光学分析法导论-概述

合集下载

光学分析法导论

光学分析法导论

3.散射光谱
• 分子吸收辐射能后,有一部分电子激发至电子能级中较高的振动能级, 在很短时间内(约10-12S)返回原来的基态或比原来稍高或稍低的振 动能级时,而向四周发射,这时在不与光路平行的方向上观察到的光 谱称散射光谱。
• 散射光谱有两种: 瑞利(Rayleigh)散射:只改变方向,散射辐射的频率与入
统称为光学光谱区。 基态: 在原子 (或 离 子、 分 子 )中,价电子一般在能量最
低的轨道上运动,这种能量最低的稳定状态叫做基态。 处于基态的原子称基态原子,处于基 态的离子称基态离子,处于基态的分子 称基态分子。 激发态:如果原子(或离子、分子)中有处在其它较高能级上
运动的电子时,则称之为激发态。
0.76~2.5m 分子的振动和转动能级的跃迁
2.5~50m
紫外光谱法 分光光度法 红外分光光度法 红外光谱法
远红外光 微波 射频
50~1000m
0.1~100cm 1~100m
分子的转动能级跃迁 分子的转动及电子自旋能级跃迁 电子自旋及核自旋
微波光谱法 核磁共振波谱法
§1-2光谱的分类
几个基本概念: 光学光谱区:包含紫外、可见及红外等光谱在内的光谱区域,
光子的能量为:
式中: E: 为光量子的能量,其单位为J或kJ(也可用“电子伏特eV”
作单位); leV为1个电子通过电位差为 1伏特的电场时所吸收或释放的能
量; 1eV=1.602×10-19 J; h: 为普朗克常数,其值为h=6.626×10-34 J·s; C : 光速,C=3.0×108m/s。
2. 吸收光谱
当一定能量的光辐射通过气态、液态或透明固体物质 时,物质的原子、离子或分子将吸收相应能量的光辐射而 由低能态跃迁至较高能态,从而产生一吸收光谱。这种

光学分析法导论

光学分析法导论
在光谱学中主要关心价电子的组态。
2、光谱项
原子的能量状态用n、L、S、J四个 量子数为参数的光谱项来表征。
n---- 主量子数 L ----总角量子数 S ----总自旋量子数 J ----内量子数
L ----总角量子数 其数值为外层价电子角量子数的
矢量和,L = l 其加和规则为:
共2L+1个不同的值。 通常用S、P、D、F……依次表示L
例如:Na只有1个外层电子,S=1/2,M=2, 所以产生双重线。
若是碱土金属,有2个外层电子,它们有两 种可能:1)向同一方向自旋,则S=1/2+1/2=1, M=3,为三重线。2)向相反方向自旋,则S=1/21/2=0,M=1,为单重线。
J ----内量子数
取决于L和S,是它们的矢量和:J = L + S。 若LS,J = (L+S),(L+S-1)……(L-S) 共2S+1个值 若L<S,J = (S+L),(S+L-1)……(S-L) 共2L+1个值
例如:
Hg 184.96 nm 谱线 ,它相应于光谱 项61S0--- 61P1的跃迁,其中: △n = 0 , △L = 1 ,△J = -1 ,△S =0,完全符合 上述选律。
实际上Hg还有一条很弱的253.65 nm谱 线,是相应于光谱项 61S0--- 63P1的跃迁, 其中: △S =1(△M =2) ,即△S 0,不符 合上述选律。
AES AAS AFS
5、原子光谱
二、分子光谱
1分子能级
分子光谱产生于分子能级的跃迁。分子能 级比较复杂包括电子能级、振动能级和转动能 级。
2、分子吸收光谱和分子发光光谱

02第二章 光学分析法导论

02第二章 光学分析法导论

量试样发射或吸收的辐射,就能获得有关它们
能级的信息. • 把测得的发射或吸收强度对电磁辐射的波长或 频率作图,得到光谱. • 由特征光谱可做试样组分的定性分析.由发射 或吸收强度可以进行定量分析.
2018/11/4 27
一、能级的相对分布
1 玻耳兹曼规律
Ni N
gie
j 0
Ei / kT Em / kT
非光谱法.
2018/11/4 4
2-1 电磁辐射的性质
• 电磁辐射是一种以巨大速度通过空间 传播的光量子流,它既具有波动性, 也具有微粒性. • 波粒二相性.
2018/11/4
5
光的波粒二象性
光的折射
波动性
E
光的衍射 光的偏振 光的干涉
粒子性
光电效应
hc E h

2018/11/4
所得到的X射线光谱都是相同的.
2018/11/4
20
• 带光谱是由于许多量子化的振动能级叠加 在分子的基态电子能级上而形成的. • 由一系列靠得很近的线光谱组成,因使用
的仪器不能分辨完全而呈现出带光谱.当
光辐射源中存在气态基团或小分子时会产 生带光谱.
2018/11/4 21
• 由于在振动能级上叠加了许多转动能级,
29
2 例子 假设一个基本体系中只包括基态和
一种激发态,由于基态能量确定为零,
并假设g0=gi,则
Ei / kT Ni e N 1 e Ei / kT
2018/11/4
30
表2-2 能级的相对分布
(E/eV) 10 1 10-1 Ni/N 10–183 5×10–17 2.3×10–2 (E/eV) 10–3 10–4 10–5 Ni/N 0.49 0.50 0.50

光学分析法概要

光学分析法概要

2023/11/10
5
4 光谱分析法分类 (1)根据作用质点的不同分为原子光谱法和分子光谱法
(a) 原子光谱法:由原子外层或内层电子能级变化产 生的光谱来进行分析的一类方法。原子光谱的表现 形式为线光谱。 (b) 分子光谱法:由分子中电子能级、振动和转动能 级的变化产生的光谱来进行分析的一类方法。表现 形式为带光谱。
时所辐射的谱线称为第一共振线,一般也是元素的最灵敏线。
灵敏线: 指各种元素谱线中强度比较大的谱线。通常是激发电位较低的谱线。一
般来说灵敏线多是一些共振线。
最后线:随元素含量降低谱线强度减弱,甚至消失 ,最后消失的谱线称为最后线。
例 溶液中Cd2+含量
谱线条数
10%
14
0.1%
10
0.01%
7
0.001%
2023/11/10
18
(1)结构 ICP由三部分组成: a.高频发生器和高频感应线圈; b.炬管和供气系统; c.雾化器及试样引入系统。
2023/11/10
19
(2)原理:感应线圈与高频发生器接通, 产生高频电流,电流流过负载线圈,并 在炬管的轴线方向产生一个高频磁场。 用电火花引燃,管内气体电离,电离出 来的正离子和电子受高频磁场的作用而 被加速,与其它分子碰撞,产生碰撞电 离,电子和离子的数目急剧增加。此时, 在气体中形成能量很大的环形涡流(垂 直于管轴方向),这个几百安培的环形 涡流瞬间就将气体加热到近万度的高温。 然后试样气溶胶由喷嘴喷入等离子体中 进行蒸发、原子化和激发。
2023/11/10
23
二、光谱仪 (摄谱仪)
作用 将光源发射的电磁辐射经色散后,得到按波长顺序排列的光谱, 并对不同波长的辐射进行检测与记录。

光学分析法概论

光学分析法概论

2.发射
(1)原子发射
¾ 气态自由原子处于激发态时,发射电磁波回到基态,产生 原子发射光谱;
¾ 激发态较少,原子发射光谱为线状光谱
(2)分子发射
¾ 从分子能级激发态,发射电磁波回到低能级,产生分子发 射光谱,多位于紫外、可见、红外区,分为:荧光光谱法、 磷光光谱法、化学发光法
¾ 能级复杂,发射的频率非常接近,表现为带状光谱
(一)物质内部能级发生变化
紫外可见分光光度法 吸
红外分光光度法
吸收、发射(磷光、荧光)

激发态
发 热
或 发 光
入射电磁辐射能量= 介质分子(原子)基态与激发态之间能量差
基态
¾内部能级:原子的电子能级、分子的电子能级、 分子振动能级、分子转动能级、原子核自转能级 ¾不同频率的光子的能量不同 ¾物质可根据其能量需要进行选择合适波长或频 率的电磁辐射
J
•s×
3×1010 cm / s 4.969 ×10−19 J
λ = 4×10−5 cm = 400nm
σ
=
1 λ
=
1 400 ×10−7 cm
=
25000cm−1
第二节 光学分析法分类
一、光谱法与非光谱法
光谱法:物质与辐射相互作用时,内部发生能级跃迁 非光谱法:ห้องสมุดไป่ตู้涉及物质内部能级跃迁
二、原子光谱法与分子光谱法 ¾原子光谱:线状光谱
1.吸收
(1)原子吸收
电磁辐射作用于气体自由原子后被吸收,原子吸收光谱
S4
原子外层电子能级数量较少,
S3
吸收后表现为对某特征频率
S2
的吸收,光谱形状为线光谱
S1
S0
(2)分子吸收

【大学课件】光学分析法导论

【大学课件】光学分析法导论
连续光谱:
ppt课件
14
线光谱: 由若干条强度不同的谱线和
暗区相间而成的光谱。
ppt课件
15
带状光谱: 由几个光带和暗区相间而成
的光谱。
ppt课件
16
线光谱
ppt课件
带光谱 17
连续光谱:在一定范围内。各种 波长的光都有,连续不断,无明 显的谱线和谱带。
ppt课件
18
(二)分子光谱和原子光谱: 原子光谱主要是由于核外电子能级发 生变化而产生的辐射或吸收而产生的 光谱。 分子光谱则是由于分子中电子能级及 分子的振动、分子的转动能级的变化 而产生的光谱。
第一章 光学 分析法导论
ppt课件
1
一.电磁波的基本性质 1.电磁波的种类:
波 5×10-3 0.1~10 10~200
200~400
长 ~0.1
λ 名 γ射线 x射线 远紫外光 近紫外光

波 400 ~ 750 ~ 1.0×106 ~ 1.0×109 ~
长 750
1.0×106 1.0×109
1.0×散射辐射 的波长和强度进行分析的方法。
它又可分为吸收光谱法、发光光 谱法、散射光谱法三种。
ppt课件
9
1)吸收光谱法:它是利用物质吸 收光后所产生的吸收光谱来进行分 析的方法。
ppt课件
10
2)发光光谱法:物质中的粒子 用一定的能量(如光、电、热等)激 发到高能级后,当跃迁回低能级时, 便产生出特征的发射光谱,利用此发 射光谱进行的分析的方法
ppt课件
4
波长(λ):表示相邻两个光波各 相应点间的直线距离(或相应两个波 峰或波谷间的直线距离)。
波数(ω):指在单位长度内波的 数目。

光学分析法概述

光学分析法概述
荧光光谱法
通过测量物质受激发后发射荧光的光谱性质, 确定物质成分和浓度的分析方法。
光学分析法的应用领域
01
环境监测
用于检测水体、大气和土壤中的污 染物和有害物质。
医学诊断
用于检测生物样本中的疾病标志物、 药物残留和基因突变等。
03
02
食品工业
用于检测食品中的营养成分、添加 剂和有害物质。
化学分析
用于测定化学物质的组成、结构和 浓度等。
光的衍射
光波遇到障碍物时发生衍射,衍射现象揭示了光波的波动性质。衍射技术用于分 析物质的结构和成分。
光的偏振与全息
光的偏振
光波的电矢量振动方向称为偏振。偏振光分析用于研究物质 的晶体结构和光学活性。
光学全息
通过记录和再现物体的振幅和相位信息,实现三维成像。全 息技术用于信息存储、显微镜等领域。
光学分析法的理论基础
拓展应用领域
针对不同领域的需求,开发适用于不同样品和测量条件的光学分析方 法,拓展应用领域。
加强与其他技术的联用
将光学分析法与其他技术(如色谱、质谱、核磁共振等)联用,实现 优势互补,提高分析性能。
05 光学分析法的未来发展
新技术应用
光学传感器的升级
利用新型材料和纳米技术,提高光学传感器的灵敏度和稳定性,使其在复杂环境中也能准确检测物质 。
光的波动理论
光被视为波动现象,具有波长、频率 和相位等属性。波动理论用于解释光 的干涉、衍射和偏振等现象。
光的量子理论
光由光子组成,具有能量和动量。量 子理论用于解释光的吸收、发射和散 射等现象。
03 常用光学分析仪器
分光仪
分光仪是一种用于测量物质光谱特性的仪器, 通过将物质发出的光或反射的光分成不同波长 的光谱,可以分析物质的成分和结构。

光学分析法

光学分析法
15
第二节 光谱法仪器
用来研究吸收、发射或荧光的电磁辐射的强度和波 长的关系的仪器叫做光谱仪或分光光度计。这一类仪器 一般包括五个基本单元:光源、单色器、样品容器、检 测器和读出器件。
光源
单色器
检测器
读出器件
样 品 光源的作用是提供足够的能量使试样蒸发、原子化、激发,产生光 谱
发射光谱仪
16
第二节 光谱法仪器
对于同一材料,光的折射率为其波长的函数。在可 见及紫外光谱域,可用下式表示:
24
第二节 光谱法仪器
n = A + B/2 + C/4
式中n为折射率,为波长,A、B、C为常数。 由公式可见,波长越长,折射率愈小。当包含有不
同波长的复合光通过棱镜时,不同波长的光就会因折射 率不同而分开。这种作用称为棱镜的色散作用。色散能 力常以色散率和分辨率表示。
吸收或发射微波区的电磁辐射。在这种吸收光谱中不同
13
第一节 光学分析法及其分类
化合物的耦合常数不同,可用来进行定性分析。根据耦 合常数,可用来帮助结构的确定。 6. 核磁共振波谱法
在强磁场作用下,核自旋磁矩与外磁场相互作用分 裂为能量不同的核磁能级,核磁能级之间的跃迁吸收或
发射射频区的电磁波。利用这种吸收光谱可进行有机化 合物结构的鉴定,以及分子的动态效应、氢键的形成、 互变异构反应等化学研究。
种新型光源在Raman光谱、荧光光谱、发射光谱、 fourier变换红外光谱等领域极受重视。常用的激光器有 主要波长为693.4nm的红宝石激光器,主要波长为632.8 nm的He-Ne激光器和主要波长为514.5nm、488.0nm的Ar离 子器。
二、单色器
单色器的主要作用是将复合光分解成单色光或有一 定宽度的谱带。单色器由入射狭缝和出射狭缝、准直镜
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档