2019-2020学年高中数学 第二章 数列 2.3 等差数列的前n项和教学案新人教A版必修5.doc
高中数学课件:第二章 2.3 等差数列的前n项和 第一课时 等差数列的前n项和

n=1 n≥2.
返回
在等差数列{an}中,S10=100,S100=10.求S110.
[解] 法一:(基本量法)设等差数列{an}的首项为 a1,
1010-1 d=100, 10a1+ 2 公差为 d,则 100a +100100-1d=10. 1 2
2
返回
返回
点击此图片进入 NO.1 课堂强化
返回
点击此图片进入 NO.2 课下检测
返回
1 022,求公差d;
(2)已知等差数列{an}中,a2+a5=19,S5=40,求a10.
返回
nn-1 解:(1)因为 an=a1+(n-1)d,Sn=na1+ 2 d, 又 a1=1,an=-512,Sn=-1 022, 1+n-1d=-512, 所以 1 n+2nn-1d=-1 022. ① ②
返回
返回
[研一题] [例1] 在等差数列{an}中,已知d=2,an=11,Sn=
35,求a1和n.
返回
[自主解答]
an=a1+n-1d, 由 nn-1 Sn=na1+ 2 d,
பைடு நூலகம்
a1+2n-1=11, 得 nn-1 na1+ 2 ×2=35,
n=5, 解方程组得 a1=3, n=7, 或 a1=-1.
2 . 3
课前预习·巧设计
第 二 章 数 列
等 差 数 列 的 前
第一 课时 等差 数列 的前 n项 和
名 师 课 堂 · 一 点 通
创 新 演 练 · 大 冲 关
考点一 考点二 考点三
n
项 和
N0.1 课堂强化 N0.2 课下检测
返回
返回
等差数列的前n项和公式(2)课件-高二上学期数学人教A版(2019)选择性必修第二册

即 S3m=3(S2m-Sm)=3×(100-30)=210.
(2)由等差数列前
5
n 项和的性质,得
5
=
9( 1 + 9 )
2
9( 1 + 9 )
=
9
9
=
7×9
9+3
=
21
.
4
练习巩固
方法技巧利用等差数列前n项和的性质简化计算
(1)在解决等差数列问题时,先利用已知条件求出a1,d,再求所求,是基本解法
一、等差数列前n项和的函数特征
等差数列
的前n项
和公式转
移到二次
函数的过
程
等差数列
的前n项
①当A=0,B=0(即d=0,a1=0)时,Sn=0是关于n的常函数,{an}是各项
和公式与
为0的常数列.
二次函数
②当A=0,B≠0(即d=0,a1≠0)时,Sn=Bn是关于n的正比例函数,{an}为
的关系
各项非零的常数列.
2
2
(3)
课堂小结
课堂小结
等差数列 {an} 的通项公式
an dn (a1 d ).
等差数列 {an} 的前 n 项和公式
d 2
d
S n n (a1 ) n.
2
2
函
数
思
想
的和S3m为
.
解 (1)(方法1)在等差数列中,
∵Sm,S2m-Sm,S3m-S2m成等差数列,
∴30,70,S3m-100成等差数列.
∴2×70=30+(S3m-100),∴S3m=210.
(方法
2 3
22
2)在等差数列中, ,
第一部分 第二章 2.3 等差数列的前n项和

返回
返回
[例4]
(12分)在等差数列{an}中,a1=25,S17=S9.试
求前n项和Sn的最大值. [思路点拨] 可先由已知条件求出公差,进而得前n
项和公式,从而利用二次函数求最值的方法求解;也可以 先求得通项公式,再利用等差数列的性质求解.
返回
[精解详析]
法一:由 S17=S9,得
1717-1 99-1 25×17+ d=25×9+ 2 d, 2 解得 d=-2, nn-1 ∴Sn=25n+ 2 ×(-2)=-(n-13)2+169, 由二次函数性质得,当 n=13 时,Sn 有最大值 169. (12 分) (6 分)
解析:由题意知 a4+a5=18, 8a1+a8 8a4+a5 ∴S8= = =72. 2 2
答案:D 返回
3.在等差数列{an}中,已知d=2,an=11,Sn=35,求a1和n.
an=a1+n-1d, 解:由 nn-1 Sn=na1+ 2 d, a1+2n-1=11, 得 nn-1 na1+ 2 ×2=35,
n=5, 解方程组,得 a1=3 n=7, 或 a1=-1.
返回
返回
[例 2]
1 设正项数列{an}的前 n 项和满足 Sn=4(an+1)2.
求数列{an}的通项公式. 利用
S1 an= Sn-Sn-1
[思路点拨]
n=1 转化求解. n≥2
返回
1.对任意数列{an},都有an=Sn-Sn-1(n≥2),但当n =1时,即a1=S2-S1不一定成立. 2.等差数列的求和公式中,一共涉及到a1,an,Sn,
n,d五个量,通常已知其中三个,可求另外两个,方法
就是解方程组.
高中数学必修5高中数学必修5《2.3等差数列的前n项和(二)》教案

2.3 等差数列的前项和(二)教学要求:进一步熟练掌握等差数列的通项公式和前n 项和公式;了解等差数列的一些性质,并会用它们解决一些相关问题;会利用等差数列通项公式与前项和的公式研究 的最值. 如果A n ,B n 分别是等差数列{a n },{b n }的前n 项和,则1212--=n n n n B A b a . 教学重点:熟练掌握等差数列的求和公式.教学难点:灵活应用求和公式解决问题.教学过程:一、 复习准备:1、等差数列求和公式:2)(1n n a a n S +=,d n n na S n 2)1(1-+= 2、在等差数列{a n }中(1) 若a 5=a , a 10=b , 求a 15; (2) 若a 3+a 8=m , 求a 5+a 6;(3) 若a 5=6, a 8=15, 求a 14; (4) 若a 1+a 2+…+a 5=30, a 6+a 7+…+a 10=80,求a 11+a 12+…+a 15.二、讲授新课:1、探究:等差数列的前n 项和公式是一个常数项为零的二次式.例1、已知数列{}n a 的前n 项和为212n S n n =+,求这个数列的通项公式. 这个数列是等差数列吗?如果是,它的首项与公差分别是什么?【结论】数列{}n a 的前n 项和n S 与n a 的关系:由n S 的定义可知,当n=1时,1S =1a ;当n ≥2时,n a =n S -1-n S ,即n a =⎩⎨⎧≥-=-)2()1(11n S S n S n n . 练习:已知数列{}n a 的前n 项和212343n S n n =++,求该数列的通项公式. 这个数列是等差数列吗? 探究:一般地,如果一个数列{},n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少?(是,1a p q r =++,2d p =).由此,等差数列的前n 项和公式2)1(1d n n na S n -+=可化成式子:n )2d a (n 2d S 12n -+=,当d ≠0,是一个常数项为零的二次式.2. 教学等差数列前n 项和的最值问题:① 例题讲解:例2、数列{}n a 是等差数列,150,0.6a d ==-. (1)从第几项开始有0n a <;(2)求此数列的前n项和的最大值.结论:等差数列前项和的最值问题有两种方法:(1) 当n a >0,d<0,前n 项和有最大值可由n a ≥0,且1+n a ≤0,求得n 的值;当n a <0,d>0,前n 项和有最小值可由n a ≤0,且1+n a ≥0,求得n 的值.(2)由n )2d a (n 2d S 12n -+=利用二次函数配方法求得最值时n 的值. 练习:在等差数列{n a }中, 4a =-15, 公差d =3, 求数列{n a }的前n 项和n S 的最小值.例3、已知等差数列....,743,724,5的前n 项的和为n S ,求使得n S 最大的序号n 的值。
等差数列的前n项和公式课件-高二数学人教A版(2019)选择性必修第二册

【问题5】你能将上述方法推广到求等差数列 的前n项和吗?
Sn= a1 + a2 + … + an-1 + an Sn= an + an-1 + … + a2 + a1
2Sn (a1 an ) (a2 an1) (a3 an2 ) (an a1)
(a1 an ) (a1 an ) (a1 an ) (a1 an ) n(a1 an )
S100=1+2+3+4+…+100=?
计算:S100=1+2+3+4+…+100=?
an=n 1+100=10=101 a2+a99 =101
3+98 =101 a3+a98 =101
50+51 =101 a50+a51=101
S100 (1 100 ) (2 99) (50 51)
na1
n(n 1) 2
d
这也是等差数列的前n项和公式的另一种形式.
利用求和公式和每 项具体化
【问题6】根据前面的推导过程,你能说出等差数列 公式有什么联系吗?
的前n项和公式与梯形的面积
等差数列{an}前n项和公式:
符号语言:公式(1)Sn
n(a1 2
an )
, n N*;
公式(2)Sn
na1
方法 3:(先凑成偶数项,再首尾配对)S101=1+2+3+ +101+102 102
=1+102 +2+101+ +51+52 102=51103 102=5151
高中数学:第二章 2.3 等差数列的前n项和

等差数列的前n项和(1)数列前n项和的定义是什么?通常用什么符号表示?(2)能否根据首项、末项与项数求出等差数列的前n项和?(3)能否根据首项、公差与项数求出等差数列的前n项和?[新知初探]1.数列的前n项和对于数列{a n},一般地称a1+a2+…+a n为数列{a n}的前n项和,用S n表示,即S n=a1+a2+…+a n.2.等差数列的前n项和公式已知量首项,末项与项数首项,公差与项数选用公式S n=n(a1+a n)2S n=na1+n(n-1)2d[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)数列的前n项和就是指从数列的第1项a1起,一直到第n项a n所有项的和()(2)a n=S n-S n-1(n≥2)化简后关于n与a n的函数式即为数列{a n}的通项公式()(3)在等差数列{a n}中,当项数m为偶数2n时,则S偶-S奇=a n+1()解析:(1)正确.由前n项和的定义可知正确.(2)错误.例如数列{a n}中,S n=n2+2.当n≥2时,a n=S n-S n-1=n2-(n-1)2=2n-1.又∵a1=S1=3,∴a1不满足a n=S n-S n-1=2n-1,故命题错误.(3)错误.当项数m为偶数2n时,则S偶-S奇=nd.★答案★:(1)√(2)×(3)×预习课本P42~45,思考并完成以下问题2.等差数列{a n }中,a 1=1,d =1,则S n 等于( ) A .n B .n (n +1) C .n (n -1)D.n (n +1)2解析:选D 因为a 1=1,d =1,所以S n =n +n (n -1)2×1=2n +n 2-n 2=n 2+n 2=n (n +1)2,故选D.3.设等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6等于( )A .16B .24C .36D .48解析:选D 设等差数列{a n }的公差为d , 由已知得4a 1+4×32d =20, 即4×12+4×32d =20,解得d =3,∴S 6=6×12+6×52×3=3+45=48.4.在等差数列{a n }中,S 4=2,S 8=6,则S 12=________.解析:由等差数列的性质,S 4,S 8-S 4,S 12-S 8成等差数列,所以2(S 8-S 4)=S 4+(S 12-S 8),S 12=3(S 8-S 4)=12.★答案★:12等差数列的前n 项和的有关计算[典例] 已知等差数列{a n }.(1)a 1=56,a 15=-32,S n =-5,求d 和n ;(2)a 1=4,S 8=172,求a 8和d .[解] (1)∵a 15=56+(15-1)d =-32,∴d =-16.又S n =na 1+n (n -1)2d =-5, 解得n =15或n =-4(舍).(2)由已知,得S8=8(a1+a8)2=8(4+a8)2=172,解得a8=39,又∵a8=4+(8-1)d=39,∴d=5.等差数列中的基本计算(1)利用基本量求值:等差数列的通项公式和前n项和公式中有五个量a1,d,n,a n和S n,这五个量可以“知三求二”.一般是利用公式列出基本量a1和d的方程组,解出a1和d,便可解决问题.解题时注意整体代换的思想.(2)结合等差数列的性质解题:等差数列的常用性质:若m+n=p+q(m,n,p,q∈N*),则a m+a n=a p+a q,常与求和公式S n=n(a1+a n)2结合使用.[活学活用]设S n是等差数列{a n}的前n项和,已知a2=3,a8=11,则S9等于() A.13B.35C.49 D.63解析:选D∵{a n}为等差数列,∴a1+a9=a2+a8,∴S9=9(a2+a8)2=9×142=63.已知S n求a n问题[典例]已知数列{a n}的前n项和S n=-2n2+n+2.(1)求{a n}的通项公式;(2)判断{a n}是否为等差数列?[解](1)∵S n=-2n2+n+2,∴当n≥2时,S n-1=-2(n-1)2+(n-1)+2=-2n2+5n-1,∴a n=S n-S n-1=(-2n2+n+2)-(-2n2+5n-1)=-4n +3.又a 1=S 1=1,不满足a n =-4n +3,∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.(2)由(1)知,当n ≥2时,a n +1-a n =[-4(n +1)+3]-(-4n +3)=-4, 但a 2-a 1=-5-1=-6≠-4,∴{a n }不满足等差数列的定义,{a n }不是等差数列.(1)已知S n 求a n ,其方法是a n =S n -S n -1(n ≥2),这里常常因为忽略条件“n ≥2”而出错. (2)在书写{a n }的通项公式时,务必验证n =1是否满足a n (n ≥2)的情形.如果不满足,则通项公式只能用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2表示.[活学活用]1.已知数列{a n }的前n 项和为S n =-n 2,则( ) A .a n =2n +1 B .a n =-2n +1 C .a n =-2n -1D .a n =2n -1解析:选B 当n =1时,a 1=S 1=-1;n ≥2时,a n =S n -S n -1=-n 2+(n -1)2=-2n +1,此时满足a 1=-1.综上可知a n =-2n +1.2.已知S n 是数列{a n }的前n 项和,根据条件求a n . (1)S n =2n 2+3n +2; (2)S n =3n -1.解:(1)当n =1时,a 1=S 1=7,当n ≥2时,a n =S n -S n -1=(2n 2+3n +2)-[2(n -1)2+3(n -1)+2]=4n +1,又a 1=7不适合上式,所以a n =⎩⎪⎨⎪⎧7,n =1,4n +1,n ≥2.(2)当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=(3n -1)-(3n -1-1)=2×3n -1,显然a 1适合上式, 所以a n =2×3n -1(n ∈N *).等差数列的前n 项和性质[典例] (1)等差数列前n 项的和为30,前2n 项的和为100,则它的前3n 项的和为( ) A .130 B .170 C .210D .260(2)等差数列{a n }共有2n +1项,所有的奇数项之和为132,所有的偶数项之和为120,则n 等于________.(3)已知{a n },{b n }均为等差数列,其前n 项和分别为S n ,T n ,且S n T n =2n +2n +3,则a 5b 5=________.[解析] (1)利用等差数列的性质: S n ,S 2n -S n ,S 3n -S 2n 成等差数列. 所以S n +(S 3n -S 2n )=2(S 2n -S n ), 即30+(S 3n -100)=2(100-30), 解得S 3n =210.(2)因为等差数列共有2n +1项,所以S 奇-S 偶=a n +1=S 2n +12n +1,即132-120=132+1202n +1,解得n =10.(3)由等差数列的性质,知a 5b 5=a 1+a 92b 1+b 92=a 1+a 92×9b 1+b 92×9=S 9T 9=2×9+29+3=53. [★答案★] (1)C (2)10 (3)53等差数列的前n 项和常用的性质(1)等差数列的依次k 项之和,S k ,S 2k -S k ,S 3k -S 2k …组成公差为k 2d 的等差数列.(2)数列{a n }是等差数列⇔S n =an 2+bn (a ,b 为常数)⇔数列⎩⎨⎧⎭⎬⎫S n n 为等差数列.(3)若S 奇表示奇数项的和,S 偶表示偶数项的和,公差为d , ①当项数为偶数2n 时,S 偶-S 奇=nd ,S 奇S 偶=a na n +1;②当项数为奇数2n -1时,S 奇-S 偶=a n ,S 奇S 偶=n n -1. [活学活用]1.设等差数列{a n }的前n 项和为S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( ) A .18B .17C .16D .15解析:选A 设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.2.等差数列{a n }的通项公式是a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为________.解析:因为a n =2n +1,所以a 1=3, 所以S n =n (3+2n +1)2=n 2+2n , 所以S nn=n +2,所以⎩⎨⎧⎭⎬⎫S n n 是公差为1,首项为3的等差数列,所以前10项和为3×10+10×92×1=75.★答案★:75等差数列的前n 项和最值问题[典例] 在等差数列{a n }中,a 1=25,S 17=S 9,求前n 项和S n 的最大值. [解] 由S 17=S 9,得 25×17+17×(17-1)2d =25×9+9×(9-1)2d , 解得d =-2, [法一 公式法] S n =25n +n (n -1)2×(-2)=-(n -13)2+169. 由二次函数性质得,当n =13时,S n 有最大值169. [法二 邻项变号法]∵a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2(n -1)≥0,a n +1=25-2n ≤0,得⎩⎨⎧n ≤1312,n ≥1212,即1212≤n ≤1312.又n ∈N *,∴当n =13时,S n 有最大值169.求等差数列的前n 项和S n 的最值的解题策略(1)将S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n 配方,转化为求二次函数的最值问题,借助函数单调性来解决.(2)邻项变号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0的项数n 使S n 取最大值.当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1≥0的项数n 使S n 取最小值.[活学活用]已知{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n =( )A .11B .17C .19D .21解析:选C ∵S n 有最大值,∴d <0,则a 10>a 11,又a 11a 10<-1,∴a 11<0<a 10,a 10+a 11<0,S 20=10(a 1+a 20)=10(a 10+a 11)<0,S 19=19a 10>0,∴S 19为最小正值.故选C.层级一 学业水平达标1.已知数列{a n }的通项公式为a n =2-3n ,则{a n }的前n 项和S n 等于( ) A .-32n 2+n 2B .-32n 2-n 2C.32n 2+n 2D.32n 2-n 2解析:选A ∵a n =2-3n ,∴a 1=2-3=-1,∴S n =n (-1+2-3n )2=-32n 2+n 2.2.等差数列{a n }的前n 项和为S n ,若a 7>0,a 8<0,则下列结论正确的是( ) A .S 7<S 8 B .S 15<S 16 C .S 13>0D .S 15>0解析:选C 由等差数列的性质及求和公式得,S 13=13(a 1+a 13)2=13a 7>0,S 15=15(a 1+a 15)2=15a 8<0,故选C.3.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36D .27解析:选B ∵a 7+a 8+a 9=S 9-S 6,而由等差数列的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即a 7+a 8+a 9=S 9-S 6=2S 6-3S 3=2×36-3×9=45.4.已知等差数列{a n }的前n 项和为S n,7a 5+5a 9=0,且a 9>a 5,则S n 取得最小值时n 的值为( )A .5B .6C .7D .8解析:选B 由7a 5+5a 9=0,得a 1d =-173.又a 9>a 5,所以d >0,a 1<0.因为函数y =d 2x 2+⎝⎛⎭⎫a 1-d 2x 的图象的对称轴为x =12-a 1d =12+173=376,取最接近的整数6,故S n 取得最小值时n 的值为6.5.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C .2D.12解析:选A S 9S 5=92(a 1+a 9)52(a 1+a 5)=9×2a 55×2a 3=9a 55a 3=95×59=1. 6.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________. 解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当n ≥2时,a n =S n -S n -1=An 2+Bn -A (n -1)2-B (n -1)=2An +B -A ,当n =1时满足,所以d =2A .★答案★:2A7.设等差数列{a n }的前n 项和为S n ,且S m =-2,S m +1=0,S m +2=3,则m =________.解析:因为S n 是等差数列{a n }的前n 项和,所以数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,所以S m m +S m +2m +2=2S m +1m +1,即-2m +3m +2=0,解得m =4. ★答案★:48.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.解析:设等差数列{a n }的项数为2n +1, S 奇=a 1+a 3+…+a 2n +1 =(n +1)(a 1+a 2n +1)2=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2=na n +1, 所以S 奇S 偶=n +1n =4433,解得n =3,所以项数2n +1=7,S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项. ★答案★:11 79.已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,求数列{a n }的通项公式. 解:由已知条件,可得S n +1=2n +1, 则S n =2n +1-1.当n =1时,a 1=S 1=3,当n ≥2时,a n =S n -S n -1=(2n +1-1)-(2n -1)=2n , 又当n =1时,3≠21,故a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.10.在等差数列{a n }中,S n 为其前n 项的和,已知a 1+a 3=22,S 5=45. (1)求a n ,S n ;(2)设数列{S n }中最大项为S k ,求k .解:(1)由已知得⎩⎪⎨⎪⎧ 2a 2=22,5a 3=45, 即⎩⎪⎨⎪⎧a 2=11,a 3=9,所以⎩⎪⎨⎪⎧a 1=13,d =-2,所以a n =-2n +15,S n =-n 2+14n .(2)由a n ≥0可得n ≤7,所以S 7最大,k =7.层级二 应试能力达标1.已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( ) A .12 B .14 C .16D .18解析:选B 因为S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n (a 1+a n )2=210,得n =14.2.在等差数列{a n }中,S n 是其前n 项和,且S 2 011=S 2 014,S k =S 2 009,则正整数k 为( ) A .2 014 B .2 015 C .2 016D .2 017解析:选C 因为等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数的对称性及S 2 011=S 2 014,S k =S 2 009,可得2 011+2 0142=2 009+k 2,解得k =2 016.故选C.3.已知S n 为等差数列{a n }的前n 项和,S 1<0,2S 21+S 25=0,则S n 取最小值时,n 的值为( )A .11B .12C .13D .14解析:选A 设等差数列{a n }的公差为d ,由2S 21+S 25=0得,67a 1+720d =0,又d >0,∴67a 11=67(a 1+10d )=67a 1+670d <0,67a 12=67(a 1+11d )=67a 1+737d >0,即a 11<0,a 12>0.故选A.4.已知等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是( )A .2B .3C .4D .5解析:选D ∵a nb n =a 1+a 2n -12b 1+b 2n -12=a 1+a 2n -12(2n -1)b 1+b 2n -12(2n -1)=A 2n -1B 2n -1=7(2n -1)+452n -1+3=14n +382n +2=7+12n +1,∴当n 取1,2,3,5,11时,符合条件,∴符合条件的n 的个数是5. 5.若数列{a n }是等差数列,首项a 1<0,a 203+a 204>0,a 203·a 204<0,则使前n 项和S n <0的最大自然数n 是________.解析:由a 203+a 204>0⇒a 1+a 406>0⇒S 406>0,又由a 1<0且a 203·a 204<0,知a 203<0,a 204>0,所以公差d >0,则数列{a n }的前203项都是负数,那么2a 203=a 1+a 405<0,所以S 405<0,所以使前n 项和S n <0的最大自然数n =405.★答案★:4056.已知等差数列{a n }的前n 项和为S n ,若S 4≤4,S 5≥15,则a 4的最小值为________. 解析:S 4=2(a 1+a 4)≤4⇒2a 3-d ≤2,S 5=5a 3≥15⇒a 3≥3.因为2a 3-d ≤2,所以d -2a 3≥-2,又因为a 3≥3,所以2a 3≥6,所以d ≥4,所以a 4=a 3+d ≥7,所以a 4的最小值为7.★答案★:77.已知等差数列{a n }的公差d >0,前n 项和为S n ,且a 2a 3=45,S 4=28. (1)求数列{a n }的通项公式;(2)若b n =S n n +c (c 为非零常数),且数列{b n }也是等差数列,求c 的值. 解:(1)∵S 4=28,∴(a 1+a 4)×42=28,a 1+a 4=14,a 2+a 3=14, 又a 2a 3=45,公差d >0,∴a 2<a 3,∴a 2=5,a 3=9,∴⎩⎪⎨⎪⎧ a 1+d =5,a 1+2d =9,解得⎩⎪⎨⎪⎧a 1=1,d =4,∴a n =4n -3. (2)由(1),知S n =2n 2-n ,∴b n =S n n +c =2n 2-n n +c , ∴b 1=11+c ,b 2=62+c ,b 3=153+c. 又{b n }也是等差数列,∴b 1+b 3=2b 2,即2×62+c =11+c +153+c, 解得c =-12(c =0舍去).8.在等差数列{a n }中,a 10=23,a 25=-22.(1)数列{a n }前多少项和最大?(2)求{|a n |}的前n 项和S n .解:(1)由⎩⎪⎨⎪⎧ a 1+9d =23,a 1+24d =-22,得⎩⎪⎨⎪⎧a 1=50,d =-3, ∴a n =a 1+(n -1)d =-3n +53.令a n >0,得n <533, ∴当n ≤17,n ∈N *时,a n >0;当n ≥18,n ∈N *时,a n <0,∴{a n }的前17项和最大.(2)当n ≤17,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+n (n -1)2d =-32n 2+1032n . 当n ≥18,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 17-a 18-a 19-…-a n=2(a 1+a 2+…+a 17)-(a 1+a 2+…+a n )=2⎝⎛⎭⎫-32×172+1032×17-⎝⎛⎭⎫-32n 2+1032n =32n 2-1032n +884. ∴S n=⎩⎨⎧-32n 2+1032n ,n ≤17,n ∈N *,32n 2-1032n +884,n ≥18,n ∈N *.。
2019_2020学年高中数学第二章数列2.3.1等差数列的前n项和练习(含解析)新人教A版必修5

第11课时 等差数列的前n 项和知识点一 等差数列前n 项和公式的简单应用1.已知等差数列{a n }中,a 2=7,a 4=15,则S 10等于( ) A .100 B .210 C .380 D .400 答案 B 解析 ∵d =a 4-a 24-2=15-72=4,又a 2=a 1+d =7,∴a 1=3.∴S 10=10a 1+10×92d =10×3+45×4=210.故选B .2.在等差数列{a n }中,S 10=120,则a 2+a 9=( ) A .12 B .24 C .36 D .48 答案 B 解析 ∵S 10=10a 1+a 102=5(a 2+a 9)=120,∴a 2+a 9=24.3.设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4=( ) A .8 B .7 C .6 D .5 答案 D 解析 ∵S 7=a 1+a 72×7=35,∴a 1+a 7=10,∴a 4=a 1+a 72=5.知识点二 “知三求二”问题4.等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( ) A .9 B .10 C .11 D .12 答案 B解析 a 1=1,a 3+a 5=2a 1+6d =14,∴d =2,∴S n =n +n n -12×2=100.∴n =10.5.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项a n =________. 答案 2n解析 由已知⎩⎪⎨⎪⎧a 1+5d =12,3a 1+3d =12⇒⎩⎪⎨⎪⎧a 1=2,d =2.故a n =2n .知识点三 a n 与S n 的关系6.已知数列{a n }的通项公式为a n =2-3n ,则{a n }的前n 项和S n 等于( ) A .-32n 2+n 2 B .-32n 2-n2C .32n 2+n 2D .32n 2-n 2 答案 A解析 易知{a n }是等差数列且a 1=-1,所以S n =n a 1+a n2=n 1-3n2=-32n 2+n2.故选A .7.已知等差数列{a n }的前n 项和S n =n 2+n ,则过P (1,a 1),Q (2,a 2)两点的直线的斜率是( )A .1B .2C .3D .4 答案 B解析 ∵S n =n 2+n ,∴a 1=S 1=2,a 2=S 2-S 1=6-2=4.∴过P ,Q 两点直线的斜率k =a 2-a 12-1=4-21=2.8.已知{a n }的前n 项之和S n =2n+1,则此数列的通项公式为________.答案 a n =⎩⎪⎨⎪⎧3n =1,2n -1n ≥2解析 当n =1时,a 1=S 1=2+1=3, 当n ≥2时,a n =S n -S n -1=2n +1-(2n -1+1)=2n -1,又21-1=1≠3,所以a n =⎩⎪⎨⎪⎧3n =1,2n -1n ≥2.易错点一 等差数列的特点考虑不周全9.已知数列{a n }的前n 项和S n =n 2+3n +2,判断{a n }是否为等差数列.易错分析 本题容易产生如下错解:∵a n =S n -S n -1=(n 2+3n +2)-[(n -1)2+3(n -1)+2]=2n +2.a n +1-a n =[2(n +1)+2]-(2n +2)=2(常数),∴数列{a n }是等差数列.需注意:a n =S n -S n -1是在n ≥2的条件下得到的,a 1是否满足需另外计算验证. 解 a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(n 2+3n +2)-[(n -1)2+3(n -1)+2]=2n +2,∴a n =⎩⎪⎨⎪⎧6n =1,2n +2n ≥2,显然a 2-a 1=6-6=0,a 3-a 2=2,∴{a n }不是等差数列.易错点二 忽略对项数的讨论10.已知等差数列{a n }的第10项为-9,前11项和为-11,求数列{|a n |}的前n 项和T n . 易错分析 对于特殊数列求和,往往要注意项数的影响,要对部分特殊项进行研究,否则计算易错.解 设等差数列{a n }的首项为a 1,公差为d ,前n 项和为S n ,则⎩⎪⎨⎪⎧a 1+9d =-9,11a 1+11×102d =-11,解得⎩⎪⎨⎪⎧a 1=9,d =-2,所以a n =9-2(n -1)=11-2n . 由a n >0,得n <112,则从第6项开始数列各项均为负数,那么 ①当n ≤5时,数列{a n }的各项均为正数,T n =n a 1+a n 2=n 9+11-2n 2=n (10-n );②当n ≥6时,T n =|a 1|+|a 2|+…+|a n |=-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5)=-S n +2S 5=n 2-10n +2×(10×5-52)=n 2-10n +50.所以T n =⎩⎪⎨⎪⎧n 10-n ,1≤n ≤5,n 2-10n +50,n ≥6.一、选择题1.在各项均不为零的等差数列{a n }中,若a n +1-a 2n +a n -1=0(n ≥2),则S 2n -1-4n =( ) A .-2 B .0 C .1 D .2 答案 A解析 ∵{a n }是等差数列,∴2a n =a n -1+a n +1(n ≥2).又a n +1-a 2n +a n -1=0(n ≥2),∴2a n-a 2n =0.∵a n ≠0,∴a n =2,∴S 2n -1-4n =(2n -1)×2-4n =-2.故选A .2.《九章算术》是我国第一部数学专著,下有源自其中的一个问题:“今有金箠(chuí),长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问金箠重几何?”其意思为:“今有金杖(粗细均匀变化)长5尺,截得本端1尺,重4斤,截得末端1尺,重2斤.问金杖重多少?”则答案是( )A .14斤B .15斤C .16斤D .18斤 答案 B解析 由题意可知等差数列中a 1=4,a 5=2,则S 5=a 1+a 5×52=4+2×52=15, ∴金杖重15斤.故选B .3.一个等差数列的项数为2n ,若a 1+a 3+…+a 2n -1=90,a 2+a 4+…+a 2n =72,且a 1-a 2n =33,则该数列的公差是( )A .3B .-3C .-2D .-1 答案 B解析 由⎩⎪⎨⎪⎧a 1+a 3+…+a 2n -1=na 1+n n -12×2d =90,a 2+a 4+…+a2n=na 2+n n -12×2d =72,得nd =-18.又a 1-a 2n =-(2n -1)d =33,所以d =-3.4.一同学在电脑中打出如下图案:○●○○●○○○●○○○○●○○○○○●…若将此图案依此规律继续下去,那么在前120个中的●的个数是( )A .12B .13C .14D .15 答案 C解析 S =(1+2+3+…+n )+n =n n +12+n ≤120,∴n (n +3)≤240,∴n =14.故选C .5.在小于100的自然数中,所有被7除余2的数之和为( ) A .765 B .665 C .763 D .663 答案 B解析 ∵a 1=2,d =7,2+(n -1)×7<100,∴n <15.∴n =14,S 14=14×2+12×14×13×7=665.二、填空题6.已知数列{a n }的前n 项和S n =n 2+1,则a 1+a 5=________. 答案 11解析 由S n =n 2+1,得a 1=12+1=2,a 5=S 5-S 4=(52+1)-(42+1)=9.∴a 1+a 5=2+9=11.7.S n 是等差数列{a n }的前n 项和,若S n S 2n =n +14n +2,则a 3a 5=________.答案 35解析 ∵S n 是等差数列{a n }的前n 项和,S n S 2n =n +14n +2, ∴S 1S 2=a 1a 1+a 1+d =26=13,∴3a 1=2a 1+d ,∴a 1=d ,∴a 3a 5=a 1+2d a 1+4d =3d 5d =35.8.在等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10=________. 答案 -15解析 由a 23+a 28+2a 3a 8=9得(a 3+a 8)2=9, ∵a n <0,∴a 3+a 8=-3. ∴S 10=10a 1+a 102=10a 3+a 82=10×-32=-15. 三、解答题9.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .解 设等差数列{a n }的公差为d ,∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧7a 1+21d =7,15a 1+105d =75,即⎩⎪⎨⎪⎧a 1+3d =1,a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=-2,d =1,∴S n n =a 1+12(n -1)d =-2+12(n -1), ∵S n +1n +1-S n n =12, ∴数列S n n 是等差数列,其首项为-2,公差为12,∴T n =n ×(-2)+n n -12×12=14n 2-94n . 10.已知{a n }是等差数列,公差为d ,首项a 1=3,前n 项和为S n ,令c n =(-1)nS n (n ∈N *),{c n }的前20项和T 20=330.数列{b n }满足b n =2(a -2)dn -2+2n -1,a ∈R .(1)求数列{a n }的通项公式;(2)若b n +1≤b n ,n ∈N *,求a 的取值范围. 解 (1)设等差数列的公差为d ,因为c n =(-1)nS n ,所以T 20=-S 1+S 2-S 3+S 4+…+S 20=330, 则a 2+a 4+a 6+…+a 20=330,则10(3+d )+10×92×2d =330,解得d =3,所以a n =3+3(n -1)=3n . (2)由(1)知b n =2(a -2)3n -2+2n -1,b n +1-b n=2(a -2)3n -1+2n-[2(a -2)3n -2+2n -1]=4(a -2)3n -2+2n -1=4·3n -2⎣⎢⎡⎦⎥⎤a -2+12⎝ ⎛⎭⎪⎫23n -2,由b n +1≤b n ⇔(a -2)+12⎝ ⎛⎭⎪⎫23n -2≤0⇔a ≤2-12⎝ ⎛⎭⎪⎫23n -2,因为2-12⎝ ⎛⎭⎪⎫23n -2随着n 的增大而增大,所以n =1时,2-12⎝ ⎛⎭⎪⎫23n -2最小值为54,所以a ≤54.。
等差数列的前n项和公式课件-高二上学期数学人教A版(2019)选择性必修第二册

4.2.2 等差数列的前n项和公式
第1课时 等差数列的前n项和公式
课程目标
学法指导
1.借助教材实例了解 1.等差数列是“中心对称”的,因此在求和的时
等差数列前n项和公式 候可以从中心对称的角度来思考,这就是倒序相
的推导过程.
加法的本质,采取图示的方法有助于理解公式的
2.借助教材掌握a1, 推导.也正是因为中心对称的缘故,等差数列的
(C )
A.5114
B.581
C.9136
D.9132
(3)已知等差数列{an}的前 n 项和为 Sn,且 S10=100,S100=10,试求
S110.
[分析] (1)求 n 想到 Sn=na1+2 an=nam+2an-m+1⇒Sn-Sn-4=an+an -1+an-2+an-3,a1+a2+a3+a4⇒a1+an.
(2)求值想+an=ap+aq⇒abnn= SS2′2nn--11.
(3)求 S110 想到 Sn,S2n-Sn,S3n-S2n,…构成公差为 n2d 的等差数列 ⇒S10=100,S100=10⇒项数和公差.
[解析] (1)Sn-Sn-4=an+an-1+an-2+an-3=80. S4=a1+a2+a3+a4=40. 两式相加得 4(a1+an)=120,∴a1+an=30. 由 Sn=na1+ 2 an=210,∴n=14. (2)由已知SSn′n=7nn++32,ab77=SS1′133=9136.
解得da= 1=-122,, ∴an=-2n+14.
②由①得 Sn=n12+124-2n=-n2+13n=-n-1232+1469. 当 n 取与123最接近的整数,即 6 或 7 时,Sn 有最大值,最大值为 S6 =S7=-72+13×7=42.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年高中数学第二章数列 2.3 等差数列的前n项和教
学案新人教A版必修5
学习
目标
1.理解等差数列前n项和公式的推导过程.
2.掌握等差数列前n项和公式及其应用.
3.等差数列的五个基本量“知三求二”.
学习
疑问
学习
建议
【相关知识点回顾】
问题1:等差数列的定义:如果一个数列从________起,每一项和它____一项的____等于______常数,那么这个数列就叫做等差数列,这个_________叫做等差数列的公差,通常用字母______表示。
定义的符号语言:_____________________.
问题2:等差数列的通项公式:_____________________.写成函数式:_____________________. 问题3:如果三个数,,
a A b成等差数列,那么____叫做的等差中项.这三个数等量关系是:________________.
问题4:等差数列性质:(1)______________________________________
(2)______________________________________
【知识转接】
问题5:二次函数的解析式为_______________,其在平面直角坐标系中图象为_______,
当________时,图象开口向上,当且仅当_________时,二次函数有最___值、值为_________;
当________时,图象开口向下,当且仅当_________时,二次函数有最___值、值为_________;【预学能掌握的内容】
问题5:数列{}
n
a的前n项和
n
S=___________________________.
如:
6
S=________________.
62
S S
-=________________.
问题6:(阅读教材42、43页)等差数列前n项和公式:
(1)n S =______________;(2)n S =________________.
问题7:等差数列{}n a 中共含五个变量:__________________________.
【探究点一】等差数列前n 项和公式: 问题8:推导公式:
〖概括小结〗上述推导前n 项和公式的方法称为:___________. 〖典例解析〗
例1:根据下列各题中的条件,求相应的等差数列{}n a 的前n 项和n S .
(1)184,18,8a a n =-=-= (2)114.5,0.7,32n a d a ===
〖课堂检测〗练习1:根据下列各题中的条件,求相应的等差数列{}n a 的有关未知数. (1)120,54,999,n n a a S ===求d 及n ; (2)1
,37,629,3
n d n S ===求1a 及n a ; (3)151
,,5,66
n a d S ==-=-求n 及n a ; (4)2,15,10,n d n a ===-求1a 及n S ;
【探究点五】等差数列{}n a ,求数列{}n a 的前n 项和.(选讲)
〖典例解析〗例6:已知{}n a 为等差数列,103n a n =-中,求数列{}n a 的前n 项和.
〖课堂检测〗练习6:已知{}n a 为等差数列,425n a n =-中,求数列{}n a 的前n 项和.。