潮流计算中的特殊问题
电力系统潮流计算2-特殊的潮流计算方法

思路
7
PQ分解法
即将定Jacobian方法中
BH GM
GN V P / V BL V Q / V
进一步化简为
B P / V B'' V Q / V
'
将Jacobian矩阵非对角 块设为0,获得P、Q之 间解耦 将V△Ɵ中V用1来代替 忽略支路电阻和接地支 路的影响,用-1/x为支 路电纳建立节点电纳矩 阵B’ B’’为节点导纳矩阵中不 包括PV节点的虚部
QD (VD , t ) 0
QD . 0
△t
QD QD QD t VD 0 T T t VD
QD QD VD t T T VD t
25
1
支路开断时的分布因子 P209
在电力系统运行过程中,由于继电保护动作等 原因,经常会出现线路跳闸等情况 如何快速计算某条线路退出运行情况下各线路 潮流变化情况?
8
PQ分解法潮流计算
PQ分解法修正方程
V ( k ) B ''1Q( ( k ) , V ( k ) ) / V ( k ) V ( k 1) V ( k ) V ( k )
(k )
B P(
' 1
(k )
,V
( k 1)
) /V
( k 1)
Scott的工程实践, 缺一不可
1
VD
QG
负荷母线无功不变,有
VD RDG QG VG RGG QG
1 RGG L GG 1 LGG LGG LGD L DD LDG
电力系统的潮流计算问题探析

电力系统的潮流计算问题探析随着社会对电能的需求量不断攀升,我国的电力工业事业也在迅速发展。
现如今,我国的电力工业事业也已经步入了以大电网、高度互联等为主的互联电力时代,其中超高压技术、远距离技术、直流输电等都能够有效地解决了我国绝大区域的电力资源的问题,同时也提高了电力行业的经济性。
电力行业中的潮流计算是电力系统安排、规划、分析、运行等工作的主要组成部分。
在整个电力系统中,潮流计算具备计算量大、过程复杂等特征,同时还要改变系统的某些参数进行调整,形成特定的潮流分布,传统的人工方法已无法满足调整要求,潮流自动调整就是由计算机软件代替人工完成潮流调整任务。
1 潮流计算在电力系统中,常规的潮流计算是依照所给的运行条件和网络结构来得到网络的运行状态,其中有母线电压、功率损耗、电网功率分布等。
电力系统的潮流计算所计算出来的结果能够作为判断运行方式及规划方案的合理性、可靠性等方面提供详细的参考依据。
1.1 交流系统潮流计算现代化的电力系统主要是以交流系统为主,一种是以阻抗矩阵作为计算的算法,而在电力系统的早期,主要的电力系统计算方法是以导纳矩阵作为计算的基础,再加上高斯迭代算法。
而早期的原理简单,所需内存少。
而阻抗矩阵计算法虽然收敛性好,但由于内存占用量大导致每次迭代的计算量也非常大;现交流系统的潮流计算中广泛应用牛顿-拉夫逊算法,此方法是用一组方程数等于变量数的非线性代数来进行描述,求解非线性代数方程组。
1.2 含直流系统的潮流计算直流输电在电力系统间在远距离送电、跨海送电或供电给超大负荷的地区地域等方面发挥了很大作用。
交直流混合系统的潮流计算时,不仅要计算交流系统变量还要计算直流系统的变量,根据交流系统各的负荷值和发电状况,再联系直流系统的控制方式,随后便可以计算,从而确定该电力系统的运行情况。
交直流系统的潮流计算方法一般包含统一求解法和顺序求解法两种。
统一求解法是一种将交流系统和直流系统的潮流计算方程组相互结合在一起,求出变量,该种方法计算了交流变量和直流变量之间的耦合关系,收敛性较好;而顺序求解法是将直流系统和交流系统分开求解。
潮流计算编程的常见问题及解决方法 (1)

167121819 (2009) 1223550203
科 学 技 术 与 工 程
Science Technology and Engineering
Vol19 No112 June 2009
Ζ 2009 Sci1 Tech1Engng1
潮流计算编程的常见问题及解决方法
闫丽梅 张士元 邱小宁
(大庆石油学院电气信息工程学院 ,大庆 163318)
摘 要 在采用 P2Q 分解法进行潮流计算时 ,修正方程中涉及到三角函数计算 ,在计算电压相角的正弦值和余弦值时 ,采用 角度制计算能引起潮流计算迭代次数的增加 。选择弧度制相角迭代形式才能使潮流计算有效收敛 。 关键词 潮流计算 编程 弧度 迭代次数 中图法分类号 TP391175; 文献标志码 A
潮流计算是电力系统稳态分析的基础 ,目前均 采用计算机进行电力系统潮流计算 。潮流计算有 各种不同的方法 ,但目标基本一致 ,即加快收敛速 度和节省计算机内存 [ 1 ] 。潮流计算基本程序很简 单 ,但对于刚刚接触潮流计算的编程人员来说 ,在 编程中很容易出现各种问题 ,尤其是迭代不收敛或 迭代次数过高的问题 。现将结合具体实例对此问 题进行分析 。
计算结果如下图 2所示 。
图 2 弧度制计算结果
3 修正方程的形式对迭代过程的影响
一般来说 , P2Q 分解法的迭代次数为 8次左右 。 P2Q 分解法计算时采用极坐标形式 , 因此会用到三 角函数计算 ,在此存在一个十分隐蔽的问题 。电压 的相角用角度的形式表示 , 即 15°, 23°等 。而在计 算时要将角度化成弧度才能计算 ,即 sin ( 15π /180) , cos( 23π /180) 。当以此种形式进行功率修正方程 的迭代时 , 可以得到正确结果 , 但收敛速度会非常 慢 ,迭代次数达到了几百次 。而直接采用弧度形式 计算 ,这种现象就会消失 , 即 sinθ, cosθ。在初次接 触潮流计算编程时 , 如果遇到迭代次数如此之高且 还能得到正确的计算结果时 , 问题的关键会很难被 发现 。
五、最小化潮流计算及潮流计算中的自动调整

limit
Qi Qilim it Qi
(5-5) (5-6)
Qi 和Ui之间的灵敏度关系由下式给出:
Ui Rii Qi
Rii是增广的B”的逆矩阵中和节点i相对应的对角线元素。根据需调整的Qi , 用(5-6)式算出 Ui,最后将节点i 的给定电压调整到新值
Uinew UiSP Ui
©版权所有
8
电力系统稳态分析
计算步长公式的推导(续)
目标函数改写为 F ( x) fi ( x) ai bi 2ci ( ) (5-3)
2 2 i 1 i 1
n
n
将F(x)对μ求导,并令其等于零,求得μ*
2 d ( ) d n 2 ai bi ci d d i 1 2 2 a b ci bi 2 ci 0 i i i 1 n
ys- y(x(k+1)) = ys- y(x(k)+μ(k)x(k)) =ys-[y(x(k))+μ(k)J(x(k))∆x(k)+(μ(k))2y(∆x(k))] =a(k)+ μ(k)b(k)+ (μ(k))2c(k)
©版权所有
11
电力系统稳态分析
具体应用,三种情况
从一定的数值出发,原来的潮流问题有解。
©版权所有
13
电力系统稳态分析
自动调整的两类方法 s 按照所要保持的系统状态量y 和当前的计算值y的大 小,不断地在一次次迭代中间改变某一个控制参数 x的大小。x大小的调整按照偏差反馈的原理进行。 ∆x=a(ys-y) 改变原来潮流方程的构成。
©版权所有
潮流计算的相关问题(精品)

§4.5牛顿-拉夫逊法计算潮流有关问题1.比较大,破坏了牛顿法的基础,不收敛。
选择的原则。
2.--塞德尔法、PQ 分解法为一阶收敛特性。
X Δ3.多值解••(PV节点或平衡节点的无功功率超过允许值,平衡节点的有功功率超过允许值;节点的电压过高或过低)对策:调整运行参数,PV节点、PQ节点相互转化•给定的网络结构和运行方式不合理;PV节点数目过少对策:调整运行方式,增加PV节点z问题很复杂,至今尚未很好解决二、稀疏矩阵技术1.稀疏矩阵表示法¾节点导纳矩阵:1234¾雅可比矩阵:高度稀疏的2N阶实数方阵,其形式对称但数值不对称。
其稀疏程度与节点导纳矩阵相同,可根据节点导纳矩阵形成。
2.高斯消去法3.节点的优化编号¾静态优化法:¾半动态优化法:¾动态优化法:不首先进行节点编号,而是寻找消去后出现的新支路数最少的节点,并为其编号,且立即将其消去;然后再寻找第二个消去后出现的新支路数最少的节点并为其编号,再立即将其消去……依此类推。
三、直流潮流计算¾-¾¾一种所谓N-1校核计算,即对于某一种运行方式要逐一开断系统中的线路或变压器,检查是否存在支路过载情况。
直流法计算潮流的过程1.2.在正常运行时线路两端相位差很少超过20°3.节点电压值的偏移很少超过10%,且对有功功率分布影响不大****2Re Re cos sin ij i j ij i i ij iij i j ij ij ij ij P U I U y U U U G U U G B θθ⎡⎤⎡⎤⎛⎞==−⎜⎟⎢⎥⎢⎥⎣⎦⎝⎠⎣⎦⎡⎤=−+⎣⎦&&1.0,1/2.sin ,cos 13.1ij ij ijij i j ij i j G B x U U θθθθ≈≈−≈−≈≈≈()()/ij ij i j i j ijP B x θθθθ=−−=−(cos sin )i i j ij ij ij ij j iP U U G B θθ∈=+∑解方程求出各节点的相角后,可利用前面的式子求出各支路的有功潮流。
潮流计算中的特殊问题

Vti fd
sin
Q
Vt It
sin
xad xs
Vti fd
cos
Vt2 xs
消去角度,有
P2
Q
Vt 2 xs
xad xs
Vti fd
2
i fd i fd max
Q
0,
Vt 2 xs
xad xs
Vti fd max
P
发电机无功输出的转子导体末端过热限制
欠励时电枢电流 产生的磁通和励 磁电流产生的磁 通同向叠加,造 成转子导体末端 过热(Kundur)
与kT相关的雅可比矩阵元素表达式 (直角坐标)
Pp
K T
KT
ep
eqG pq
f q B pq
f p eq B pq f qG pq
2
e
2 p
f
2 p
G pq
KT
Q p
KT
KT
f p eqG pq f q B pq
e p eq B pq f qG pq
2
e
2 p
f
2 p
B pq
Pq
KT
KT
eq e pG pq f p B pq
f q e p B pq f pG pq
KT
KT
f q e pG pq f p B pq
eq e p B pq f pG pq
K
T
直流潮流——应用场合
只关心有功潮ቤተ መጻሕፍቲ ባይዱ分布 不关心节点电压情况 对计算速度要求高
kT),节点q除已知P、Q外,还已知V,故称PQV 节点 潮流计算电压变量少一个 潮流计算多了一个变压器变比的变量 方程和变量个数仍相等,可求解
电力系统分析PowerSystemAnalysis

1 0
f
( x0
)
x(k )
x(k 1)
J
1 k
f
x(k)
(x(k) ) x(k )
5、极坐标的N-R法
P( ,U ) Psp P( ,U ) f (x) Q( ,U ) Qsp Q( ,U ) 为PV 节点的个数。
精度在3~10%范围内。
1、直流潮流
假设 1、Ui U N i 1 ~ n
2、rij 0 sinij ij cosij 1 Pij (Ui2 UiU j cosij )gij UiU j sin ijbij Pij bij (i j ) (i j ) / xij
算,这种计算要建立电路中各种电气量
和参数之间的数学方程式,就是潮流计
算的数学模型。这个模型是非线性的代
数方程组,不能直接求出解析解,需要
采用迭代的方法求解。
一、潮流计算的数学模型及解算方法
对潮流计算的要求是什么?
– 要有可靠的收敛性,对不同的系统、 不同的运行方式都能收敛;
– 占用内存要少、计算速度要快; – 调整和修改容易,能满足工程上提出
四、潮流计算问题的扩展
对潮流计算的特殊要求
为满足不等式约束,需要对可调变量进 行调整
使潮流分布满足最优化准则 负荷不确定:随机潮流 故障或并网前的开断潮流
四、潮流计算问题的扩展
1、变量的划分
网络结构关联阵A 网络元件参数p 干扰变量D 控制变量u 依从变量x
四、潮流计算问题的扩展
0
Yn
L
D
U
Y12
0
Y11
电力系统潮流计算潮流计算中特殊问题 PPT

Qi
Q m in i
Qi (Visp )
欲使
Qmax i
(Vinew )
就需要使
Qi
Q max i
Qi
Qi
Qi
Q Limit i
Vi Vinew Vi sp
V new i
Vi sp
Vi
用灵敏度方法求解 Vi RiiQi
-B”的逆矩阵R,
Rii是R中对应于节 点 i 的元素
Vi ViS 时 PDi PDoi
(2)
PDi
Vi
QDi
Vi
是常数; 建立Jacobi矩阵时加到对角元素上; 在FDLF中,只在B’’的对角元有体现。
6
ZIP模型下处理方式
PQ节点的P、Q不再是常数,负荷对Jacobi矩 阵的对角元的贡献PDi 是电压的一次函数。
BDD BDi BDG VD QD 0
BiD
Bii
BiG
Vi
Qi
0
BGD BGi BGG VG QG QG
消去无关节点,有
Bii BGiBiG BGG
那上述方程直接可解 若可控发电机数目较多,则会出现什么情况? 若中枢点不只一个,则又会出现什么情况?
19
中枢点电压控制问题求解方 法
方程个数小于变量个数的问题称之为超定方程, 可以有无穷多解。
通常可以采用优化方法来进行求解
min
1 2
VGT
VG
s.t. Vi +UVG =0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 潮流计算中的特殊问题第一节 负荷的静态特性负荷的功率是系统频率和电压的函数。
在潮流计算中可以认为频率变化不大。
但由于发电机或输电设备的开断会引起电压较大的变化,在潮流计算中计及负荷的静态电压特性是合理的。
负荷的电压静态特性就是负荷的有功和无功功率与电压大小的关系,一般表达如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=Qi is i Qi is i Qi Di Di Pi is i Pi is i Pi Di Di c V V b V V a Q Q c V V b V V a P P 2)0(2)0( (4-1) 式中系数满足11=++=++Qi Qi Qi Pi Pi Pi c b a c b a)0(Di P 、)0(Di Q 是在设定电压is V 下的负荷值。
组成负荷的三部分被分别看做恒定阻抗部分、恒定电流部分和恒定功率部分,所以(4-1)称为负荷的ZIP 模型。
当0=Pi a 、0=Qi a 时,忽略电压的二次项。
潮流计算中计及负荷的静态电压特性的方法:1、节点功率的不平衡量计算:⎪⎪⎪⎩⎪⎪⎪⎨⎧-⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=--=∆-⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=--=∆),(),(),(),(2)0(2)0(θθθθV Q c V V b V V a Q Q V Q Q Q Q V P c V V b V V a P P V P P P P i Qi is i Qi is i Qi Di Gi i Di Gi i i Pi is i Pi is i Pi Di Gi i Di Gi i (4-2) 2、牛顿法雅可比矩阵子矩阵N 和L 的对角线元素要增加i i V P ∂∆∂和ii V Q ∂∆∂3、P-Q 分解法,Q-V 迭代的系数矩阵B ''的对角线元素也应增加i i V Q ∂∆∂,这样B ''不再是常数了。
为了节省计算量,ii V Q ∂∆∂也可取为常数,如忽略二次项取0=Qi a ,或不改变B '',但功率不平衡量要按(4-2)计算。
负荷电压静态特性模型的指数形式⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=βαis i Di Di is i Di Di V V Q Q V V P P )0()0( (4-3) 8.1~5.0=α、6~5.1=β在动态潮流计算中,不能不考虑频率的变化。
考虑频率变化时式(4-1)、(4-3)变为。
⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛-+⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-+⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=002)0(002)0(11f f f k c V V b V V a Q Q f f f k c V V b V V a P P Qi Qi is i Qi is i Qi Di Di Pi Pi is i Pi is i Pi Di Di ⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛=00)0(00)0(11f f f k V V Q Q f f f k V V P P Qi is i Di Di Pi is i Di Di βα 当考虑频率变化时,频率也是待求的未知量,应出现在潮流方程中。
模型中系数的选取属于负荷建模的问题,仍未得到很好的解决。
第二节 节点类型的相互转换一、PV 节点转换为PQ 节点当在迭代过程中出现PV 节点无功功率越限时,可以再迭代几次,如果无功仍越限,说明PV 节点电压设置不合理,应进行调整:如果无功功率越下限,检查是否电压设置过低如是可适当提高电压设定值,或转换为PQ 节点,无功定值置下限值。
如果无功功率越上限,说明节点无功功率不能支持设定的电压,可适当调低电压设定值,或转换为PQ 节点,无功定值取上限值。
PV 节点转换为PQ 节点的处理方法:1、直角坐标方式的节点不平衡量由2i V ∆变为i Q ∆;2、牛顿法极坐标方式的修正方程加1个Q ∆方程;3、P-Q 分解法,θ-P 迭代不变,V Q -迭代的系数矩阵有两种处理方法:(1)B ''增加一行一列,如增加到最后:⎥⎦⎤⎢⎣⎡''=''ii T i B B B B B i ~ (4-4) 新的矩阵的因子表可由右下角加边的因子表修正法求出。
(2)B ''的对角元加大数在形成B ''时包含PV 节点对应的导纳,但PV 节点的对角元加一个很大的数。
这样在正常Q-V 迭代时,PV 节点的电压修正零接近于0,不会影响其他节点的电压修正量。
当PV 转换为PQ 节点时,将加的大数去掉。
ΔB B B -''=''~(4-5)采用因子表秩1修正法得到新的因子表二、PQ 节点转换为PV 节点当在迭代过程中出现PQ 节点电压越限时,可以再迭代几次,如果电压仍越限,说明PQ 节点无功设置不合理,应进行调整:如果电压越下限,说明无功设置较低,可适当提高无功设定值,或转换为PV 节点,电压定值取下限值。
如果电压越上限,说明节点无功设定偏高,可适当调低无功设定值,或转换为PV 节点,电压定值取上限值。
PQ 节点转换为PV 节点的处理方法:1、直角坐标方式的节点不平衡量由i Q ∆变为2i V ∆;2、牛顿法极坐标方式的修正方程减1个Q ∆方程;3、P-Q 分解法,θ-P 迭代不变,V Q -迭代的系数矩阵有两种处理方法:(1)在B ''中划去将要转换为PV 节点的节点所在的行和列,重新形成因子表。
(2)在B ''中将要转换为PV 节点的节点对应的对角元加一个很大的数,用因子表秩1修正法得到新的因子表三、因子表修正方法1、因子表秩1修正法设系数矩阵A 已因子化为如下的形式LDU A = (4-6)由于某种原因,A 变化为:A A N M A A ∆+=+=T a ~ (4-7)其中M 和N 为1⨯n 的列矢量,a 为标量。
新矩阵A ~的因子表为:U D L A ~~~~= (4-8)将(4-8)、(4-6)代入(4-7)有:T M aN LDU U D L +=~~~ (4-9)为了求出U D L ~~~中的各元素,将U D L ~~~和LDU 各矩阵的第一行和第一列单独列出,并写成分块矩阵的形式:⎥⎦⎤⎢⎣⎡=11L l L 1 ⎥⎦⎤⎢⎣⎡=1D D 1d ⎥⎦⎤⎢⎣⎡=1U u U 11 (4-10) 和⎥⎦⎤⎢⎣⎡=11L l L ~~1~ ⎥⎦⎤⎢⎣⎡=1D D ~~~1d ⎥⎦⎤⎢⎣⎡=1U u U ~~1~1 (4-11) 及⎥⎦⎤⎢⎣⎡=11M M m ⎥⎦⎤⎢⎣⎡=11N N n (4-12) 将(4-10)代入(4-6),A 矩阵可写为:⎥⎦⎤⎢⎣⎡+=11111111111U D L u l l u A d d d d (4-13) 将(4-11)代入(4-8),A ~矩阵可写为:⎥⎦⎤⎢⎣⎡+=11111111111~~~~~~~~~~~~U D L u l l u A d d d d (4-14) 将(4-12)代入T MaN A =∆⎥⎦⎤⎢⎣⎡=∆T T a an a m an m 11111111N M M N A (4-15) 将(4-13)、(4-14)、(4-15)代入(4-7)有⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡+T T a an a m an m d d d d d d d d 111111111111111111111111111111~~~~~~~~~~~N M M N U D L u l l u U D L u l l u (4-16) 根据等号两端矩阵对应元素相等,可得:(1) 1111~an m d d += (4-17)(2) T a m d d 111111~~N u u +=将(4-17)变为1111~an m d d -=代入,有 T a m d 111111~~~N u u -+= (4-18) 其中1111~u N N n T T -= (4-19) (3) 111111~~an d d M l l +=将(4-17)变为1111~an m d d -=代入,有111111~~~-+=d an M l l (4-20)其中1111~m l M M -= (4-21)由上(1)、(2)、(3)可计算出新矩阵因子表上三角矩阵第一行元素、下三角矩阵第一列元素和对角线矩阵第一个元素。
(4) T a d d 11111111111111~~~~~~N M U D L u l U D L u l ++=+ 重写为111111111111111111~~~~~~A U D L N M U D L u l u l U D L ∆+=++-=T a d d(4-22) 其中T a d d 111111111~~~N M u l u l A +-=∆将(4-18)、(4-20)代入得 T T T T T T T T T T T T T T T T T T T T T T T T a a m d an a a m d an n a m a m d an an m a m a m d an a an a m an m a m d an a an m an an m a m an m a m d an a an m n a m an m a a m d an an a m an m a a m d d d an d d an a m d d d an m d a a m d d d an an m d a d d 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111~~~~)~(~~~~)()(~~~)()(~~~~~~~~~)()(~~~~~~~~~~~~~~~~~~)~~(~)~~()~(~~~N M N M N M u N l M N M u l M N l M N M N M u M N l u l N M N M u l u M u l N l u l N M N M u l M u N l u l N M N M u M N l u l N M N M u M N l u l u l u l N M N u M l u l N M u l u l A =-=---=----=-+--=-++-+--=-+-----=+----=+-----=+++--=+-=∆------------- (4-23)其中)~(~1111a m d an a a --= (4-24) 因此,(4-22)可写为如下的形式T a 11111111~~~~~~N M U D L U D L += (4-25) (4-25)与(4-9)有同样的形式,可用(1)、(2)、(3)的方法分别求出111~~~U D L 矩阵的第一行第一列元素。