牛顿法最优潮流汇编
电力系统最优潮流分析

电力系统最优潮流分析电力系统是现代社会中最重要的系统工程之一,为社会生产和人民生活提供了绝大部分能量。
电能的生产需要耗费大量的燃料,而目前电能在输送、分配和消费过程中存在着大量的损耗。
因此如何采取适当措施节约能源,提高整个电力系统的运行效率,优化系统的运行方式,是国内外许多学者一直关注与研究的热点。
电力系统的最优化运行是指在确保电力系统安全运行、满足用户用电需求的前提下,如何通过调度系统中各发电机组或发电厂的运行,从而使系统发电所需的总费用或所消耗的总燃料达到最小的运筹决策问题。
数学上可将此问题描述为非线性规划或混合非线性规划问题。
最优潮流问题是指在满足必须的系统运行和安全约束条件下,通过调整系统中可利用控制手段实现预定目标最优的系统稳定运行状态。
同经典的经济调度法相比,最优潮流具有全面规划、统筹考虑等优点,它可将安全运行和最优经济运行等问题进行综合考虑,通过统一的数学模型来描述,从而将电力系统对经济性、安全性以及电能质量等方面的要求统一起来。
最优潮流问题的提出把电力系统的最优运行理论提高到一个新的高度,受到了国内外学者高度重视。
最优潮流已在电力系统中的安全运行、电网规划、经济调度、阻塞管理、可靠性分析以及能量管理系统等方面得到了广泛应用,成为了电力系统网络运行分析和优化中不可或缺的工具。
一、最优潮流问题研究的意义最优潮流可将电力系统可靠性与电能质量量化成相应的经济指标,并最终达到优化资源配置、降低成本、提高服务质量的目的。
因此最优潮流研究具有传统潮流计算无法比拟的意义,主要体现在以下两个方面。
一方面,通过最优潮流计算可指导系统调度员的操作,保证系统在经济、安全、可靠的状态下运行。
具体表现为:第一,当所求问题以目标函数、控制变量和约束条件的形式固定下来后,就一定可以求出唯一最优解,并且该结果不受人为因素的影响。
第二,最优潮流的寻优过程可以自动识别界约束,在解逐渐趋于最优的过程中可得到网络传输瓶颈信息,从而可以指导电网扩容与规划。
最优潮流编程 节点导纳矩阵编程

则电力系统最优潮流的数学模型可表示为
min f (u, x) ⎫
u
s .t .
g(u, x) = 0⎪⎪⎬
h(u, x ) ≤ 0⎪⎪⎭
五、实验数据及处理结果
简化梯度法的迭代计算步骤: 1)令迭代计数 k=0;
2)假定一组控制变量 u(0) ;
3)由式 ∂L = g(u, x) = 0 ,通过潮流计算由已知的 u 求得相应的 x(k) ; ∂λ
等。
部分用不等式表示如下
PGi ≤ PGi ≤ PGi ( i ∈ SG )
QRi ≤ QRi ≤ QRi ( i ∈ SR )
Vi ≤ Vi ≤ Vi
( i ∈ SB )
Pl = Pij = ViVj (Gij cosθij + Bij sin θij ) − Vi2Gij ≤ Pl ( l ∈ Sl )
+
⎛ ⎜
⎝
∂g
T
⎞
∂u
⎟ ⎠
λ
=
0
,则有
∂L ∂u
=
∂f ∂u
−
⎛ ⎜⎝
∂g ∂u
T
⎞ ⎟⎠
⎡⎛ ⎢⎢⎣⎜⎝
∂g ∂x
T
⎞ ⎟⎠
−1
⎤ ⎥ ⎥⎦
∂f ∂x
6) 若 ∂L = 0 ,说明这组解是最优解,计算结束。否则,转第 7)步。 ∂u
7) 若 ∂L ≠ 0 ,必须按照能使目标函数下降的方向对 u 进行修正, ∂u
f=f(u,x)
(四)最优潮流的约束条件及其数学模型
(1)等式约束条件: 最优潮流分布必须满足基本潮流方程,即
∑ PGi − PDi −Vi
最优潮流

最优潮流算法概述摘要:最优潮流是一类典型的非线性规划问题, 在电力系统中求解最优潮流是一项基本而重要的工作。
本文论述了最优潮流算法问题, 对其中经典的简化梯度法、牛顿法、内点法、序列二次规划法、以及混合序列法做了详细介绍,并对智能化的潮流算法,如遗传算法、模拟退火法等进行了探讨,同时做了相应的比较。
然后结合最优潮流在电力市场下的应用进行了分析,最后指出最优潮流发展所面临的问题,并深入研究。
一引言最优潮流OPF (Optima l Power Flow)是指从电力系统优化运行的角度来调整系统中各种控制设备的参数,在满足节点正常功率平衡及各种安全指标的约束下,实现目标函数最小化的优化过程。
它将电网的经济调度、质量控制和安全运行统一协调起来,对电力系统的规划和运行有着重要意义。
最优潮流能够统一考虑电力系统在安全、经济和电压质量各方面的要求。
最优潮流问题,实质上是在满足一定的安全约束条件下,使目标函数达到最优的非线性规划问题。
具体地说,最优潮流是研究当系统的结构参数及负荷情况给定时,通过系统变量的优选,所能找到的能满足所有指定的约束条件,并使系统的一个或多个目标达到最优时的潮流分布。
1962年, J. Carpentier介绍了一种以非线性规划方法来解决经济分配问题的方法[1],首次引入了电压约束和其它运行约束。
电力系统最优潮流是经过优化的潮流分布, 其数学模型可以表示为:,min(,)..(,)0(,)0fs t gh⎧⎪⎪=⎨⎪≤⎪⎩u xu xu xu x(1.1)其中目标函数f 及等式、不等式约束g 及h中的大部分约束都是变量的非线性函数, 因此电力系统的最优潮流计算是一个典型的有约束非线性规划问题。
本文论述了最优潮流算问题, 对其中的简化梯度法、牛顿法、内点法、序列二次规划法、遗传算法模拟退火法等进行了详细的比较。
二经典的最优潮流计算方法电力系统最优潮流的经典解算方法主要是指以简化梯度法、牛顿法、内点法和解耦法为代表的基于线性规划和非线性规划以及解耦原则的解算方法,是研究最多的最优潮流算法,这类算法的特点是以一阶或二阶梯度作为寻找最优解的主要信息。
牛顿法最优潮流

数学描述
潮流计算
最优潮流
总结分析
N H J M L , Pi jQi (ei jf i ) (Gij jBij )(e j jf j ) ji R S Pi jQi ei jf i ai jbi , ai (Gij e j Bij f j ), bi (Gij f j Bij e j )
其近似解与精确解分别相差
x1 , x2 ,..., xn
f1 ( x1 0 x1 , x2 0 x2 ,....... xn 0 xn ) y1 0 0 0 f 2 ( x1 x1 , x2 x2 ,....... xn xn ) y2 ........ 0 0 0 f ( x x , x x ,....... x x ) y n 1 1 2 2 n n n
1
用△x修正X的初始值得到新值,用k表示迭代次数写成表达式即为
x x
k
J x
k
k
f x
k
k 1
x x
k
数学描述
潮流计算
最优潮流
总结分析
P e, f P sp P e, f sp J * xT f x Q e, f Q P e, f 2 sp 2 2 V e , f i V V (e, f ) P T e Q f T T T x e f , J xT eT V 2 eT V 2 T f P f T Q f T
f1 x2 f n x2
最优潮流

最优潮流问题
Optimal Power Flow
一、概述
1.最优潮流和基本潮流的比较
✓ 潮流计算可以归结为针对一定的扰动变量p(负荷 情况),根据给定的控制变量u(如发电机的有功出 力、无功出力或节点电压模值等),求出相应的状 态变量x(如节点电压模值及角度),这样通过一次 潮流计算得到的潮流解决定了电力系统的一个运 行状态。
✓ 已有算法归纳起来可分为线性规划法、非线性规划法、混 合规划法、内点法和智能化方法等。
(二)线性规划法
✓ 前提:通常把最优潮流问题分解为有功功率和无 功功率两个子优化问题,
✓ 在求解方法上,大都采用分段线性或逐次线性化 逼近非线性规划问题,然后利用线性规划方法 (如单纯形法、对偶单纯形法)求解。
L f g T 0
x x x
L f g T 0
u u u
(3)由于(3)式就是潮流方程, L g(u, x) 0
所以通过潮流计算就可以由已知的u 求得相应的x(k)
(4)再观察式(1), g 就是牛顿法潮流计算的
x
雅可比矩阵J,利用求解潮流时已经求得的潮流解
点的J及其LU三角因子矩阵,可以方便地求出
(二)非线性规划法
✓ 特点:目标或约束函数呈现非线性特性。
✓ 最优潮流作为一个非线性规划问题,可以利用非线性规划 的各种方法来求解,更由于结合了电力系统的固有物理特 性,在变量的划分、等式及不等式约束条件的处理、有功 与无功的分解、变量修正方向的决定、甚至基本潮流计算 方法的选择等等方面,都可以有各种不同的方案。为此即 使是采用非线性规划方法,也曾出现过为数甚多的最优潮 流算法。
(2)所有发电机节点(包括平衡节点)及具有 可调无功补偿设备节点的电压模值;
电力系统稳态分析-牛顿拉夫逊法

0 引言潮流是配电网络分析的基础,用于电网调度、运行分析、操作模拟和设计规划,同时也是电压优化和网络接线变化所要参考的内容.潮流计算通过数值仿真的方法把电力系统的详细运行情况呈现给工作人员,从而便于研究系统在给定条件下的稳态运行特点。
随着市场经济的发展,经济利益是企业十分看重的,而线损却是现阶段阻碍企业提高效益的一大因素.及时、准确的潮流计算结果,可以给出配电网的潮流分布、理论线损及其在网络中的分布,从而为配电网的安全经济运行提供参考.从数学的角度来看,牛顿—拉夫逊法能有效进行非线性代数方程组的计算且具有二次收敛的特点,具有收敛快、精度高的特点,在输电网中得到广泛应用.随着现代计算机技术的发展,利用编程和相关软件,可以更好、更快地实现配电网功能,本文就是结合牛顿—拉夫逊法的基本原理,利用C++程序进行潮流计算,计算结果表明该方法具有良好的收敛性、可靠性及正确性。
1 牛顿-拉夫逊法基本介绍1。
1 潮流方程对于N个节点的电力网络(地作为参考节点不包括在内),如果网络结构和元件参数已知,则网络方程可表示为:YV I (1—1)=式中,Y为N*N阶节点导纳矩阵;V为N*1维节点电压列向量;I为N*1维节点注入电流列向量。
如果不计网络元件的非线性,也不考虑移相变压器,则Y为对称矩阵。
电力系统计算中,给定的运行变量是节点注入功率,而不是节点注入电流,这两者之间有如下关系:ˆˆ=EI S(1—2)式中,S为节点的注入复功率,是N*1维列矢量;ˆS为S的共轭;ˆˆi diag ⎡⎤=⎢⎥⎣⎦E V 是由节点电压的共轭组成的N*N 阶对角线矩阵。
由(1-1)和(1-2),可得:ˆˆ=S EYV上式就是潮流方程的复数形式,是N 维的非线性复数代数方程组.将其展开,有:ˆi i iij j j iP jQ V Y V ∈-=∑ j=1,2,….,N (1—3)式中, j i ∈表示所有和i 相连的节点j ,包括j i =。
牛顿、拉夫逊法在潮流计算中的应用

牛顿-拉夫逊法在潮流计算中的应用简介牛顿迭代法又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。
多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。
方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。
牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。
由于便于编写程序用计算机求解,应用较广。
下面以一元非线性代数方程的求解为例,来说明牛顿-拉夫逊法的基本思想。
设欲求解的非线性代数方程为f(x)=o设方程的真实解为x*,则必有f(x*)=0。
用牛顿-拉夫逊法求方程真实解x*的步骤如下:首先选取余割合适的初始估值x°作为方程f(x)=0的解,若恰巧有f(x°)=0,则方程的真实解即为x*= x°若f(x°)≠0,则做下一步。
取x¹=x°+Δx°为第一次的修正估值,则f(x¹)=f(x°+Δx°)其中Δx°为初始估值的增量,即Δx°=x¹-x°。
设函数f(x)具有任意阶导数,即可将上式在x°的邻域展开为泰勒级数,即:f(x¹)=f(x°+Δx°)=f(x°)+f'(x°)Δx°+[f''(x°)(Δx°)2]/2+…若所取的|Δx°|足够小,则含(Δx°)²的项及其余的一切高阶项均可略去,并使其等于零,即:f(x¹)≈f(x°)+f'(x°)Δx°=0Δx°=-f(x°)/f'(x°)x¹= x°-f(x°)/f'(x°)可见,只要f'(x°)≠0,即可根据上式求出第一次的修正估值x¹,若恰巧有f(x¹)=0,则方程的真实解即为x*=x¹。
最优潮流

线性规划法(linear Programming, LP) 混合规划法 内点算法 人工智能方法
非线性规划法
有约束非线性规划方法的基本思想是利用拉 格朗日乘子法和罚函数法建立增广目标函 数,使有约束非线性规划问题转化为无约束 的非线性规划问题,然后利用不用的数学方 法优化求解。
第一个成功的最优潮流算法是Dommel 和Tinnery于1968年提出的简化 梯度算法。
μ = lT z − uT w
2r
Gap = lT z − uT w
如果参数 μ 按上式取值时,算法的收敛性较
差,所以建议采用
μ = σ Gap
2r
σ ∈ (0,1) 为中心参数,一般取0.1,在大多数
场合可获得较好的收敛效果。
线性化的方程为
[ ] −
∇
2 x
f
(
x
)
−
∇
2 x
h(
x)
y
−
∇
2 x
⎢⎢∇
T x
h(
x
)
0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
j=1,2……N
ij
令 Vi ei jfi 展开得 P i jQi (ei jf i )
(G
ji
jBij )(e j jf j )
ji
Pi jQi ei jfi ai jbi , ai (Gij e j Bij f j ) bi (Gij f j Bij e j )
数学描述
潮流计算
最优潮流
总结分析
为了便于用迭代法解方程组,需要将上述功率方程改 写成功率平衡方程,并对功率平衡方程求偏导,得出 对应的雅可比矩阵,给未知节点赋电压初值,一般为 额定电压,将初值带入功率平衡方程,得到功率不平 衡量,这样由功率不平衡量、雅可比矩阵、节点电压 平衡量(未知的)构成了误差方程,解误差方程,得 到节点电压不平衡量,节点电压加上节点电压不平衡 量构成新的节点电压初值,将新的初值带入原来的功 率平衡方程,并重新形成雅可比矩阵,然后计算新的 电压不平衡量,这样不断迭代,不断修正,一般迭代 三到五次就能收敛。
数学描述
潮流计算
最优潮流
总结分析
牛顿法是解非线性方程 式的一个有效方法,所 以也被广泛的应用于潮 流计算。核心是修正方 程式的建立与求解。如 图所示利用泰勒公式展 开,取其线性部分代替 非线性方程近似求解。
f ( x) f ( x 0 ) f ' ( x 0 )( x x 0 )
'
电力系统潮流计算方法----牛顿法
数学描述
潮流计算
最优潮流
总结分析
电力系统分析包括潮流、最优潮流、预想故障分析、电 压稳定、暂态稳定和其他分析,电力系统分析是输电系 统规划中的关键技术之一。潮流计算是电力系统分析的 基础,所谓潮流计算即在给定电力系统网络拓扑、元件 参数和发电、负荷参量条件下,计算有功功率、无功功 率及电压在电力网中的分布。 手算如何计算? 一般来说,各个母线所供负荷的功率S是已知的,各个 节点V是未知的(平衡节点外)可以根据网络结构形成 节点导纳矩阵B,然后由B列写功率方程,由于功率方 程里功率是已知的,电压的幅值和相角是未知的,这样 潮流计算的问题就转化为求解非线性方程组的问题了。
ji
数学描述
潮流计算
最优潮流
总结分析
若
Vi Vi i
则潮流方程的极坐标形式如下:
Pi jQi Vi i (Gij jBij ) V j j
ji
Pi jQi Vi V j (Gij jBij ) cos ij j sin ij
其近似解与精确解分别相差
x1 , x2 ,..., xn
f1 ( x1 0 x1 , x2 0 x2 ,....... xn 0 xn ) y1 0 0 0 f 2 ( x1 x1 , x2 x2 ,....... xn xn ) y2 ........ 0 0 0 f ( x x , x x ,....... x x ) y n 1 1 2 2 n n n
f1 x2 f n x2
f1 x1 xn x 2 ... f n xn xn
J称函数的雅克比矩阵;△x为列向量, △f称不平衡量的 列向量,把初始值X(0)代入,可得△f,J中的元素,0 x f J x i 然后运用解线性方程的方法,求得 第一次迭代计算出的值 xi1 xi0 xi0 然后把计算值 再次代入求得△f,J中的元素,直到满足精确度即可。但 是,初值一定要选取的足够接近精确值,否则迭代过程 可能不收敛。(何以见得)
ji
Pi Vi V j (Gij cos ij Bij sin ij )i 1, 2,........N
数学描述
潮流计算
最优潮流
总结分析
y f ( x 0 , x 0 ..x 0 ) 1 1 2 n 1 ... yn f n ( x1 0 , x2 0 ..xn 0 )
f1 x1 f n x 1
数学描述
潮流计算
最优潮流
总结分析
潮流方程的描述 对于N个节点的电力网络若元件参数已知则网络方程表示为
YU I E*I S *
其中Y为n*n阶节点导纳矩阵, U为N*1阶,I*为N*1阶节点注入电 流列向量 但是电力网络中给定的往往是S而不是电流,所以线性方程就变成
E *YU S *
* P i jQi Vi YijV j ji
f 2 ( x 0 )( x x 0 ) 2 2!
......
f ( x) f ( x 0 ) f ( x 0 )( x x 0 ) 0, x x 0
f ( x0 ) f ' ( x0 )
数学描述
Hale Waihona Puke 潮流计算最优潮流总结分析
f1 ( x1 , x2 , x3 ....... xn ) y1 f ( x , x , x ....... x ) y 2 1 2 3 n 2 ........ f n ( x1 , x2 , x3 ....... xn ) yn
上式全部用泰勒展开即可
f1 f1 f1 0 0 0 f ( x , x .. x ) x x ,....... x y 1 1 2 n 1 2 n 1 x1 x2 xn .... f n f n f n f n ( x1 0 , x2 0 ..xn 0 ) x1 x2 ,....... xn yn x x x 1 2 n