圆锥曲线的统一定义、焦半径公式

合集下载

圆锥曲线的统一定义焦半径公式PPT课件

圆锥曲线的统一定义焦半径公式PPT课件

a2 cx a x c2 y2
思考1. x c2 y2 a ex , 即为 MF2 a ex ;
若另一种移法可得: MF1 a ex . 这是焦半径公式
思考2.
x c2 y2 c
a2 x
. a
这是椭圆的第二定义.
c
若另一种移法可得:
xB2 3

y B,由2 1


得F1 A 5 F2 B x,A 2 5(xB
xA2 3

yA2
1
2) yA 5yB
,联立方程组可得 xA . 0
x 分析2:(数形结合)如果右准线与 轴的交点为 ,C可以证
明A、B、C三点共线,由定义可以知道 到A 左右准线距离相
等,所以 x。A 0
微课小结 回归课本、高于课本······
一个 背景 二种 结论
一次 探究
二类 思想
椭圆标准方程的推导 圆锥曲线的统一定义、焦半径公式 点坐标
数形结合、消元引参、
移项、两边平方得
x c2 y2 4a2 4a x c2 y2 x c2 y2
a2 cx a x c2 y2
方程形式
两边再平方,得 a4 2a2cx c2 x2 a2 x2 2a2cx a2c2 a2 y2
整理得 a2 c2 x2 a2 y2 a2 a2 c2
x c2
x a2
y2

c. a
c
1.圆锥曲线的统一定义 2.圆锥曲线的焦半径公式
材料1.

F1
,F2分



圆x2 3

(完整版)圆锥曲线的定义、方程和性质知识点总结

(完整版)圆锥曲线的定义、方程和性质知识点总结

椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。

说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。

②若常数2a 小于2c ,则动点轨迹不存在。

2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。

圆锥曲线(椭圆,双曲线,抛物线)的定义方程和性质知识总结

圆锥曲线(椭圆,双曲线,抛物线)的定义方程和性质知识总结

椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。

说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。

②若常数2a 小于2c ,则动点轨迹不存在。

2.3. 椭圆上的任一点和焦点连结的线段长称为焦半径。

焦半径公式:椭圆焦点在x 轴上时,设12F F 、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。

推导过程:由第二定义得11PF e d =(1d 为点P 到左准线的距离), 则211000a PF ed e x ex a a ex c ⎛⎫==+=+=+ ⎪⎝⎭;同理得20PF a ex =-。

简记为:左“+”右“-”。

由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数。

22221x y a b +=;若焦点在y 轴上,则为22221y x a b+=。

有时为了运算方便,设),0(122n m m ny mx ≠>=+。

双曲线的定义、方程和性质1. 定义(1)第一定义:平面内到两定点F 1、F 2的距离之差的绝对值等于定长2a (小于|F 1F 2|)的点的轨迹叫双曲线。

说明:①||PF 1|-|PF 2||=2a (2a <|F 1F 2|)是双曲线;若2a=|F 1F 2|,轨迹是以F 1、F 2为端点的射线;2a >|F 1F 2|时无轨迹。

②设M 是双曲线上任意一点,若M 点在双曲线右边一支上,则|MF 1|>|MF 2|,|MF 1|-|MF 2|=2a ;若M 在双曲线的左支上,则|MF 1|<|MF 2|,|MF 1|-|MF 2|=-2a ,故|MF 1|-|MF 2|=±2a ,这是与椭圆不同的地方。

圆锥曲线的焦半径公式

圆锥曲线的焦半径公式
圆锥曲线的焦半径公式之袁州冬雪创作
圆锥曲线上任意一点到核心的间隔叫做圆锥曲线关于该点的焦半径.操纵圆锥曲线的第二定义很容易)为椭圆 + =1(a>b>0)上任意一点,F 、F 分别为椭圆的左、右核心,则 =a+e x , =a-e x .
(2)若P(x ,y )为椭圆 + =1(a>b>0)上任意一点,F 、F 分别为椭圆的上、下核心,则 =a+e y , =a-e y .
(4)若P(x ,y )为抛物线x =-2py(p>0)上任意一点,则 = -y +
不克不及,请说明来由.(答案:点P不存在)
(1)若P(x ,y )为双曲线 - =1(a>0,b>0)上任意一点,F 、F 分别为双曲线的左、右核心,则
①当点P在双曲线的左支上时, =-e x -a, =-e x +a.
②当点P在双曲线的右支上时, =e x +a, = e x -a.
(2)若P(x ,y )为双曲线 - =1(a>0,b>0)上任意一点,F 、F 分别为双曲线的上、下核心,则
①当点P在双曲线的下支上时, =-e y -a, = -ey +a.
②当点P在双曲线的上支上时, =ey +a, = ey -a.
(1)若P(x ,y )为抛物线y =2px(p>0)上任意一点,则 = x +
(2)若P(x ,y )为抛物线y =-2px(p>0)上任意一点,则 = -x +
(3)若P(x ,y )为抛物线x =2py(p>0)上任意一点,则 = y +

圆锥曲线公式及知识点总结(详解)

圆锥曲线公式及知识点总结(详解)

圆锥曲线公式及知识点总结(详解)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如小学资料、初中资料、高中资料、大学资料、文言文、中考资料、高考资料、近义词、反义词、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides you with various types of practical materials, such as primary school materials, junior high school materials, senior high school materials, university materials, classical Chinese, senior high school examination materials, college entrance examination materials, synonyms, antonyms, other materials, etc. If you want to know different data formats and writing methods, please pay attention!圆锥曲线公式及知识点总结(详解)圆锥曲线的统一概念:到定点的距离与到定直线的距离的商是常数e的点的轨迹。

圆锥曲线的焦半径(角度式)

圆锥曲线的焦半径(角度式)

-> 7圆锥曲线的焦半径一角度式一椭圆的焦半径设P是椭圆务+条“ S心。

)上任意-点,F为它的-个焦点,则■ 2乙PFO = e,则 |PF| = ------a-ccQsO上述公式定义ZPFO = &, P是椭圆上的点,F是焦点,0为原点,主要优点是焦点在左右上下均适用,无需再单独讨论证明:设PF另一个焦点为F,则PF = FF-FP 两边平方得:戸戶2=丽'-2両•帀+帀2即:(2a — ///)" = 4c" + 4cni cos & + nr得:叶—a-ccos01过椭圆手+宁】的右焦点F任作-直线交椭圆于A、B衲点,若的+阿=A AF BE .则>1的值为2(2002全国理)设椭圆壬+ ^1 (心心0)的-个焦点八过F作-条直线交椭圆于P、。

两点,求证:网+肉为定值,并求这个定值结论:椭圆的焦点弦所在的焦半径的倒数和为定值,即尙+侖=寻3< 2007 M庆理)在椭圆4 + 21 = 1 (a>h>0)上任取三个不同的点时,P「a~ Ir ■使= = 笃牛耳为右焦点,证明丽+丽+两为定值, 并求此定值结论^若过F作"条夹角相等的射线交椭圆于L …,吒,则na4 F是椭圆+ + r=l的右焦点,山F引出两条相互垂直的直线b,直线"与乙椭圆交于点A、C ,直线b与椭圆交于3、D ,若FA =/]fFCFD=i则下列结论一定成立的是(B zj + 坊 +Zj+r, =4血D - + - + - + - = 472 片「2 「3 「4F是椭圆手+牛]的右焦点,过点F作-条与坐标轴不垂直的直线交椭圆于八B,线段A〃的中垂细如轴于点M,则緡的值为6伽。

辽宇理)设椭圆C: 5 +壬"5">0)的左焦点为F,过点F的直线与椭圆C相交于A, 3两点,直线/的倾斜角为60° ,乔=2丽<1)求椭圆C 的离心率(2)如果|"=罟,求椭圆C 的方程7 <2010全国"理)已知椭圆G 召+石"的离心率为孚过右焦点F 且斜 率为£ («>0)的直线与C 相交于A, B 两点,若AF = 3FB,则《=(B 728已知椭圆C : ■ + *" S 心0)的右焦点为八过点F 的直线与椭圆C13’ )已知椭圆各+与=1的左右焦点分别为斤,耳,过斤的直线 交椭圆于D 两点,过人的直线交椭圆于A, C 两点,且AC 丄求四边■ 形4£3的面积的最小值210 (2005全国卷][理)P, 2,M, N 四点都在椭圆%-+^ = 1±, F 为椭圆2 在y 轴正半轴上的焦点,S 知丽与FS 共线,MF^FN 共线,且丽•丽=0,相交于A, B 两点, 若BF =2AF ,则椭圆的离心率f 的取值范ffl 是(9 (2007全国I 理)求四边形PQMN 面积的最大值和最小值11已知过椭圆余+壬=1左焦点片的弦(非长轴)交椭圆于A ,B 两点,场为 右焦点,求使AF/B 的面积最大时直线A8的方程二双曲线的焦半径设P 是椭圆》卡“ so,心0)上任意-点,F 为它的-个焦点,式中“土”记忆规律,同正异负,即当位于轴的同侧时取正,否则取 负,取ZPFO = &,无需讨论焦点位置,上式公式均适用2 21 (2009全国II 理)已知双曲线C :亠-厶> =1 («>0, h>0)的右焦点为F,a- b-过F 且斜率为^/5的直线交C 于A.B 两点,若乔=4而,则C 的离心率为(2 (2007重庆理)过双曲线%--/= 4的右•焦点F 作倾斜角为105°的直线交双 曲线于P 、e 两点,则\FP[\FQ\的值为贝lJZPFO = e,贝Ij PF =——ccQsO±a三抛物线的焦半径已知A 是抛物线C : r =2/zr (卩>0)上任意一点,F 为焦点,ZAFO = e.所以 AF =P-AFcos3】过抛物线宀2\的焦点F 作直线交抛物线于B 两点,若两-网 则直细的倾斜角八。

巧用圆锥曲线的焦半径

巧用圆锥曲线的焦半径

巧用圆锥曲线的焦半径圆锥曲线的焦半径为:二次曲线上任意一点Q到焦点的距离.圆锥曲线的焦半径概念,是圆锥曲线中的一个重要的概念.许多圆锥曲线的求解问题,往往都牵涉到它,且运用圆锥曲线的焦半径分析问题可给解题带来生机.因此,掌握它是非常重要的.圆焦半径:R f=" + xe, R,-; = a- xe,右支双曲线焦半径:R t =xe + th R = x e■- </ (x > 0),左支双曲线焦半径:R t = - (x e + a), R 6 = - (x e- a) (x <0),抛物线焦半径:Rw + f .art对于这些结论我们无须花气力去记,只要掌握相应的准线方程及标准方程的两种定义,可直接推得.如对双曲线而言:当P(xo,yo)是双曲线屁2_巧2 =局2(“>0">0)右支上的一点,Fl,F2是其左右焦点.则有左准线方程为.丫 =-必.C由双曲线的第二怎义得,左焦半径为IPF] 1=&(心+・)=5+^;c由IPFiF IPF2I =2r/,得IPF2I = IPF2I - 2a = ex0 - ・(IPF2I亦可由第二定义求得).例1已知Fi,F2是椭圆E的左、右焦点,抛物线C以Fi为顶点,F?为焦点,设P为椭圆与抛物线的一个交点,如果椭圆E的离心率e满足IPF,l = elPF2l.贝9 e的值为()(A)苹(C)斗(D)2-j2解法1 设F,(-c,0), F2(C,0), P(A O,yo),于是,抛物线的方程为^=2(4c)(x + c),抛物线的准线/: x=-3c,椭圆的准线m: x = - —, c设点P到两条准线的距离分別为d 1, di.于是,由抛物线定义,得J1 = IPF2I, ................ ①又由椭圆的定义得IPFil = ed2,而IPFil = elPF2l, ..................... ②由①②得t/2 = IPF2l,故山=鸟,从而两条准线重合.・•・—3c = _Xne2=_lne =週.故选(C).c 3 3解法2 由椭圆定义得IPF1l + IPF2l = 2a,又IPF|l = elPF2l, A I PF2I (l+e) = 2a, .. ①又由抛物线定义得IPF2I= AO +3C,即XO =IPF2I-3C,.......................... ②由椭圆定义得IPF2l = “—exo, ............................. ③由②③得IPF2l = "—elPF2l + 3ec,即I PF?I (1+e ) = “ + 3ec, ......... ④由①④得2a = a + 3ec,解得e =斗,故选(C).点评结合椭圆、抛物线的泄义,并充分运用焦半径是解答本题的基本思想.例2设椭圆E:+ (a> b> 0),的左、右焦点分别为Fi,氏,右顶点为A.如果点M为椭圆E上的任意一点,且IMF.I - IMF2I的最小值为4(1)求椭圆的离心率e:(2)设双曲线Q:是以椭圆E的焦点为顶点,顶点为焦点,且在第一象限内任取Q上一点P,试问是否存在常数X(X>0),使得ZPAF> = X ZPF>A成立?试证明你的结论.分析对于(1)可利用焦半径公式直接求解.而(2)是一探索型的命题,解题应注重探索.由于在解析几何中对角的问题的求解,往往要主动联想到斜率.而ZPFiA显然是一锐角,又易知ZPAFi是(0. 123)内的角,且90。

圆锥曲线的统一定义

圆锥曲线的统一定义

左焦点的距离为14,求P点到右准线的距离.
x2 y2 上一点P到 1 64 36
(2)椭圆
x2 y 2 1 25 9
的左右焦点分别为F1、F2
90° , 求ΔF1PF2的面积. 60 P为椭圆上一点,且∠F1PF2=90°
轨迹方程的思考:
例2.已知点P到定点F(1,0)的距离与它到定直线
l1
y
l2 M2 P
M1
P
O
d2
M2 x F1
d2
F1
.
.
F2
.
M1
O
.
F2 P′
x
d1
a 准线: x c
2
PF1 PF2 e 定义式: d1 d2
标准方程
x2 y2 2 1 2 a b ( a b 0)
图形
焦点坐标
准线方程
a2 x c a2 y c a2 x c
平面内到定点F的距离和到定直线的距离相等的点的 轨迹 表达式|PF|=d (d为动点到定直线距离)
平面内动点P到一个定点F的距离PF和到一条定 直线l (F不在l上)的距离d相等时,动点P的轨迹为抛 物线,此时PF/d=1.
探究与思考:
若PF/d≠1呢?
在推导椭圆的标准方程时,我们曾得到这样 一个式子:
2、左焦点与左准线对应,右焦点与右准线对应,不能混淆, 否则得到的方程不是标准方程。
3、离心率的几何意义:曲线上一点到焦点的距离与到相应 准线的距离的比。
x y 2 1(a b 0) 2 a b
l1 d1 y l2
2
2
x2 y2 2 1(a 0, b 0) 2 a b
l : x 5的距离的比是常数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
2
c2 x2 a2 y2 a2 a2 c2
a cx a x c y
2 2
2
思考1. x c
2
y 2 a ex , 即为 MF2 a ex ;
若另一种移法可得: MF1 a ex . 这是焦半径公式
思考2. x c
2
2a
移项、两边平方得
x c
2
y 2 4a 2 4a
x c
2
y2 x c y2
2
a cx a
x c
2
y2
方程形式
两边再平方,得 a4 2a2cx c2 x2 a2 x2 2a2cx a2c2 a2 y2
整理得
人教版高中数学(高三 )
圆锥曲线定义
——探索及应用
浙江省湖州中学 姚恒
集合形式 椭圆就是集合 P M MF1 MF2 2a 因为
MF1 x c y 源自 MF2 2 2选修2-1.P39(节选)
几何形式
2
x c
y2
得方程
x c 2 y 2 x c 2 y 2
2 2
y2
a x c
c . a
这是椭圆的第二定义.
c . a
2 2 x c y 若另一种移法可得:
a2 x c
1.圆锥曲线的统一定义 2.圆锥曲线的焦半径公式
x2 材料1. 设F1 ,F2 分别为椭圆 y 2 1的左,右焦点,点A,B 3 在椭圆上,若 F1 A 5 F2 B,求点A的坐标.
分析1:(方程思想)设 A( x A , y A ) , B ( x B , y B ) ,则 xB 2 2 y B 1 ,由F1 A 5 F2 B 得x A 2 5( xB 2 ) , y A 5 y B 3 ,联立方程组可得 xA 0 . 分析2:(数形结合)如果右准线与 轴的交点为C,可以证 B、 C 三点共线,由定义可以知道 A 到左右准线距离 明A、 相等,所以 x A 0 。
xA2 y A2 1 , 3
x
微课小结
回归课本、高于课本· · · · · ·
一个 背景 二种 结论 一次 探究 椭圆标准方程的推导 圆锥曲线的统一定义、焦半径公式 点坐标 数形结合、消元引参、
二类 思想
谢谢观赏
相关文档
最新文档