华师大版初中数学知识点总结
华师大版八年级数学知识点归纳

华师大版八年级数学知识点归纳天才就是勤奋曾经有人这样说过。
假如这话不完全正确,那至少在很大程度上是正确的。
学习,就算是天才,也是需要不断练习与记忆的。
下面是我给大家整理的一些〔〔八年级〕数学〕的学问点,希望对大家有所关怀。
八年级数学学问点〔总结〕函数及其相关概念1、变量与常量在某一转变过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一转变过程中有两个变量x与y,假如对于x的每一个值,y 都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法用图像表示函数关系的〔方法〕叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:依据自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
初二下册数学学问点总结【解一元一次方程】1.等式与等量:用=号连接而成的式子叫等式.留意:等量就能代入!2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;留意:方程的解就能代入!5.移项:转变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合1/ 3并同类项……系数化为1……(检验方程的解).10.列一元一次方程解应用题:(1)读题分析法:…………多用于和,差,倍,分问题仔细读题,找出表示相等关系的关键字,例如:大,小,多,少,是,共,合,为,完成,增加,削减,配套-----,利用这些关键字列出文字等式,并且据题意设出未知数,最终利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:…………多用于行程问题利用图形分析数学问题是数形结合思想在数学中的表达,仔细读题,根据题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最终利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。
华东师大版数学八年级上册11.2《实数》知识点解读

注意理解实数的概念
由于实际问题的需要我们引进了
注意知道无理数的几种常见表现形式无理数一般有下列几种常见的表现形式:
注意掌握实数的分类
实数的分类可从两个角度去思考,即(
注意正确理解实数与数轴的关系
实数与数轴上的点是一一对应的,
注意掌握实数的有关性质
实数和有理数一样也有许多的重要性质
相反数:实数
为相反数,则
绝对值:一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,
倒数:乘积为
实数大小的比较:任意两个实数都可以比较大小,正实数都大于。
2018年华师大版初中数学知识点总结

华师大版初中数学知识点总结七年级上第二章有理数1.相反意义的量向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。
2.正数和负数像+,+12,1.3,258等大于0的数(“+”通常不写)叫正数。
像-5,-2.8,-等在正数前面加“—”(读负)的数叫负数。
【注】0既不是正数也不是负数。
3.有理数(1)整数:正整数、零和负整数统称为整数。
分数:正分数和负分数统称为分数。
有理数:整数和分数统称为有理数。
(2)有理数分类1)按有理数的定义分类2)按正负分类正整数正整数整数0 正有理数有理数负整数有理数正分数正分数0 负整数分数负有理数负分数负分数【注】有限循环小数叫做分数。
(3)数集把一些数组合在一起,就组成了一个数的集合,简称数集。
所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。
4.数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。
【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。
2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。
2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
5.相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
(几何意义)(3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
(5)数a的相反数是—a。
(6)多重符号化简多重符号化简的结果是由“-”号的个数决定的。
如果“-”号是奇数个,则结果为负;如果是偶数个,则结果为正。
可简写为“奇负偶正”。
6.绝对值(1)在数轴上表示数a的点离开原点的距离,叫做数a的绝对值。
华师大版八年级数学知识点归纳

华师大版八年级数学知识点归纳天才就是勤奋曾经有人这样说过。
如果这话不完全正确,那至少在很大程度上是正确的。
学习,就算是天才,也是需要不断练习与记忆的。
下面是小编给大家整理的一些八年级数学的知识点,希望对大家有所帮助。
八年级数学知识点总结函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
初二下册数学知识点总结【解一元一次方程】1.等式与等量:用"="号连接而成的式子叫等式.注意:"等量就能代入"!2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:"方程的解就能代入"!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).10.列一元一次方程解应用题:(1)读题分析法:…………多用于"和,差,倍,分问题"仔细读题,找出表示相等关系的关键字,例如:"大,小,多,少,是,共,合,为,完成,增加,减少,配套-----",利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:…………多用于"行程问题"利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。
华师大版初中数学知识点总结doc资料

华师大版初中数学知识点总结华师大版初中数学知识点总结七年级上第二章有理数1.相反意义的量向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。
2.正数和负数像+,+12,1.3,258等大于0的数(“+”通常不写)叫正数。
像-5,-2.8,-等在正数前面加“—”(读负)的数叫负数。
【注】0既不是正数也不是负数。
3.有理数(1)整数:正整数、零和负整数统称为整数。
分数:正分数和负分数统称为分数。
有理数:整数和分数统称为有理数。
(2)有理数分类1)按有理数的定义分类2)按正负分类正整数正整数整数0 正有理数有理数负整数有理数正分数正分数0 负整数分数负有理数负分数负分数【注】有限循环小数叫做分数。
(3)数集把一些数组合在一起,就组成了一个数的集合,简称数集。
所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。
4.数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。
【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。
2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。
2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
5.相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
(几何意义)(3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
(5)数a的相反数是—a。
(6)多重符号化简多重符号化简的结果是由“-”号的个数决定的。
如果“-”号是奇数个,则结果为负;如果是偶数个,则结果为正。
可简写为“奇负偶正”。
2024年初中数学七年级下册全册华师大版课件汇总

2024年初中数学七年级下册全册华师大版课件汇总一、教学内容1. 第一章实数第一节实数的概念第二节实数的运算2. 第二章代数方程第一节一元一次方程第二节二元一次方程组第三节不等式与不等式组3. 第三章函数及其图像第一节函数的概念第二节正比例函数第三节一次函数4. 第四章三角形第一节三角形的性质第二节三角形的证明第三节三角形的分类5. 第五章四边形第一节四边形的性质第二节矩形、菱形与正方形6. 第六章概率初步第一节概率的基本概念第二节概率的计算二、教学目标1. 理解并掌握实数的概念及其运算,提高学生的数学运算能力。
2. 学会解一元一次方程、二元一次方程组和不等式组,培养学生的逻辑思维能力。
3. 了解函数的概念,掌握正比例函数和一次函数的图像及性质,提高学生的数学建模能力。
4. 掌握三角形的性质、证明方法及分类,增强学生的空间想象力和逻辑推理能力。
5. 理解四边形的性质,认识矩形、菱形和正方形,培养学生的几何图形识别能力。
6. 了解概率的基本概念,掌握概率的计算方法,提高学生的数据分析能力。
三、教学难点与重点1. 教学难点:实数的运算、解方程、函数图像、三角形证明、概率计算。
2. 教学重点:实数的概念、方程的解法、函数性质、三角形性质、四边形性质、概率的应用。
四、教具与学具准备1. 教具:多媒体教学设备、三角板、直尺、圆规。
2. 学具:练习本、草稿纸、计算器。
五、教学过程1. 实数引入:通过实际生活中的例子,引出实数的概念。
讲解:讲解实数的分类、性质、运算。
练习:进行实数运算的随堂练习。
2. 代数方程引入:通过生活中的问题,引出方程的概念。
讲解:讲解一元一次方程、二元一次方程组和不等式组的解法。
练习:解方程和不等式组的随堂练习。
3. 函数及其图像引入:通过实际例子,引出函数的概念。
讲解:讲解正比例函数和一次函数的图像及性质。
练习:绘制函数图像,分析函数性质。
4. 三角形引入:通过观察生活中的三角形物体,引出三角形的概念。
华师大版八年级下册数学初中数学知识点总结

知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。
2.直角坐标系中,x 轴上的任意点的横坐标为0. 3.直角坐标系中,点A (1,1)在第一象限. 4.直角坐标系中,点A (-2,3)在第四象限. 5.直角坐标系中,点A (-2,1)在第二象限.知识点3:已知自变量的值求函数值1.当x=2时,函数y=32-x 的值为1. 2.当x=3时,函数y=21-x 的值为1.3.当x=-1时,函数y=321-x 的值为1.知识点4:基本函数的概念及性质1.函数y=-8x 是一次函数. 2.函数y=4x+1是正比例函数. 3.函数x y 21-=是反比例函数. 4.抛物线y=-3(x-2)2-5的开口向下. 5.抛物线y=4(x-3)2-10的对称轴是x=3. 6.抛物线2)1(212+-=x y 的顶点坐标是(1,2).7.反比例函数xy 2=的图象在第一、三象限. 知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10. 2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°=23. 2.sin 260°+ cos 260°= 1. 3.2sin30°+ tan45°= 2. 4.tan45°= 1.5.cos60°+ sin30°= 1.知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆.3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。
初中数学华东师大版九年级上册小结

练习
1、(2017成都 )科技改变生活,手机导航 极大方便了人们的出行.如图,小明一家自 驾到古镇C 游玩,到达 A地后,导航显示车 辆应沿北偏西60°方向行驶4 千米至地,再 沿北偏东45°方向行驶一段距离到达古镇, 小明发现古镇 C恰好在A 地的正北方向,求 两地的距离.
过点 B 作 BD AC ,
A.2 海里 B.2sin55° 海里 C.2cos55° 海里 D.2tan55° 海里
二、背靠背三角形
例1.(2017·巴中)如图,两座建筑物AD与BC, 其地面距离CD为60 m,从AD的顶点A测得 BC顶部B的仰角α=30°,测得其底部C的 俯角β=45°.求建筑物BC的高.(结果保留 根号)
仰角、俯角、坡度、坡角和方向角 1.仰角:视线在水平线上方的角叫做仰角. 俯角:视线在水平线下方的角叫做俯角.
视
铅
线 仰
垂角
水平线
线
俯
角 视
线
2.坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比), 用字母 i 表示.
坡角:坡面与水平面的夹角叫做坡角,用α表示,则有 i=
北A
h
α
l
30 °
2.解直角三角形的实际问题归纳以下两种图形
作业.(2017•达州)如图,信号塔PQ坐落在坡度i=1∶2的山坡上,其正前 方直立着一警示牌,当太阳光线与水平线成60°角时,测得信号塔PQ
落在斜坡上的影子QN长为2 5 米,落在警示牌上的影子MN长为3 米,
求信号塔PQ的高.(结果不取近似值)
西
东
O
45
°
B
南
3.方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一 条铅垂线(向上为北向),则从点 O 出发的视线与水平线或铅垂线 所夹的角,叫做观测的方向角
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学知识点总结七年级上第二章有理数1.相反意义的量向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。
2.正数和负数像+12,,258等大于0的数(“+”通常不写)叫正数。
像-5,,等在正数前面加“—”(读负)的数叫负数。
【注】0既不是正数也不是负数。
3.有理数(1)整数:正整数、零和负整数统称为整数。
分数:正分数和负分数统称为分数。
有理数:整数和分数统称为有理数。
(2)有理数分类1)按有理数的定义分类2)按正负分类正整数正整数整数0 正有理数有理数负整数有理数正分数正分数0 负整数分数负有理数负分数负分数【注】有限循环小数叫做分数。
(3)数集把一些数组合在一起,就组成了一个数的集合,简称数集。
所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。
4.数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。
【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。
2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。
2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
5.相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
(几何意义)(3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
(5)数a的相反数是—a。
(6)多重符号化简多重符号化简的结果是由“-”号的个数决定的。
如果“-”号是奇数个,则结果为负;如果是偶数个,则结果为正。
可简写为“奇负偶正”。
6.绝对值(1)在数轴上表示数a的点离开原点的距离,叫做数a 的绝对值。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.(3)绝对值的主要性质一个数的绝对值是一个非负数,即a≥0,因此,在实数范围内,绝对值最小的数是零.(4)两个相反数的绝对值相等.(5)运用绝对值比较有理数的大小两个负数,绝对值大的反而小.(6)比较两个负数的方法步骤是:1)先分别求出两个负数的绝对值;2)比较这两个绝对值的大小;3)根据“两个负数,绝对值大的反而小”作出正确的判断.7.有理数的加法(1)有理数加法法则1)同号两数相加,取相同的符号,并把绝对值相加。
2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3)互为相反数的两个数相加得零。
4)一个数与0相加,仍得这个数。
(2)有理数加法的运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)8. 有理数的减法减去一个数等于加上这个数的相反数。
a-b=a+(-b)9.有理数的加减混合运算(1)省略加号和的形式:在一个和式里,通常把各个加数的括号和它前面的加号省略不写。
例如:把-8+(+10)+(-6)+(-4)写成省略加号和的形式为-8+10-6-4。
读作“负8,正10,负6,负4的和”也可读作“负8加10减6减4。
(2)适当的应用加法运算律。
10.有理数的乘法(1)有理数的乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘都得零。
(2)几个不等于零的数相乘,积的正负号由负因数的个数决定,当负号的个数为奇数时,积为负;当负号的个数为偶数时,积为正。
几个数相乘,有一个因数为零,积就为零。
(3)乘法运算律乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法对加法的分配律:a(b+c)=ab+ac11.有理数的除法(1)倒数:乘积为1的两个数互为倒数。
【注】0没有倒数。
(2)有理数除法法则1:除以一个数等于乘以这个数的倒数。
【注】0不能做除数。
(3)有理数的除法法则2:两数相除,同号得正,异号得负,并把绝对值相除。
零除以任何一个不等于的数,都得零。
12.有理数的乘方(1)求几个相同因数积的运算,叫做乘方。
个(2)乘方的结果叫做幂,a叫做底数,n叫做指数。
(3)有理数乘方法则:正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数,0的任何非0次幂都是零。
13.科学记数法(1)一般的,10的n次幂,在1的后面有n的0。
(2)一个大于0的数就记成的形式。
其中n是正整数。
像这样的记数法叫做科学记数法。
(3)用科学记数法表示一个数时,10的指数等于原数的整数位数减1。
(或等于小数点向右移动的位数。
14.有理数的混合运算(1)先算乘方,再算乘除,最后算加减。
(2)同级运算,按照从左至右的顺序进行。
(3)如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的。
15.近似数和有效数字(1)准确数:完全符合实际的数。
(2)近似数:和准确数非常接近的数。
近似数和准确数接近的程度叫做精确度。
(3)一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,这时,从左边第一个不是0的数字起到精确到的位数止,所有的数字都叫做这个数的有效数字。
(4)近似数的精确度有两种形式:1)精确到哪一位,2)保留几个有效数字。
第三章整式的加减1.用字母表示数2.代数式(1)由数和字母用运算符号连接起所成的式子叫做代数式,单独的一个数或一个字母也叫代数式。
【注】运算符号指加、减、乘、除、乘方、开方。
代数式中不可含有“>”、“<”、“=”、“”、“”、“”等表示相等或不等关系的符号。
(2)代数式书写要求1)代数式中出现的乘号,通常写作“”或省略不写。
但数字与数字相乘时,要用“”。
2)数字与字母相乘时,数字写在字母的前面。
3)除法运算写成分数形式。
4)带分数与字母相乘时,要把带分数写成假分数。
5)在一些实际问题中,有时表示数量的代数式有单位名称,若代数式是积或商的形式,则单位直接写在后面,若代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在后面。
(3)解释简单代数式表示的实际背景(4)列代数式在解决实际问题时,常常先把问题中与数量有关的词语用代数式表示出来,即列代数式。
【注】抓住题中表示运算关系的关键词:如和、差、积、商、比、倍、大、小、增加了、增加到、减少、几分之几等。
(5)代数式的值一般的,用数值代替代数式里的字母,按照代数式中运算计算得出的结果叫做代数式的值。
【注】1)代数式中的值随着代数式中字母取值的变化而变化。
所以求代数式值时,在代入前必须写出“当……时”。
2)代数式里字母的取值必须确保代数式有意义。
3.单项式(1)如100t、6a、、vt、- n,它们都是数或字母的积,像这样的式子叫做单项式,单独的一个数或一个字母也是单项式。
(2)单项式的系数:单项式中的数字因数叫做这个单项式的系数。
(3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
【注】1)当一个单项式的系数是1或-1时,“1”通常省略不写。
2)单项式的系数是带分数时,通常写成假分数。
4.多项式(1)几个单项式的和,叫做多项式。
其中每个单项式叫做多项式的项,不含字母的项叫做常数项。
(2)多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数。
(3)一个多项式含有几项,就叫几项式;例如:x+2x+18是一个二次三项式。
【注】1)多项式的次数不是所有项的次数和。
2)多项式的每一项都包括它前面的正负号。
5.整式单项式与多项式统称为整式。
6.升幂排列与降幂排列为便于多项式的运算,可以用加法交换律将多项式各项的位置按某个字母的指数的大小顺序重新排列。
若按某个字母的指数从大到小的顺序排列,叫做这个多项式按这个字母降幂排列。
若按某个字母的指数从小到大的顺序排列,叫做这个多项式按这个字母升幂排列。
【注】重新排列的多项式,每一项一定要连同它的正负号一起移动。
含有两个或两个以上字母的多项式,常常按照其中某一个字母升幂排列或降幂排列。
7.整式的加减(1)同类项:所含字母相同,并且相同字母指数也相同的项叫做同类项,所有的常数项都是同类项。
(2)合并同类项:根据乘法对加法的分配律把多项式中同类项合并成一项叫做合并同类项。
合并同类项法则:在合并同类项时,把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变。
(3)去括号与添括号1)去括号法则:括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不改变正负号;括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变正负号。
a+(b+c)=a+b+c a-(b+c)=a-b-c2)添括号法则:所添括号前面是“十”号,括到括号里的各项都不改变正负号;所添括h号前是“一”号,括到括号里的各项都改变正负号。
a+b+c= a+(b+c)a-b-c= a-(b+c)(4)整式的加减先去括号,再合并同类项。
第五章图形的初步认识1.生活中常见的立体图形(1)球体(2)柱体:包括圆柱和棱柱。
1)圆柱:有两个底面是圆,侧面是曲面。
2)棱柱:上下两个底面是两个平行且相同的多边形,侧面是平行四边形。
棱柱可按底面多边形边数分为三棱柱、四棱柱、五棱柱等。
(3)椎体:包括圆锥和棱锥。
1)圆锥:有一个底面是圆,侧面是曲面。
2)棱锥:底面是多边形,侧面是三角形。
棱锥可按底面多边形边数分为三棱锥、四棱锥、五棱锥等。
(4)多面体:由平的面围成的立体图形。
2.画立体图形(1)视图:就是从正面、上面、和侧面(左面或右面)三个不同的方向看一个物体,然后描绘三张所看到的图,即视图。
正视图:从正面看到的图形。
俯视图:从上面看到的图形。
侧视图:从侧面看到的图形。
依观看方向不同,有左视图、右视图。
三视图:通常把正视图、俯视图、与左(或右)视图称作一个物体的三视图。
(2)球体的三视图都是圆。
正方体的三视图都是正方形圆柱体的正视图和左视图都是长方体,俯视图是圆。
圆锥体的正视图和左视图都是三角形,俯视图是圆,中心有一个点。
3.由视图到立体图形主视图:可分清物体的长与高。
俯视图:可分清物体的长与宽。
左视图:可分清物体的宽与高。
口诀:主俯长对正,主左高齐平,俯左宽相等。
4.立体图形的表面展开图多面体是由平面图形围成的的立体图形,沿着多面体的一些棱将它剪开,可以把多面体的表面展开成一个平面图形,这个平面图形叫做多面体的表面展开图。
正方体的表面展开图:有“一四一型”、“一三二型”、“二二二型”、“三三型”口诀:一行不过四,“田”“凹”应弃之,相间、Z 端是对面。
5.平面图形(1)圆是由曲线围成的封闭图形。
(2)多边形:由在同一平面且不在同一直线上的三条或三条以上的线段首尾顺次连结所组成的封闭图形叫做多边形。