案.【解答】解:原式=﹣0.2﹣2≈1.414﹣0.2﹣2≈﹣0.79.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(7分)新课程改革十分关注学生的社会实践活动,小明在一次社会实践活动中负责了解他所居住的小区500户居民的家庭月人均收入情况,他从中随机调查了40户居民家庭的“家庭月人均收入情况”(收入取整数,单位:元),并绘制了频数分布表和频数分布直方图(如图).(1)频数分布表中,a=12,b=8,C=20%,请根据题中已有信息补全频数分布直方图;(2)观察已绘制的频数分布直方图,可以看出组距是1000,这个组距选择得好(填“好”或“不好”),并请说明理由.(3)如果家庭人均月收入“大于3000元不足6000元”的为中等收入家庭,则用样本估计总体中的中等收入家庭大约有350户.【分析】(1)由频数之和等于总数及频率=频数÷总数求解可得;(2)根据频数分布直方图可得组距,结合数据分布情况解答即可;(3)用总户数乘以大于3000元不足6000元的百分比之和可得.【解答】解:(1)a=40×30%=12、b=40﹣(3+5+12+8+4)=8,则c=8÷40=0.2=20%,补全图形如下:(2)观察已绘制的频数分布直方图,可以看出组距是1000,这个组距选择的好,理由是:这个组距选择得比较合理,确保了数据不重不漏且没有数据为空白的组,比较好地展示了数据的分布情况;故答案为:1000、好.(3)用样本估计总体中的中等收入家庭大约有500×(30%+20%+20%)=350(户),故答案为:350.【点评】此题考查了频数(率)分布直方图,用样本估计总体,以及频数(率)分布表,弄清题意是解本题的关键.21.(7分)解不等式组,并求它的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式4x﹣1<5x+1,得:x>﹣2,解不等式x﹣2≤5﹣x,得:x≤,则不等式组的解集为﹣2<x≤,所以不等式组的整数解为﹣1、0、1、2、3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.(7分)阅读并完成下列证明:如图,已知AB∥CD,若∠B=55°,∠D=125°,请根据所学的知识判断BC与DE的位置关系,并证明你的结论.解:BC∥DE证明:∵AB∥CD(已知)∴∠C=∠B(两直线平行,内错角相等)又∵∠B=55°(已知)∠C=55°(等量代换)∵∠D=125°(已知)∴∠C+∠D=180°∴BC∥DE(同旁内角互补,两直线平行)【分析】先根据AB∥CD得出∠C的度数,再由∠C+∠D=180°即可得出结论.【解答】证明:∵AB∥CD(已知),∴∠B=∠C(两直线平行,内错角相等),又∵∠B=55°(已知)∠C=55°(等量代换)∵∠D=125°(已知)∴∠C+∠D=180°∴BC∥DE(同旁内角互补,两直线平行).故答案为:两直线平行,内错角相等,55,等量代换;∠C+∠D=180°,同旁内角互补,两直线平行.【点评】本题主要考查了平行线的性质与判定的综合应用,解题时注意:两直线平行,内错角相等;同旁内角互补,两直线平行.23.(8分)如图,三角形ABC在直角坐标系中.(1)请直接写出点A、C两点的坐标:(2)三角形ABC的面积是7;(3)若把三角形ABC向上平移1个单位,再向右平移1个单位得三角形A′B′C′在图中画出三角形A′B′C’,这时点B′的坐标为(5,3).【分析】(1)直接利用已知点在坐标系中位置得出各点坐标即可;(2)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案;(3)直接利用平移的性质进而分析得出答案.【解答】解:(1)点A的坐标为:(﹣1,﹣1)、C点的坐标为:(1,3);(2)三角形ABC的面积是:4×5﹣×2×4﹣×1×3﹣×3×5=7;故答案为:7;(3)如图所示:△A′B′C’即为所求,点B′的坐标为:(5,3).故答案为:(5,3).【点评】此题主要考查了平移变换以及三角形的面积,正确得出三角形面积是解题关键.24.(8分)已知关于x、y的方程组的解x比y的值大1,求方程组的解及k的值.【分析】把k看做已知数表示出方程组的解,根据x比y的值大1,确定出k的值,进而求出方程组的解即可.【解答】解:,把x=y+1代入①得:2y+1=k③,代入②得:y+1﹣2y=3﹣k④,联立③④,解得:,把y=1代入①得:x=2,则方程组的解为,k的值为3.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.25.(10分)我县某初中为了创建书香校园,购进了一批图书.其中的20本某种科普书和30本某种文学书共花了1080元,经了解,购买的科普书的单价比文学书的单价多4元.(1)购买的科普书和文学书的单价各多少元?(2)另一所学校打算用800元购买这两种图书,问购进25本文学书后至多还能购进多少本科普书?【分析】(1)设购买的科普书的单价是x元,文学书的单价是y元,根据20本某种科普书和30本某种文学书共花了1080元;购买的科普书的单价比文学书的单价多4元;可列方程组求解.(2)根据用800元再购进一批科普书和文学书,得出不等式求解即可.【解答】解:(1)设购买的科普书的单价是x元,文学书的单价是y元,根据题意得,解得.故购买的科普书的单价是24元,文学书的单价是20元.(2)设还能购进a本科普书,根据题意得24a+20×25≤800,解得a≤12,∵图书的数量为正整数,∴a的最大值为12.答:至多还能购进12本科普书.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,根据题意设出单价,找到等量关系列方程组求解是解题关键.26.(10分)如图1,AB∥CD,点E是直线AB、CD之间的一点,连接EA、EC.(1)探究猜想:①若∠A=20°,∠C=50°,则∠AEC=70°.②若∠A=25°,∠C=40°,则∠AEC=65°.③猜想图1中∠EAB、∠ECD、∠AEC的关系,并证明你的结论(提示:作EF∥AB).(2)拓展应用:如图2,AB∥CD,线段MN把ABCD这个封闭区域分为I、Ⅱ两部分(不含边界),点E是位于这两个区域内的任意一点,请直接写出∠EMB、∠END、∠MEN的关系.【分析】(1)①过点E作EF∥AB,再由平行线的性质即可得出结论;②、③根据①的过程可得出结论;(2)根据题意画出图形,再根据平行线的性质即可得出∠EMB、∠END、∠MEN的关系.【解答】解:(1)①如图1,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∵∠A=20°,∠C=50°,∴∠1=∠A=20°,∠2=∠C=50°,∴∠AEC=∠1+∠2=70°;故答案为:70°;②同理可得,∴∠AEC=∠1+∠2=65°;故答案为:65°;③猜想:∠AEC=∠EAB+∠ECD.理由:如图1,过点E作EF∥CD,∵AB∥DC∴EF∥AB(平行于同一条直线的两直线平行),∴∠1=∠EAB,∠2=∠ECD(两直线平行,内错角相等),∴∠AEC=∠1+∠2=∠EAB+∠ECD(等量代换).(2)当点E位于区域Ⅰ时,∠EMB+∠END+∠MEN=360°,理由:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BME+∠MEF=180°,∠DNE+∠NEF=180°,∴∠EMB+∠END+∠MEN=360°;当点E位于区域Ⅱ时,∠EMB+∠END=∠MEN,理由:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BMN=∠FEM,∠DNE=∠FEN,∴∠EMB+∠END=∠MEF+∠NEF=∠MEN.【点评】本题考查的是平行线的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.。
2018-2019学年七年级下期末考试数学试卷及答案

2018--2019学年第二学期期末考试初一数学试卷考 生 须 知1.本试卷共6页,共三道大题,27道小题。
满分100分。
考试时间90分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和考号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、做图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.根据北京小客车指标办的通报,截至2017年6月8日24时,个人普通小客车指标的基准中签几率继续创新低,约为0.001 22,相当于817人抢一个指标,小客车指标中签难度继续加大.将0.001 22用科学记数法表示应为 A .1.22×10-5B .122×10-3C .1.22×10-3D .1.22×10-2 2.32a a ÷的计算结果是 A .9aB .6aC .5aD .a3.不等式01<-x 的解集在数轴上表示正确的是A B C D4.如果⎩⎨⎧-==21y x ,是关于x 和y 的二元一次方程1ax y +=的解,那么a 的值是A .3B .1C .-1D .-35.如图,2×3的网格是由边长为a 的小正方形组成,那么图中阴影部分的面积是 A .2a B .232a C .22a D .23a 6.如图,点O 为直线AB 上一点,OC ⊥OD . 如果∠1=35°,那么∠2的度数是 A .35° B .45° C .55°D .65°7知道香草口味冰淇淋一天售出200的份数是 A .80 B .40 C .20D .108.如果2(1)2x -=,那么代数式722+-x x 的值是A .8B .9-3 -2 -1 1 23 0 -3 -2 -1 1 2 30 -3 -2 -1 1 23 0 -3 -2 -1 1 23 0 香草味50%21D CBAOC .10D .119.一名射箭运动员统计了45次射箭的成绩,并绘制了如图所示的折线统计图. 则在射箭成绩的这组数据中,众数和中位数分别是 A .18,18B .8,8C .8,9D .18,810.如图,点A ,B 为定点,直线l ∥AB ,P 是直线l 上一动点. 对于下列各值: ①线段AB 的长 ②△P AB 的周长 ③△P AB 的面积④∠APB 的度数其中不会..随点P 的移动而变化的是 A .① ③ B .① ④ C .② ③ D .② ④二、填空题(本题共18分,每小题3分) 11.因式分解:328m m -= . 12.如图,一把长方形直尺沿直线断开并错位,点E ,D ,B ,F 在同一条直线上.如果∠ADE =126°, 那么∠DBC = °. 13.关于x 的不等式b ax >的解集是abx <. 写出一组满足条件的b a ,的值: =a ,=b .14.右图中的四边形均为长方形. 根据图形的面积关系,写出一个正确的等式:_____________________.15.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四. 问人数、鸡价各几何?” 译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为_____________.16.同学们准备借助一副三角板画平行线. 先画一条直线MN ,再按如图所示的样子放置三角板. 小颖认为AC ∥DF ;小静认为BC ∥EF .ABCM ABlP你认为 的判断是正确的,依据是 .三、解答题(本题共52分,第17-21小题,每小题4分,第22-26小题,每小题5分,第27小题7分)17.计算:1072012)3()1(-+π---.18.计算:)312(622ab b a ab -.19.解不等式组:⎪⎩⎪⎨⎧-≤--<-,,2106)1(8175x x x x 并写出它的所有正整数解.....20.解方程组:2312 4.x y x y +=⎧⎨-=⎩,21.因式分解:223318273b a ab b a +--.22.已知41-=m ,求代数式)1()1(12)12)(32(2-+++++m m m m m )(-的值.23.已知:如图,在∆ABC 中,过点A 作AD ⊥BC ,垂足为D ,E 为AB 上一点,过点E 作EF ⊥BC ,垂足为F ,过点D 作DG ∥AB 交AC 于点G . (1)依题意补全图形;(2)请你判断∠BEF 与∠ADG 的数量关系,并加以证明.24.在的学校为加强学生的体育锻炼,需要购买若干个足球和篮球. 他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买. 三次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次6 5 700第二次3 7 710第三次7 8 693(1)王老师是第次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买个篮球.25.阅读下列材料:为了解北京居民使用互联网共享单车(以下简称“共享单车”)的现状,北京市统计局采用拦截式问卷调查的方式对全市16个区,16-65周岁的1000名城乡居民开展了共享单车使用情况及满意度专项调查.在被访者中,79.4%的人使用过共享单车,39.9%的人每天至少使用1次,32.5%的人2-3天使用1次.从年龄来看,各年龄段使用过共享单车的比例如图所示.从职业来看,IT业人员、学生以及金融业人员使用共享单车的比例相对较高,分别为97.8%、93.1%和92.3%.使用过共享单车的被访者中,满意度(包括满意、比较满意和基本满意)达到97.4%,其中“满意”和“比较满意”的比例分别占41.1%和40.1%,“基本满意”占16.2%.从分项满意度评价结果看,居民对共享单车的“骑行”满意度评价最高,为97.9%;对“付费/押金”和“找车/开锁/还车流程”的满意度分别为96.2%和91.9%;对“管理维护”的满意度较低,为72.2%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)现在北京市16-65周岁的常住人口约为1700万,请你估计每天共享单车骑行人数至少约为万;(2)选择统计表或统计图,将使用共享单车的被访者的分项满意度表示出来;(3)请你写出现在北京市共享单车使用情况的特点(至少一条).26.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180°”的结论. 小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把∠1和∠2移动到∠3的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图, ABC.求证:∠A+∠B+∠C =180°.证明:延长BC,过点C作CM∥BA.∴∠A=∠1(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).∵∠1+∠2+∠ACB =180°(平角定义),∴∠A+∠B+∠ACB =180°.请你参考小明解决问题的思路与方法,写出通过实验方法2证明该结论的过程.27.对x ,y 定义一种新运算T ,规定:)2)(()(y x ny mx y x T ++=,(其中m ,n 均为非零常数).例如:n m T 33)11(+=,. (1)已知8)20(0)11(==-,,,T T .① 求m ,n 的值;② 若关于p 的不等式组 ⎩⎨⎧≤->-a p p T p p T )234(4)22(,,,恰好有3个整数解,求a 的取值范围;(2)当22y x ≠时,)()(x y T y x T ,,=对任意有理数x ,y 都成立,请直接写出m ,n 满足的关系式.2018-2019学年度第二学期期末练习初一数学评分标准及参考答案二、填空题(本题共18分,每小题3分)17 18 19.解:20.分分21 -分1分23.(1)如图. ……1分(2)判断:∠BEF=∠ADG.……2分证明:∵AD⊥BC,EF⊥BC,∴∠ADF =∠EFB =90°.∴AD ∥EF (同位角相等,两直线平行).∴∠BEF =∠BAD (两直线平行,同位角相等). ……3分 ∵DG ∥AB ,∴∠BAD =∠ADG (两直线平行,内错角相等). ……4分 ∴∠BEF =∠ADG. ……5分24.解:(1)三; ……1分(2)设足球的标价为x 元,篮球的标价为y 元.根据题意,得65700,37710.x y x y +=⎧⎨+=⎩解得:50,80.x y =⎧⎨=⎩ 答:足球的标价为50元,篮球的标价为80元; ……4分 (3)最多可以买38个篮球. ……5分25.解:(1)略. ……1分(2) 使用共享单车分项满意度统计表……4分(3)略. ……5分26. 已知:如图,∆ABC .求证:∠A +∠B +∠C =180°.证明:过点A 作MN ∥BC. ……1分∴∠MAB =∠B ,∠NAC =∠C (两直线平行,内错角相等).…3分 ∵∠MAB +∠BAC +∠NAC =180°(平角定义),∴∠B +∠BAC +∠C =180°. ……5分ABCMN27.解:(1)①由题意,得()0,88.m n n --=⎧⎨=⎩1,1.m n =⎧∴⎨=⎩ ……2分②由题意,得(22)(242)4,(432)(464).p p p p p p p p a +-+->⎧⎨+-+-≤⎩①②解不等式①,得1p >-. ……3分 解不等式②,得1812a p -≤.181.12a p -∴-<≤……4分∵恰好有3个整数解,182 3.12a -∴≤<4254.a ∴≤< ……6分(2)2m n =. ……7分。
2018-2019学年度初一年级第二学期数学期末复习试卷含参考答案

第15题2018-2019学年度初一年级第二学期数学期末复习试卷一.选择题 (每题2分,共16分)1.某球形流感病毒的直径约为0.000 000 085 m ,用科学记数法表示该数据为( )A. 8.5-8B. 85 × 10-9C. 0.85 ×10-7D. 8.5 ×10-8 2.下列各式中,不能用平方差公式计算的是( )A .(2x ﹣y )(2x + y )B .(x ﹣y )(﹣y ﹣x )C .(b ﹣a )(b + a )D .(﹣x + y )(x ﹣y ) 3.下列从左到右的变形,属于分解因式的是( )A .(a + 3)(a ﹣3)=a 2﹣9B .x 2 + x ﹣5= x (x ﹣1)﹣5C .a 2 + a =a (a + 1)D .x 3 y =x ·x 2·y 4.若实数a ,b ,c 在数轴上对应点的位置如图所示,则下列 不等式成立的是( )A .ac>bcB .ab>cbC .a + c>b + cD .a + b>c + b5.当x =1时,代数式ax 3﹣3bx +4的值是7,则当x =﹣1时,这个代数式的值是( )A .7B .3C .1D .﹣76.在ABC ∆中,23A B C ∠=∠=∠,则ABC ∆是( )A.锐角三角形B.直角三角形C.钝角三角形D.都有可能 7.一个多边形的内角和大于1100°,小于1400°这个多边形的边数是( )A .6B .7C .8D .98.若关于x 的不等式组{0521x a x -≤-<.的整数解只有1个,则a 的取值范围是( )A .2<a <3B .3≤a <4C .2<a ≤3D .3<a ≤4 二.填空题 (每题2分,共16分)9. x 5÷x 3= . 10.分解因式:2x-4y = . 11.已知m + n =5,m n =3,则m 2 n + m n 2= .12.二元一次方程x -y =l 中,若x 的值大于0,则y 的取值范围是 . 13.写出命题“对顶角相等”的逆命题: 14.若x —2y —3=0,则2x ÷4y = .15. 如图,△ABC ≌△ADE ,BC 的延长线交DA 于F ,交DE 于G ,∠D =25°,∠E =105°,∠DAC =16°,则 ∠DGB 的度数为 .B 、C 分别是线段1A B A 1B 1C 1的面积是a ,那么△ABC 的16.如图,A 、面积是 .(用a 的代数式表示)B 1三.解答题17. 计算(每题3分,共6分)(1) (π-1)0-112-⎛⎫ ⎪⎝⎭-22 (2) (-3a )2﹒a 4 +(-2a 2)318.将下列各式分解因式:(每题3分,共9分)(1) 224x xy - (2) 3244y y y -+ (3) 222(1)(1)x y y -+-19. 解下列方程组或不等式(组)(每题3分,共9分)(1){23431y x x y =--= (2)22523x x x +--≤ (3)253(2),1.23x x x x +≤+⎧⎪-⎨<⎪⎩, 并写出其整数解20.(6分)先化简,再求值:(2a + b )(2a ﹣b )+3(2a ﹣b )2+(﹣3a )(4a ﹣3b ),其中a =-1, b =-221.(6分)如图,已知AB ∥CD ,BC 平分∠ABE ,∠C =27°,求∠BED 的度数.22.(8分)己知方程组5214x y ax y a+=+⎧⎨-=-⎩的解x 、y 的值的符号相反. 求a 的取值范围;23.(8分)如图1,△ABC 中,∠C=900,BC=3,AC=4,AB=5,将△ABC 绕着点B 旋转一定的角度,得到 △DEB(1)、若点F 为AB 边上中点,连接EF ,则线段EF 的范围为(2)、如图2当△DEB 直角顶点E 在AB 边上时,延长DE ,交AC 边于点G ,请问线段DE 、EG 、AG 具有怎样的数量关系,请写出探索过程24.(8分)小明同学有关租车问题的对话:45座的贵150元.”小芳:“八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到苏州博物馆参观,一天的租G金共计5100元.”小明:“如果我们七年级租用45座的客车a辆,那么还有15人没有座位;如果租用60座的客车可少租2辆,且正好坐满.”根据以上对话,解答下列问题:(1)参加此次活动的七年级师生共有________人;(2)客运公司60座和45座的客车每辆每天的租金分别是多少元?(3)若同时租用两种或一种客车,要使每位师生都有座位,且每辆客车恰好坐满,问有几种租车方案?哪一种租车最省钱?25.(8分)已知如图1梯形ADEB中,AD⊥MN,BE⊥MN,垂足分别为点D、点E,点C在MN上,CD=BE,∠ACB=90°.(1)求证:∠ACD=∠CBE(2)若DE=8,求梯形ADEB的面积(3)如图2,设梯形ADEB的周长为....,沿着O→A→D→E...m.,AB边中点O处有两个动点P、Q同时出发→B→O的方向移动,点P的速度是点Q的3.倍.,当点Q第一次到达....移动......B.点.时,两点同时停止①两点同时停止时,点P移动的路程与点Q移动的路程之差2m(填“<”,“>”或“=”)②移动过程中,点P能否和点Q相遇?如果能,则用直线错误!未找到引用源。
2018-2019(下)期末七年级数学考试试卷(含参考答案)

2018-2019学年度第二学期期末学情分析样题七年级数学(满分:100分 考试时间:100分钟)一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡...相应位置上.....) 1.下列计算正确的是( ▲ ) A .a 2+a 3=a 5 B .a 2•a 3=a 6 C .a 3÷a 2=a D .(a 3 ) 2=a 92.若a <b ,则下列不等式中,一定正确的是( ▲ )A . a +2>b +2B .-a <-bC .a -2<b +2D .a 2<ab3 -2204.下列各式能用平方差公式计算的是( ▲ ) A .(-a +b ) (a -b ) B .(a +b ) (a -2b ) C .(a +b ) (-a -b ) D .(-a -b ) (-a +b )5.下列命题中,真命题的有 ( ▲ ) (1)内错角相等; (2)锐角三角形中任意两个内角的和一定大于第三个内角; (3)相等的角是对顶角; (4)平行于同一直线的两条直线平行.6.若某n 边形的每个内角都比其外角大120°,则n 等于( ▲ )7.如图,给出下列条件:①∠1=∠2; ②∠3=∠4;③AD ∥BE ,且∠D =∠B ;④AD ∥BE ,∠DCE =∠DA . c >a >bB .b >c >aC .a >c >bD . a >b >c A .(1)(2)B .(2)(3)C .(2)(4)D .(3)(4)A .6B .10C .12D .15A . ①②B .②③C . ③④D .②③④A . a ≤3B .-3<a ≤3C . -3≤a <3D .-3 <a <3 (第7题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷...相应位置....上) 9.计算: 30+ (13)-2= ▲ .10.不等式-2x +1 ≤ 3的解集是 ▲ .11.命题“同旁内角互补,两直线平行”的逆命题是 ▲ .12. 某种感冒病毒的直径是0. 000 000 12米,用科学记数法表示为 ▲ 米.13. 若⎩⎨⎧x =2,y =1,是关于x 、y 的二元一次方程kx -y =k 的解,则k 的值为 ▲ .14. 已知a -b =2 ,a +b =3.则a 2+b 2= ▲ .15. 关于x 的方程﹣2x +5=a 的解小于3,则a 的范围 ▲ .16. 如图,a ∥b ,将30°的直角三角板的30°与60°的内角顶点分别放在直线a 、b 上,若∠1+∠2=110°,则∠1= ▲ °.17. 如图,∠A =32°,则∠B +∠C +∠D +∠E = ▲ °.18. 若不等式组⎩⎨⎧≥-≤02x ax 有3个整数解,则a 的范围为 ▲ .(第17题)(第16题)21 abA CDB三、解答题(本大题共10小题,共64分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(8分)因式分解:(1)a 3-a ; (2)m 3-2m 2+m .20. (5分)先化简,再求值:(x -1)2 -2(x +1)(x -1),其中x =-1.21. (5分)解方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5.22.(6分)解不等式组 ⎩⎪⎨⎪⎧2-x >0,5x +12+1≥2x -13,并把解集在数轴上表示出来.23.(6分) 运输两批救灾物资,第一批360t ,用6节火车车皮和15辆汽车正好装完;第二批440t , 用8节火车车皮和10辆汽车正好装完。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A . 向右平移1格,向下3格 B . 向右平移1格,向下4格 C . 向右平移2格,向下4格 D . 向右平移2格,向下3格 7. 已知代数式3x2-4x+6的值为9,则x2- x+6的值为( )
A . 18 B . 12 C . 9 D . 7
8. 现要装配30台机器,在装配好6台以后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务,
14. 计算
=________.
15. 如图,直线L1∥L2 , AB⊥CD,∠1=34°,那么∠2的度数是________度.
16. 方程
的根是________.
17. 不等式3x-3a≤-2a的正整数解为1,2,则a的取值范围是________.
18. 使代数式
有意义的整数x有________.
率=
×100%)
参考答案 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.
12. 13. 14. 15. 16. 17. 18. 19. 20.
21.
22. 23.
24.
25. 26.
安徽省池州市东至县2018-2019学年七年级下学期数学期末考试试卷
一、选择题
1. 实数 、 、π-3.14、 中,无理数有( )
A . 1个 B . 2个 C . 3个 D . 4个 2. 计算(-3a2)2÷a2的结果是( ) A . -9a2 B . 6a4 C . 3a2 D . 9a2 3. 下列多项式中,能用公式法分解因式的是( )
求原来每天装配机器的台数x,下列所列方程中正确的是( )
A.
B.
C.
D.
9. 如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=( )
A . 70° B . 80° C . 90° D . 100° 10. 如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1 , 第2幅 图形中“●”的个数为a2 , 第3幅图形中“●”的个数为a3 , …,以此类推,则 + + +…+ 的值为( )
A . x2-xy B . x2+xy C . x2-y2 D . x2+y2 4. 若不等式组的解集在数轴上表示如图,则这个不等式组是( )
A.
B.
C.
D.
5. 无论x为任何实数,下列分式都有意义的是( )
A. B. C. D. 6. 如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格 块( )
三、解答题
19. 化简
20. 分解因式:x3-4x2y+4xy2 .
21. 先化简
,再从x的绝对值不大于2的整数中选择一个整数代入求值
22. 解不等式组
,并把解集表示在数轴上.
23. 已知,AC⊥AB,EF⊥BC,AD⊥BC,∠1=∠2,请问AC⊥DG吗?请写出推理过程.
24. 阅读下列材料,并解决后面的问题. 材料:我们知道,n个相同的因数a相乘记为an , 如23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).
A. B. C. D.
二、填空题
11. 随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2
),这个数用科学记数法表示为________. 12. 因式分解:4x2-100=________.
13. 不等式2x+7>3x+4的正整数解是________.
(4) 根据幂的运算法则:am•an=am+n以及对数的定义证明(3)中的结论.
四、计算题(本大题共 2 小题,共 18 分)
25. 解方程: - =2. 26. 北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很 快脱销,商场又用68 000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1) 该商场两次共购进这种运动服多少套? (2) 如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润
一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n),如34=81,则4叫做以3 为底81的对数,记为log381(即log381=4).
(1) 计算以下各对数的值:log24=;log216=;log264=. (2) 通过观察(2)中三数4、16、64之间满足怎样的关系式?log24、log216、log264之间又满足怎样的关系式? (3) 由(2)题猜想,你能归纳出一个一般性的结论吗? logaM+logaN=(a>0且a≠1,M>0,N>0),