第九章 光学分析法概论

合集下载

光学分析法导论全

光学分析法导论全
总结词
光学分析法在医学诊断领域中具有重要价值,可用于生物组织成像、药物代谢和 疾病诊断。
详细描述
光学分析法可以用于荧光成像、光声成像等技术手段,对生物组织进行无损检测和 成像,同时还可以用于药物代谢和疾病诊断,为临床医学提供有力支持。
在农业领域的应用
总结词
光学分析法在农业领域中应用广泛,可用于 作物生长监测、病虫害防治和农产品质量检 测。
VS
详细描述
通过光谱分析和图像处理等技术手段,可以 监测作物的生长状况、病虫害发生情况,同 时还可以检测农产品中的农药残留和营养成 分,提高农产品质量和安全性。
第五小节
光学分析法的发展趋势与展望
光学分析法的发展趋势
光学分析法在生命科学领域的应用
随着生命科学研究的深入,光学分析法在生物分子检测、细胞成像和 组织分析等方面发挥着越来越重要的作用。
随机原则 实验对象的分配和实验顺序的安排应随 机进行,减少系统误差。
实验操作流程
实验准备
确定实验目的、选择适当的仪器和 试剂、准备实验材料等。
实验操作
按照实验步骤进行操作,注意控制 实验条件,确保实验的一致性。
数据记录
详细记录实验过程中的数据,包括 实验条件、仪器读数、观察结果等。
实验清理
实验结束后,应清理实验场地,确 保实验室整洁。
光的吸收、发射和散射
利用物质对光的吸收特性进行定量和定性分析。通过测量不同 波长下的吸光度,可以确定物质的存在和浓度。 吸收光谱法 通过测量物质发射的光的波长和强度,进行物质的分析和鉴别。 如原子发射光谱法和荧光光谱法。 发射光谱法 利用物质对光的散射特性进行粒径分析和浓度测量。如动态光 散射法和静态光散射法。 散射光谱法
光学分析法的未来展望

光学分析法导论课件

光学分析法导论课件
光学分析法件
• 光学分析法的基本原理 • 光学分析法的 • 光学分析法的数据理与分析 • 光学分析法的用例
01
光学分析法介
光学分析法的定 义
光学分析法是一种基于光与物质相互 作用,通过测量光与物质相互作用的 特性来分析物质的方法。
它利用了光的吸收、反射、散射、透 射等特性,以及光与物质相互作用后 产生的光谱信息,来对物质进行定性 和定量分析。
干涉条件
干涉图样
干涉图样是干涉现象的直观表现,其 形状取决于光波的波长、相位差和振 动方向。
相干光波的频率相同、有恒定的相位 差、有相同的振动方向。
光的衍射
01
02
03
衍射现象
光波在遇到障碍物或通过 孔洞时,会绕过障碍物或 穿过孔洞,产生偏离直线 传播的现象。
衍射分类
根据产生衍射现象的原因, 可以分为菲涅尔衍射和夫 琅禾费衍射。
03
利用分类算法对光谱数据进行分类和识别,以实现物质鉴别和
含量测定等功能。
图像数据的处理与分析
图像增强
通过对比度增强、滤波等技术改善图像质量,提高图像的清晰度 和可辨识度。
图像分割
将图像划分为不同的区域或对象,以便于提取感兴趣的目标或特 征。
特征提取与识别
从图像中提取出目标物的形状、大小、颜色等特征,并利用分类 算法进行识别和分类。
光学显微镜 用于观察细胞形态和组织结构。
流式细胞术 用于细胞分选、计数和表型分析。
在环境监测中的应用
遥感技 术
用于大范围的环境监测和污染源调查。
光学传感器
用于实时监测水质和空气质量。
荧光光谱法
用于水体中有机污染物的检测。
表面增强拉曼散射
用于空气中有毒有害物质的检测。

光谱法与非光谱法

光谱法与非光谱法
2
△n=1, △V=1, △J=土1
1
4
3
n=1 2
1
0 V
0
0
4 3
V
12 0
4
3
12 0
4
3
12 0
4
△V=1, △J=1
3
12 0 △J=1
J
0
4
3
12 0
4
3
12 0
4
n=2
3
12 0
4
3
12 0
J
n-主量子数 V-振动量子数 J-转动量子数
四、光谱法仪器—分光光度计
第九章 光谱分析法概论
1.光学分析法分为
光谱分析法 非光谱分析法
2.光学(光谱)分析法过程
电磁辐射
物质
产生辐射信号 辐射信号变化
①有光源提供能量 ②能量与被测物质相互作用 ③产生被检测讯号
➢应用广泛 定性、定量和结构分析
➢重要作用-分析化学的重要组成部分
本章主要内容
一、电磁辐射和电磁波谱 二、电磁辐射与物质的相互作用 三、光学分析法的分类 四、光谱分析仪器—分光光度计
波谱区 微波
分子转动能级及电子自旋能级跃迁
无线电波 原子核自旋能级的跃迁
二、电磁辐射与物质相互作用
吸收
物质有内能变化 发射
光谱
拉曼散射 法
散射
反射 物质无内能变化
折射
非光 谱法
干涉和衍射
三、光学分析法的分类
基于物质与电磁辐射的相互作用建立起 来的仪器分析方法称为光学分析法 。
分类:


原子光谱法 吸收光谱法
光谱法

分子光谱法

光学分析法概论

光学分析法概论

第九章光学分析法概论1、光学分析法有哪些类型。

基于辐射的发射建立的发射光谱分析法、火焰光度分析法、分子发光分析法、放射分析法等;基于辐射的吸收建立的UV-V is光度法、原子吸收光度法、红外光谱法、核磁共振波谱法等;基于辐射的散射建立的比浊法、拉曼光谱法;基睛辐射的折射建立的折射法、干涉法;基于辐射的衍射建立的X-射线衍射法、电子衍射法等;基于辐射的旋转建立的偏振法、旋光法、圆二色光谱法等。

2、吸收光谱法和发射光谱法有何异同?吸收光谱法为当物质所吸收的电磁辐射能由低能态或基态跃迁至较高的能态(激发态),得到的光谱发射光谱法为物质通过电致激发、热致激发或光致激发等激发过程获得能量,变为激发态原子或分子,当从激发态过渡到低能态或基态时产生的光谱。

3、什么是分子光谱法?什么是原子光谱法?原子光谱法:是由原子外层或内层电子能级的变化产生的光谱,它的表现形式为线光谱。

属于这类分析方法的有原子发射光谱法、原子吸收光谱法,原子荧光光谱法以及X射线荧光光谱法等。

分子光谱法:是由分子中电子能级、振动和转动能级的变化产生的光谱,表现形式为带光谱。

属于这类分析方法的有紫外-可见分光光度法,红外光谱法,分子荧光光谱法和分子磷光光谱法等。

4、简述光学仪器三个最基本的组成部分及其作用。

辐射源(光源):提供电磁辐射。

波长选择器:将复合光分解成单色光或有一定宽度的谱带。

检测器:将光信号转换成电信号。

5、简述常用的分光系统的组成以及各自作用特点。

分光系统的作用是将复合光分解成单色光或有一定宽度的谱带。

分光系统又分为单色器和滤光片。

单色器由入射狭缝和出射狭缝、准直镜以及色散元件,如棱镜或光栅等组成。

棱镜:色散作用是基于构成棱镜的光学材料对不同波长的光具有不同的折射率。

光栅:利用多狭缝干涉和单狭缝衍射两者联合作用产生光栅光谱。

干涉仪:通过干涉现象,得到明暗相间的干涉图。

滤光器是最简单的分光系统,只能分离出一个波长带或只能保证消除给定消长以上或以下的所有辐射。

分析化学 第九章 光谱分析法概论

分析化学 第九章 光谱分析法概论

散射
③运动方向改变
Raman散射 ①非弹性碰撞
Stokes线λ散<λ入
②有能量交换,光的频率改变
③运动方向改变
反Stokes线λ散>λ入
散射光强 I ∝ 1/λ λ散-λ入 为拉曼位移,与分子的振动频率有关。
h
10
三、电磁辐射与物质的相互作用
4.折射和反射
反射:当光从介质1照射到与介质2时,一部分 光在界面上改变方向返回介质1的现象。
Planck常数:h = 6.626 × 10 -34 J . S 光速:c = 2.997925×1010cm/s
h
5
⒋波长越小、频率越大,能量越大。 ⒌单色光:
单波长的光(由具有相同能量的光子组成)
⒍能量常用单位:eV erg J ⒎能量换算关系:
1 e V 1 .6 1 0 1 9 J 1 .6 0 2 2 1 0 1 2 e r g
2.发射
2
样品
1
E 21h21hC / 21 E2h2hC/2
火焰或电弧
0
E1h1hC/1
λ2 λ1
λ21
λ
火焰、电弧激发的发射光谱示意图
2
I0
样品
I
E 21h21hC / 21 2hC/2
E1h1hC/1
光致发光示意图
λ2 λ1
λ21
h
9
三、电磁辐射与物质的相互作用
3.散射
Rayleigh散射①弹性碰撞 ②无能量交换,光的频率不变
λmax不变。而对于不同物质,它们的吸收曲线形 状和λmax不同。
h
15
h
16
③吸收曲线可以提供物质的结构信息,并作为物质 定性分析的依据之一。

《光学分析法概述》课件

《光学分析法概述》课件

光学分析法通常是非接触性的,不会对被 检测物质造成破坏或污染,这对于某些脆 弱的样品或环境十分重要。
实时监测
远程操作
光学分析法可以实现实时监测,对于快速 变化的过程或事件能够迅速响应。
在某些情况下,光学分析法可以通过远程 操作进行,无需直接接触被检测物质,增 加了操作的安全性和便利性。
缺点
对光源和探测器的依赖 光学分析法通常依赖于特定波长 或光谱范围的光源和探测器,而 这些设备的准确性和稳定性可能 会影响分析结果。
荧光光谱仪通常由光源、激发滤光片、单色器、样品池、发射滤光片和检测器组成,能够测量荧光物质 的激发光谱和发射光谱,从而分析荧光物质的性质和组成。
荧光光谱仪在生物学、医学、化学和环境科学等领域有广泛应用,可用于分析生物样品、药物、污染物 等样品。
拉曼光谱仪
拉曼光谱仪是一种用于测量拉曼散射光谱的仪 器。
《光学分析法概述》ppt 课件
CONTENTS
目录
• 光学分析法简介 • 光学分析法的基本原理 • 常用光学分析仪器介绍 • 光学分析法的优缺点 • 光学分析法的未来发展
CHAPTER
01
光学分析法简介
光学分析法的定义
光学分析法是一种基于光与物质相互作用来研究物质结构和性质的分析方法。它利用光的吸收、发射 、散射、折射等特性,结合各种光学器件和测量技术,实现对物质进行定性和定量分析的目的。
光的散射与干涉
光的散射
当光通过物质时,物质中的微小颗粒 会使光发生散射。散射光的强度和方 向与颗粒的大小、形状和折射率有关 ,可据此分析物质的粒度和分布。
光的干涉
两束或多束光波在空间相遇时,会因 相位差而产生加强或减弱的现象。利 用光的干涉现象可进行光学干涉测量 和干涉光谱分析。

光学分析法导论

光学分析法导论
类为对热产生响应的热检测器。 光检测器有硒光电池、光电管、光电倍增管、半导体等。 热检测器是吸收辐射并根据吸收引起的热效应来测量入射
辐射的强度,包括真空热电偶、热电检测器、热电偶等。 (五)读出装置
由检测器将光信号转换成电信号后,可用检流计、微安计、 数字显示器、光子计数等显示和记录结果。
非光谱法:利用物质与电磁辐射的相互作用测定电 磁辐射的反射、折射、干涉、衍射和偏振等基本性质 变化的分析方法。
分类:属于这类分析方法的有折射法、偏振法、光 散射法、干涉法、衍射法、旋光法和圆二色性法等。
光谱法分类:
按产生光谱的物质类型分:原子光谱,分子光谱和固体光谱
按产生的光谱的方式分:吸收光谱法,发射光谱法和散射光谱
会发生散射现象。如果这种散射是光子与物质分子发 生能量交换的,即不仅光子的运动方向发生变化,它 的能量也发生变化,则称为Raman散射。
这种散射光的频率(νm)与入射光的频率不同, 称为Raman位移。Raman位移的大小与分子的振动和转 动的能级有关,利用Raman位移研究物质结构的方法 称为Raman光谱法。
一、电磁辐射和电磁波谱
1.电磁辐射(电磁波,光) :以巨大速度通过空 间、不需要任何物质作为传播媒介的一种能量形式,它 是检测物质内在微观信息的最佳信使。
2.电磁辐射的性质:具有波、粒二像性;其能量交 换一般为单光子形式,且必须满足量子跃迁能量公式:
E h h c
3.电磁波谱:电磁辐射按波长顺序排列。
光电倍增管 读出器件
光源
第一单色器
样品
第二单色器
检测器
记录放大系统
荧光光谱仪
(一)光源:连续光源和线光源 连续光源用于分子吸收光谱法; 线光源用于荧光、原子吸收和Raman光谱法。

光学分析法概论

光学分析法概论

2.发射
(1)原子发射
¾ 气态自由原子处于激发态时,发射电磁波回到基态,产生 原子发射光谱;
¾ 激发态较少,原子发射光谱为线状光谱
(2)分子发射
¾ 从分子能级激发态,发射电磁波回到低能级,产生分子发 射光谱,多位于紫外、可见、红外区,分为:荧光光谱法、 磷光光谱法、化学发光法
¾ 能级复杂,发射的频率非常接近,表现为带状光谱
(一)物质内部能级发生变化
紫外可见分光光度法 吸
红外分光光度法
吸收、发射(磷光、荧光)

激发态
发 热
或 发 光
入射电磁辐射能量= 介质分子(原子)基态与激发态之间能量差
基态
¾内部能级:原子的电子能级、分子的电子能级、 分子振动能级、分子转动能级、原子核自转能级 ¾不同频率的光子的能量不同 ¾物质可根据其能量需要进行选择合适波长或频 率的电磁辐射
J
•s×
3×1010 cm / s 4.969 ×10−19 J
λ = 4×10−5 cm = 400nm
σ
=
1 λ
=
1 400 ×10−7 cm
=
25000cm−1
第二节 光学分析法分类
一、光谱法与非光谱法
光谱法:物质与辐射相互作用时,内部发生能级跃迁 非光谱法:ห้องสมุดไป่ตู้涉及物质内部能级跃迁
二、原子光谱法与分子光谱法 ¾原子光谱:线状光谱
1.吸收
(1)原子吸收
电磁辐射作用于气体自由原子后被吸收,原子吸收光谱
S4
原子外层电子能级数量较少,
S3
吸收后表现为对某特征频率
S2
的吸收,光谱形状为线光谱
S1
S0
(2)分子吸收
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
第九章光学分析法概论
1、光学分析法有哪些类型。

基于辐射的发射建立的发射光谱分析法、火焰光度分析法、分子发光分析法、放射分析法等;基于辐射的吸收建立的UV-V is光度法、原子吸收光度法、红外光谱法、核磁共振波谱法等;基于辐射的散射建立的比浊法、拉曼光谱法;基睛辐射的折射建立的折射法、干涉法;基于辐射的衍射建立的X-射线衍射法、电子衍射法等;基于辐射的旋转建立的偏振法、旋光法、圆二色光谱法等。

2、吸收光谱法和发射光谱法有何异同?
吸收光谱法为当物质所吸收的电磁辐射能由低能态或基态跃迁至较高的能态(激发态),得到的光谱发射光谱法为物质通过电致激发、热致激发或光致激发等激发过程获得能量,变为激发态原子或分子,当从激发态过渡到低能态或基态时产生的光谱。

3、什么是分子光谱法?什么是原子光谱法?
原子光谱法:是由原子外层或内层电子能级的变化产生的光谱,它的表现形式为线光谱。

属于这类分析方法的有原子发射光谱法、原子吸收光谱法,原子荧光光谱法以及X射线荧光光谱法等。

分子光谱法:是由分子中电子能级、振动和转动能级的变化产生的光谱,表现形式为带光谱。

属于这类分析方法的有紫外-可见分光光度法,红外光谱法,分子荧光光谱法和分子磷光光谱法等。

4、简述光学仪器三个最基本的组成部分及其作用。

辐射源(光源):提供电磁辐射。

波长选择器:将复合光分解成单色光或有一定宽度的谱带。

检测器:将光信号转换成电信号。

5、简述常用的分光系统的组成以及各自作用特点。

分光系统的作用是将复合光分解成单色光或有一定宽度的谱带。

分光系统又分为单色器和滤光片。

单色器由入射狭缝和出射狭缝、准直镜以及色散元件,如棱镜或光栅等组成。

棱镜:色散作用是基于构成棱镜的光学材料对不同波长的光具有不同的折射率。

光栅:利用多狭缝干涉和单狭缝衍射两者联合作用产生光栅光谱。

干涉仪:通过干涉现象,得到明暗相间的干涉图。

滤光器是最简单的分光系统,只能分离出一个波长带或只能保证消除给定消长以上或以下的所有辐射。

6、简述常用辐射源的种类典型的光源及其应用范围。

1 / 1'.。

相关文档
最新文档