线性方程组的迭代法应用及牛顿迭代法的改进

合集下载

迭代法的应用

迭代法的应用

迭代法的应用迭代法,又称递归法或回代法,是一种数学计算方法,通过逐步逼近的方式寻找方程的解。

迭代法广泛应用于各个领域,包括数学、计算机科学、物理学和工程学等等。

本文将介绍迭代法的基本原理,并探讨其在不同领域中的应用。

一、迭代法的基本原理迭代法的基本原理是通过逐步逼近的方式解决问题。

具体而言,迭代法使用一个初始值作为起点,然后通过一定的计算规则不断更新这个值,直到满足特定的条件为止。

这个过程可以理解为在数轴上不断靠近目标点的过程。

迭代法的核心在于不断重复更新值的操作,直到找到满足精度要求的解。

二、迭代法在数学中的应用1. 方程求解:迭代法广泛应用于方程求解中。

例如,使用牛顿迭代法可以求解非线性方程,通过不断迭代计算,逐步逼近方程的解。

迭代法不仅可以解决简单的方程,还可以应用于更复杂的方程组,如线性方程组和常微分方程等。

2. 数值积分:在数值方法中,迭代法也经常用于数值积分的计算。

通过将积分区间划分为多个小区间,利用迭代法逼近每个小区间的积分值,最后将这些积分值相加得到整个区间的积分近似值。

这种方法可以提高计算的精度和效率。

三、迭代法在计算机科学中的应用1. 数值优化:在计算机科学中,迭代法被广泛应用于数值优化问题。

例如,通过不断迭代调整参数的值,可以优化机器学习算法中的模型参数,使得模型在给定数据集上的表现达到最佳。

2. 图像处理:迭代法也可以应用于图像处理领域。

例如,通过不断迭代计算,可以对图像进行降噪、边缘检测和图像增强等操作。

迭代法能够逐步改进图像的质量,提高图像处理的效果。

四、迭代法在物理学和工程学中的应用1. 计算流体力学:在计算流体力学中,迭代法被广泛应用于求解流体动力学方程。

通过将流体域离散成网格,利用迭代法逐步求解每个网格点上的流体状态,可以模拟流体在不同条件下的行为,如风洞实验和飞行器设计等。

2. 结构分析:在工程学中,迭代法也可以用于结构分析和设计中。

通过不断迭代更新结构的参数,可以实现结构的优化和调整。

牛顿迭代法求解方程组

牛顿迭代法求解方程组

牛顿迭代法求解方程组一、牛顿迭代法的基本原理牛顿迭代法是一种用于求解方程的迭代方法,其基本思想是通过不断逼近方程的根来求解方程。

具体而言,对于一个方程f(x) = 0,我们可以选择一个初始近似解x0,然后通过迭代的方式不断更新x 的值,直到满足一定的停止准则为止。

牛顿迭代法的更新公式如下:x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}其中,x_n表示第n次迭代得到的近似解,f(x_n)表示方程在x_n处的函数值,f'(x_n)表示方程在x_n处的导数值。

二、牛顿迭代法在求解方程组中的应用牛顿迭代法不仅可以用于求解单个方程,还可以推广到求解方程组的情况。

假设我们要求解一个由m个方程和n个未知数组成的方程组,即F(x) = 0其中,F(x) = (f1(x1, x2, ..., xn), f2(x1, x2, ..., xn), ..., fm(x1, x2, ..., xn))为方程组的向量函数。

我们可以将该方程组转化为一个等价的非线性方程组:f(x) = 0其中,f(x) = (f1(x1, x2, ..., xn), f2(x1, x2, ..., xn), ..., fm(x1, x2, ..., xn))。

牛顿迭代法在求解方程组时的更新公式如下:x_{n+1} = x_n - J^{-1}(x_n) f(x_n)其中,J(x_n)是方程组在x_n处的雅可比矩阵,其定义为:J(x_n) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x_n) & \frac{\partial f_1}{\partial x_2}(x_n) & \cdots & \frac{\partial f_1}{\partial x_n}(x_n) \\ \frac{\partial f_2}{\partial x_1}(x_n) & \frac{\partial f_2}{\partial x_2}(x_n) & \cdots & \frac{\partial f_2}{\partial x_n}(x_n) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(x_n) & \frac{\partial f_m}{\partial x_2}(x_n) & \cdots & \frac{\partial f_m}{\partial x_n}(x_n) \end{pmatrix}三、牛顿迭代法的收敛性和收敛速度牛顿迭代法在求解方程组时具有较好的收敛性和收敛速度。

牛顿迭代法

牛顿迭代法
10.4 牛顿迭代法
一 牛顿法及其收敛性
牛顿法是一种线性化方法,其基本思想是将非线性方 程 f ( x) 0逐步归结为某种线性方程来求解. 设已知方程 f ( x) 0 有近似根 xk(假定 f ( xk ) 0), 将函数 f ( x) 在点 xk 展开,有
f ( x) f ( xk ) f ( xk )( x xk ),
x
表7 5 计算结果 k 0 1 2 3 xk 0.5 0.57102 0.56716 0.56714
5
二 牛顿法应用举例 对于给定的正数 C,应用牛顿法解二次方程
x 2 C 0,
可导出求开方值 C 的计算程序
xk 1 1 C ( xk ). 2 xk
(3.5)
这种迭代公式对于任意初值 x0 0 都是收敛的. 事实上,对(3.5)式施行配方手续,易知
10
在(3.7)中取C
1 ,则称为简化牛顿法,这 f ( x0 )
类方法计算量省,但只有线性收敛,其几何意义是用平行 弦与 x 轴交点作为 x *的近似. 如图7-4所示.
图7-4
11
(2)
牛顿下山法.
牛顿法收敛性依赖初值 x0的选取. 如果x0 偏离所求根 x* 较远,则牛顿法可能发散.
xk 1 xk 1 1 C ( xk 2 xk C 1 ( xk 2 xk C )2 ; C )2 .
6
以上两式相除得
xk 1 xk 1 xk C x C k C . C
2
据此反复递推有
xk 1 xk 1 x0 C x C 0 C C .
14
x1 17.9,它不满足条件(3.10).

迭代法和牛顿迭代法的优缺点及应用

迭代法和牛顿迭代法的优缺点及应用

迭代法和牛顿迭代法的优缺点及应用在数值计算和算法设计中,迭代法和牛顿迭代法是两种常见的数值优化方法。

它们可以很好地用于解决非线性方程组、最优化问题以及数学模型的求解等问题。

在实际应用中,它们的优缺点各有不同,可根据问题的特点选择适合的方法。

本文将对迭代法和牛顿迭代法的优缺点及应用进行分析。

一、迭代法1、迭代法的原理迭代法是一种通过不断逼近目标值的方法。

其思想是将一个原问题转化为一个递归求解的过程。

假设我们要求解一个方程f(x) = 0,可以利用如下公式进行迭代:$x_{n+1} = g(x_n)$其中,$g(x_n)$是一个递推公式,用来表示如何从$x_n$ 得到$x_{n+1}$。

通过不断迭代,可以逐渐逼近解。

当迭代次数足够多时,可以得到符合精度的解。

2、迭代法的优点(1)实现简单:迭代法的计算过程非常简单,只需要考虑递推公式即可。

(2)收敛速度较快:迭代法的收敛速度要比其他方法要快,尤其是在某些非线性问题中,迭代法表现出了其优异的收敛性。

(3)适用范围广:迭代法可以用于解决各种类型的数学问题,包括求解非线性方程组、求解最优化问题以及求解微积分方程等。

3、迭代法的缺点(1)收敛不稳定:由于迭代法只是通过不断逼近目标值的过程,收敛的速度和稳定性都受到了影响,可能存在发散的情况。

(2)初值选择的影响:迭代法在求解问题时,对于初值的选择需要非常慎重,因为不同的初值会得到不同的收敛结果。

(3)依赖递推公式:迭代法需要依赖于递推公式,当递推公式难以求解或者导数难以计算时,迭代法的效果可能会受到影响。

二、牛顿迭代法1、牛顿迭代法的原理牛顿迭代法是一种利用函数的一阶导数和二阶导数来逼近根的方法。

对于一个非线性方程f(x)=0,设其在$x_0$处的导数不为0,则可以用如下公式进行迭代:$x_{n+1} = x_n −\frac {f(x_n)}{f′(x_n)}$其中$f'(x_n)$是$f(x_n)$的一阶导数。

牛顿迭代法及其应用

牛顿迭代法及其应用

牛顿迭代法及其应用牛顿迭代法是一种求解函数零点的迭代方法,具有快速收敛、精度高等优点,被广泛应用于计算机、数学、物理等领域。

本文将从理论和实际应用两方面介绍牛顿迭代法,并对其应用进行探讨。

一、理论基础牛顿迭代法是通过一点处的切线来逼近函数零点的方法。

设$f(x)$在$x_0$点有一个零点,且其导数$f'(x_0)$存在且不为零,那么该零点可以通过一点$(x_0,f(x_0))$处的切线与$x$轴的交点来逐步逼近。

假设切线的方程为$y=f'(x_0)(x-x_0)+f(x_0)$,则其中$x$轴上的交点为$x_1=x_0-\frac{f(x_0)}{f'(x_0)}$,这是零点的一个更好的近似值。

用$x_1$代替$x_0$,再利用同样的方法得到$x_2$,不断重复这个过程,即可逐步逼近零点。

这个过程可以用下面的公式表示:$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$$这就是牛顿迭代法的基本公式。

从初始值$x_0$开始迭代,不断利用公式进行逼近,直到找到满足$f(x_n)=0$的解。

二、实际应用牛顿迭代法在实际应用中广泛存在,比如在计算机图形学中,通过牛顿迭代法可以精确计算出圆的周长、面积等参数,也可以实现快速的路径追踪和光线追踪。

在金融领域中,牛顿迭代法可以用来计算隐含波动率,即在期权定价模型中,寻找满足期权定价公式的波动率。

由于这个过程中往往要用到反函数,所以牛顿迭代法可以快速找到隐含波动率。

另外,在机器学习、神经网络中,多次用到牛顿迭代法进行梯度下降,智能化运用牛顿迭代法可以提高计算效率,降低误差。

三、应用探讨牛顿迭代法的应用范围较广,但在实际应用中也存在一些问题。

如何避免迭代过程中出现抖动、越界、阻尼等现象,可以通过设置收敛条件、调整步长等方式进行优化。

此外,当函数的导数存在零点或迭代公式不存在时,牛顿迭代法也会失效。

因此,在选择牛顿迭代法时,需要了解函数特性,根据情况选择适合的迭代方法。

高斯牛顿迭代法解方程组

高斯牛顿迭代法解方程组

高斯牛顿迭代法解方程组高斯牛顿迭代法是一种常用的数值计算方法,用于解决非线性方程组。

本文将介绍高斯牛顿迭代法的基本原理、步骤和应用场景。

一、高斯牛顿迭代法的原理高斯牛顿迭代法是利用泰勒展开式对非线性方程组进行近似线性化处理,然后通过迭代逼近的方法求解方程组的解。

其基本思想是通过线性化的近似,将非线性方程组转化为一个线性方程组,然后利用线性方程组的解逐步逼近非线性方程组的解。

二、高斯牛顿迭代法的步骤1. 初始化:给定初值向量x0和迭代误差精度ε。

2. 迭代计算:根据当前的估计解xk,计算出近似的雅可比矩阵Jk 和残差向量rk。

3. 判断终止条件:若rk的范数小于等于设定的误差精度ε,则停止迭代,输出近似解xk;否则,进行下一步迭代。

4. 更新迭代:根据当前的估计解xk和雅可比矩阵Jk,计算更新量Δxk。

5. 更新解向量:更新当前的估计解xk+1 = xk + Δxk。

6. 回到步骤2,继续迭代计算,直到满足终止条件。

三、高斯牛顿迭代法的应用场景高斯牛顿迭代法广泛应用于科学和工程领域的各种问题求解,特别适用于非线性最小二乘问题的求解。

以下是一些常见的应用场景:1. 数据拟合:在实际问题中,常常需要根据一组观测数据拟合出一个数学模型。

高斯牛顿迭代法可以通过最小化观测数据与模型之间的误差,来确定最优的模型参数。

2. 图像处理:高斯牛顿迭代法可以用于图像处理中的图像恢复、图像去噪、图像分割等问题的求解。

例如,在图像恢复中,可以利用高斯牛顿迭代法求解出最佳的恢复图像。

3. 机器学习:高斯牛顿迭代法可以用于机器学习中的参数估计和模型训练。

例如,在逻辑回归中,可以使用高斯牛顿迭代法来求解最优的模型参数。

4. 无线通信:高斯牛顿迭代法在无线通信系统中的信道估计、自适应调制等问题的求解中得到广泛应用。

通过迭代计算信道的状态信息,可以提高通信系统的性能。

高斯牛顿迭代法是一种强大的数值计算方法,可以有效地求解非线性方程组。

牛顿迭代法的优化理论和方法

牛顿迭代法的优化理论和方法

牛顿迭代法的优化理论和方法一、引言优化问题是现代科学和工程中一个重要的问题。

牛顿迭代法是一种常用的优化算法,用于解决非线性优化问题。

本文将介绍牛顿迭代法的原理、算法以及应用。

二、牛顿迭代法的原理牛顿迭代法的原理是利用二阶导数信息来构造一个二次近似函数,通过求解这个近似函数的零点来逼近原函数的零点。

具体来说,假设我们要求解方程 $f(x) = 0$,考虑在 $x_0$ 处对$f(x)$ 进行泰勒展开:$$ f(x) = f(x_0) + f'(x_0)(x-x_0) +\frac{1}{2}f''(\xi)(x-x_0)^2 $$ 其中 $\xi$ 位于 $x$ 和 $x_0$ 之间。

假设 $x_0$ 是方程的一个近似解,那么我们可以忽略高阶项,得到一个二次近似函数:$$ f(x) \approx f(x_0) + f'(x_0)(x-x_0) +\frac{1}{2}f''(x_0)(x-x_0)^2 $$ 令上式等于 0,解得:$$ x_1 = x_0 -\frac{f'(x_0)}{f''(x_0)} $$ 这个解 $x_1$ 更接近方程的根,我们可以利用它来作为 $x_0$ 重复上述过程,得到一个更优的解。

三、牛顿迭代法的算法根据上面的原理,可以得到牛顿迭代法的算法:1. 选取初值 $x_0$。

2. 计算 $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$。

3. 如果收敛,停止迭代;否则返回第二步。

这里的 $f'(x_k)$ 是 $f(x)$ 在 $x_k$ 处的导数。

四、牛顿迭代法的应用牛顿迭代法的应用非常广泛,下面列举几个常见的例子。

1. 求解方程。

对于非线性方程 $f(x) = 0$,可以使用牛顿迭代法求解。

需要注意的是,如果初值选取不恰当,可能会出现迭代不收敛、收敛速度慢等情况。

牛顿迭代法的最优化方法和应用

牛顿迭代法的最优化方法和应用

牛顿迭代法的最优化方法和应用牛顿迭代法是一种优化算法,它基于牛顿法和迭代法的思想,广泛应用于最优化问题的求解中。

在计算机科学、数学和工程等领域,牛顿迭代法被广泛应用于解决各种实际问题,如机器学习、数值分析和物理模拟等。

一、基本原理牛顿迭代法的基本思想是在当前点的邻域内用二次函数近似目标函数,然后在近似函数的极小点处求解最小化问题。

具体而言,假设我们要最小化一个凸函数$f(x)$,我们可以在当前点$x_k$处利用泰勒级数将其近似为:$$f(x_k+p)\approx f(x_k)+\nabla f(x_k)^Tp+\frac12p^T\nabla^2f(x_k)p$$其中,$p$是一个向量,$\nabla f(x_k)$和$\nabla ^2f(x_k)$分别是$f(x_k)$的一阶和二阶导数,也称为梯度和黑塞矩阵。

我们可以令近似函数的一阶导数等于零,即$\nabla f(x_k)+\nabla^2f(x_k)p=0$,然后解出$p$,得到$p=-\nabla ^{-1}f(x_k)\nablaf(x_k)$。

于是我们可以将当前点更新为$x_{k+1}=x_k+p$。

我们可以重复这个过程,直到目标函数收敛到我们所需的精度。

二、应用实例1. 机器学习:牛顿迭代法可以用于训练神经网络和逻辑回归等机器学习模型。

在神经网络中,牛顿迭代法可以帮助我们优化网络的权重和偏置,以提高网络的准确性和鲁棒性。

在逻辑回归中,牛顿迭代法可以帮助我们学习双分类问题的参数和概率分布。

2. 数值分析:牛顿迭代法可以用于求解非线性方程和方程组的根。

例如,我们可以使用牛顿迭代法来解决$sin(x)=0$和$x^2-2=0$这样的方程。

当然,为了保证迭代收敛,我们需要选择一个合适的初始点,并且要确保目标函数是连续和可微的。

3. 物理模拟:牛顿迭代法可以用于求解物理方程组的数值解。

它可以帮助我们模拟地球的运动轨迹、热力学系统的稳态和弹性材料的应力分布等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性方程组的迭代法应用及牛顿迭代法的改进摘要: 迭代解法就是通过逐次迭代逼近来得到近似解的方法。

由于从不同的问题而导出的线性代数方程组的系数矩阵不同,因此对于大型稀疏矩阵所对应线性代数方程组,用迭代法求解。

本文论述了Jacobi 法,Gauss-Seidel 法,逐次超松弛法这三种迭代法,并在此基础上对牛顿型的方法进行了改进,从而使算法更为精确方便。

关键词:线性方程组,牛顿迭代法,Jacobi 法,Gauss-Seidel 法,逐次超松弛法1.线性方程组迭代法1.1线性方程组的迭代解法的基本思想迭代法求解基本思想:从某一初始向量X (0)=[x 1(0) ,x 2(0) ,……………x n (0) ]出发,按某种迭代规则,不断地对前一次近似值进行修改,形成近似解的向量{X (k)}。

当近似解X (k) =[x 1(k) ,x 2(k) ,……………x n (k) ]收敛于方程组的精确解向量X* =[x 1*,x 2*,……………x n *]时,满足给定精度要求的近似解向量X (k)可作为X*的数值解。

1.2 线性方程组的迭代法主要研究的三个问题(1) 如何构造迭代公式 (2) 向量数列{X (k)}的收敛条件 (3) 迭代的结束和误差估计解线性方程组的迭代解法主要有简单迭代法、 Gauss-Seidel 法和SOR 法。

简单迭代法又称同时代换法或Jacobi 法,是最简单的解线性方程组的迭代解法也是其他解法的基础。

1.3Jacobi 迭代法设方程组点系数矩阵n n j A ai R ⨯⎡⎤=∈⎣⎦满足条件0ii a ≠,i=0,1,2, …n 。

把A 分解为A=D+L+U1112,nn a a D a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 121,100,0n n n a l a a -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦1211,000n n n a a U a -⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦在迭代法一般形式中,取N=D, P=-(L+U)形成以下迭代公式(1)1()1(),k k x D l U x D b +--=-++ k=0,1,… (2-1)其中(0)n x R ∈任取。

故上述迭代公式(2-1)称为Jacobi 迭代法,又称简单迭代法,它的迭代矩阵是1()J G D L U -=-+因11()ii D diag a --=,故Jacobi 迭代法(2-1)的分量形式是(1()1)/nk k ii j j i ii j j ix a x b a +=≠=-+∑)(,i=0,1,2, …n k=0,1,…1.4 Gauss-Seidel 法解线性方程组的Gauss-Seidel 法简称Seidel 法,是对简单迭代法(Jacobi 迭代法)点改进 迭代公式在Jacobi 迭代法点基础上可提出如下迭代公式X (k+1)(k+1)(k)12=C X +C X +F, k=0,1,2(3-1)其中2111200000,0n n c C c c ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 111212222000n n nn c c c c c C c ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦第i 个式子为1(1)()1(1),i nk k iij j ij j i j j ix c x k c x f -+===+++∑∑ i=1,2, …n称为(3-1)Gauss-Seidel 迭代公式由Seidel 迭代公式(3-1)可以看出,在第k+1次迭代进行点过程中,因X 点各个分量x i ,i=1,2, ,…,n 是逐个由迭代公式算出的,在计算分量x i (k+1) 时,序号在i 之前点新分量x 1(k+1), x 2(k+1) , …x i-1(k+1) 也已求出。

Jacobi 迭代公式等号的右边未采用这些新分量点值,而是全部使用老分量x j (k)的值计算x i (k+1) 。

当迭代过程收敛时,这些新分量一般较老分量更接近于真值x 1* ,x 2*,…x i-1*,若使用新分量代替老分量进行迭代,则可能使迭代过程加速,Seidel 迭代法正是这样做的。

由等价方程组构造迭代公式1(1)(1)()111(),i nk k k ii ij j ij j j j i ii x b a x a x a -++==+=-+∑∑ i=1,2,…n 1.5逐次超松弛法逐次超松弛法(successive over relaxation method )简称SOR 法,是对Gauss-Seidel 迭代法点进一步改进而得到点一种加速迭代法。

对于判定可收敛点迭代过程,使用SOR 法可进一步加速收敛过程。

设方程组点系数矩阵A 满足a ii ≠0,i=1,2,…n 。

把A 分解为11A=D+L+(1)D+U ωω-其中ω>0称为松弛因子。

在迭代法一般形式中,取1,N D L ω=+ 1((1)D +U )P ω=--形成以下的迭代公式 (1)1()1111()((1))(),k k x D L D U x D L b ωωω+--=-+-+++ k=0,1…其中(0)n x R ∈任选经化简得SOR 方法实际计算公式为1(1)(1)()()111(1)i n ij ijk k k k i ij i j j j i iiii ii a a b x x x x a a a ωω-++==+⎡⎤=----+⎢⎥⎣⎦∑∑i=1,2,…,n ;k=0,1,…2.牛顿方法的改进对于函数f(x),假定已给出极小点*x 的一个较好的近似点0x ,则在0x 处将f(x)泰勒展开到二次项,得二次函数()x φ。

按极值条件'()0x φ=得()x φ的极小点,用它作为*x 的第一个近似点。

然后再在1x 处进行泰勒展开,并求得第二个近似点2x 。

如此迭代下去,得到一维情况下的牛顿迭代公式'k 1''k ()()k k f x x x f x +=-(k=0,1,2,…)对多元函数f(x),设k x 为f(x)极小点*x 的一个近似值,在k x 处将f(x)进行泰勒展开,保留到二次项得21()()()()()()()()2T T k k k k k k f x x f x f x x x x x f x x x ϕ≈=+∇-+-∇-,式中 2()k f x ∇—f(x)在k x 处的海赛矩阵。

设1k x +为()x ϕ的极小点,它作为f(x)极小点*x 的下一个近似点,根据极值必要条件1()0k x ϕ+∇=即21()()()k k k k f x f x x x +∇+∇-得121()()k k k k x x f x f x -+⎡⎤=-∇∇⎣⎦(k=0,1,2,…)上式为多元函数求极值的牛顿法迭代公式。

对于二次函数,f(x)的上述泰勒展开式不是近似的,而是精确地。

海赛矩阵是一个常矩阵,其中各元素均为常数。

因此,无论从任何点出发,只需一步就可以找到极小点。

因为若某一迭代法能使二次型函数在有限次迭代内达到极小点,则称此迭代方法是二次收敛的,因此牛顿方法是二次收敛的。

从牛顿法迭代公式的推演中可以看到,迭代点的位置是按照极值条件确定的,其中并未含有沿下降方向搜寻的概念。

因此对于非二次函数,如果采用上述牛顿法公式,有时会使函数值上升,即出现1>k k f f +(x )(x )现象。

为此对上述牛顿方法进行改进,引入数学规划法的概念。

如果把12()()k k k d f x f x -⎡⎤=-∇∇⎣⎦看作是一个搜索方向,则采取如下的迭代公式121()()k k k k k k k k x x a d x a f x f x -+⎡⎤=-=-∇∇⎣⎦ (k=0,1,2,…)式中 k a —沿牛顿方向进行以为搜索的最佳步长k a 可通过如下极小化过程求得1()()()min k k k k k k k af x f x a d f x a d +=+=+。

由于此种方法每次迭代都在牛顿方向上进行一维搜索,这就避免了迭代后函数值上升的现象,从而保持了牛顿法二次收敛的特性,而对初始点的选取并没有苛刻的要求。

其计算步骤如下: (1) 给定初始点0x ,收敛精度ε,置0k ←。

(2)计算11222()()()()()k k k k k k f x f x f x d f x f x --⎡⎤⎡⎤∇∇∇=-∇∇⎣⎦⎣⎦,,和。

(3) 求1a d k k k k x x +=+,其中k a 为沿k d 进行一维搜索的最佳步长。

(4) 检查收敛精度。

若1k k x x ε+-<则*1k x x +=,停机;否则,置1k k ←+,返回到2进行搜索。

3 总结通过上述的分析,推导,论证,我们更好的掌握了迭代发的应用,对牛顿方法的改进开拓了我们的思路。

4 参考文献:1.《数值分析学习指导》 吴勃英 高广宏等编(高等教育出版社) 2.《数值分析全析》 杨刚 武燕等编(高等教育出版社) 3.《计算方法引论》 徐翠薇 孙绳武等编(高等教育出版社)。

相关文档
最新文档