化工原理.管路计算

合集下载

化工原理公式及各个章节总结汇总

化工原理公式及各个章节总结汇总

第一章 流体流动与输送机械1. 流体静力学基本方程:gh p p ρ+=022. 双液位U 型压差计的指示: )21(21ρρ-=-Rg p p )3. 伯努力方程:ρρ222212112121p u g z p u g z ++=++4. 实际流体机械能衡算方程:f W p u g z p u g z ∑+++=++ρρ222212112121+ 5. 雷诺数:μρdu =Re6. 范宁公式:ρρμλfp d lu u d l Wf ∆==⋅⋅=22322 7. 哈根-泊谡叶方程:232d lup f μ=∆ 8. 局部阻力计算:流道突然扩大:2211⎪⎭⎫ ⎝⎛-=A A ξ流产突然缩小:⎪⎭⎫ ⎝⎛-=2115.0A A ξ第二章 非均相物系分离1. 恒压过滤方程:t KA V V V e 222=+令A V q /=,A Ve q e /=则此方程为:kt q q q e =+22第三章 传热1. 傅立叶定律:n t dAdQ ϑϑλ-=,dxdt A Q λ-= 2. 热导率与温度的线性关系:)1(0t αλλ+= 3. 单层壁的定态热导率:bt t AQ 21-=λ,或mA b tQ λ∆=4. 单层圆筒壁的定态热传导方程: )ln1(21221r r t t l Q λπ-=或m A b tt Q λ21-=5. 单层圆筒壁内的温度分布方程:C r l Qt +-=ln 2λπ(由公式4推导)6. 三层圆筒壁定态热传导方程:34123212141ln 1ln 1ln 1(2r r r r r r t t l Q λλλπ++-=7. 牛顿冷却定律:)(t t A Q w -=α,)(T T A Q w -=α8. 努塞尔数λαl Nu =普朗克数λμCp =Pr 格拉晓夫数223μρβtl g Gr ∆= 9. 流体在圆形管内做强制对流:10000Re >,1600Pr 6.0<<,50/>d lk Nu Pr Re 023.08.0=,或kCp du d ⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=λμμρλα8.0023.0,其中当加热时,k=,冷却时k= 10. 热平衡方程:)()]([1222211t t c q T T c r q Q p m s p m -=-+=无相变时:)()(12222111t t c q T T c q Q p m p m -=-=,若为饱和蒸气冷凝:)(12221t t c q r q Q p m m -== 11. 总传热系数:21211111d d d d b K m ⋅+⋅+=αλα 12. 考虑热阻的总传热系数方程:212121211111d d R R d d d d b K s s m ⋅++⋅+⋅+=αλα 13. 总传热速率方程:t KA Q ∆=14. 两流体在换热器中逆流不发生相变的计算方程:⎪⎪⎭⎫⎝⎛-=--22111112211lnp m p m p m c q c q c q KA t T t T 15. 两流体在换热器中并流不发生相变的计算方程:⎪⎪⎭⎫ ⎝⎛+=--22111122111lnp m p m p m c q c q c q KA t T t T 16. 两流体在换热器中以饱和蒸气加热冷流体的计算方程:2221ln p m c q KAt T t T =--第四章 蒸发1. 蒸发水量的计算:110)(Lx x W F Fx =-=2. 水的蒸发量:)1(1x x F W -= 3. 完成时的溶液浓度:WF F x -=4. 单位蒸气消耗量:rr D W '=,此时原料液由预热器加热至沸点后进料,且不计热损失,r 为加热时的蒸气汽化潜热r ’为二次蒸气的汽化潜热5. 传热面积:mt K QA ∆=,对加热室作热量衡算,求得Dr h H D Q c =-=)(,1t T t -=∆,T 为加热蒸气的温度,t 1为操作条件下的溶液沸点。

化工原理管路计算解析

化工原理管路计算解析

W
4
(2)流量计算
已知:管子d 、、l,管件和阀门 ,供液点z1. p1, 需液点的z2.p2,输送机械 W; 求:流体流速u及供液量qV。
p1
z1g
u12 2
W
p2
z2 g
u22 2
hf
h f ,i
l d
u2 2
hf ,j
u2 2
du
,
d
u
4qV
d 2
2020/10/31
5
试差步骤:
(1)列柏努利方程,求得∑hf ;
14
特点:
(1)主管中的流量为各支路流量之和; qm qm1 qm2
不可压缩性流体 qV qV1 qV 2
(2)流体在各支管流动终了时的总机械能与能量损 失之和相等。
pA
zA
g
1 2
uA2
hfOA
pB
zB g
1 2
uB2
hfOB
2020/10/31
15
作业: 1-35;1-37;1-39
用试差法解决。
p1
z1g
u12 2
W
p2
z2 g
u22 2
hf
h f ,i
l d
u2 2
hf ,j
u2 2
du
,
d
u
4qV
d 2
2020/10/31
7
三、阻力对管内流动的影响 pa
1
1
pA
pB 2
阀门F开度减小时:
A F B 2
(1)阀关小,阀门局部阻力系数↑ → hf,A-B ↑ →流速u↓ →即流量↓;
(2)在1-A之间,由于流速u↓→ hf,1-A ↓ →pA ↑ ;

化工原理讲稿 管路计算

化工原理讲稿 管路计算
则由图查出λ=0.025,与假设值相符。因此,管内径应为 78mm, 查附录无缝钢管规格表,选用3寸(Φ88.5×4) 的有缝钢管。
一、简单管路的计算
校验: 管内实际流速
u
V
d2
27
3600 0.08052
1.46(m / s)
4
4
0.2 0.0025
d 805
Re 9485 1.17 105 0.0805
二、复杂管路的计算
[例1-22]如图所示,为一由高位槽稳定 供水系统,主管路A、支管路B和C的规 格分别为Φl08×4mm、Φ76×3mm和 Φ70×3mm;其长度(包括当量长度)分 别控制在80m、60m和50m;z2和z3 分别为2.5m和1.5m;管壁的绝对粗糙 度均取0.2mm。常温水的密度和粘度 分别为1000kg/m3和l×10-3Pa·S;若 要求供水的总流量为52m3/h,试确定 高位槽内液面的高度z1。
二、复杂管路的计算
用试差法:假设B、C均处于完全湍流区,查莫狄图,得
B 0.027 C 0.027
代入(a) 、(b),解得
uB 2m / s
uC 2.09m / s
二、复杂管路的计算
校核:
ReB
duB
0.07 2 1000 1.0 10 3
1.4 10 5
ReC
duB
0.064 2.09 1000 1.0 10 3
其中流速u为允许的摩擦阻力所限制,即
hf
l
d
u2 2
(2)
式中及u为d的函数。故要用试差法求管径d
一、简单管路的计算
2
Vs
h f
l
d
u2 2
l
d

化工原理课件-管路计算

化工原理课件-管路计算


gz1 u12 2p1Wegz2
u22 2
p2
hf
式中 z1 5m, z2 0, u1 u2 0
p1 0(表), p2 0(表),
We 0,
l h
le u 2
f
d2
假设流型为湍流,λ计算式取为 1 2 lg( / d 2.51 )
3.7 Re
将已知数据代入柏努利方程可得
9.85 hf hf 49.05
2d
l
hf le u2
2 0.082 49.05 138 u 2
0.241436
u
将λ的计算式代入得
u 2
lg
0.241436
解得 u 1.84m/s
0.0001 3.7
2.51
0.082103 103
0.241436
验算流型
Re du
1.6.4 湿式气体流量计
—— 用来测量气体体积的容积式流量计。 构造:
转筒,充气室
测量原理:
转筒旋转,充气室 内气体排出。
说明:
用于小流量气体测量, 常在实验室中使用。
湿式气体流量计
转子流量计 湿式气体流量计 孔板流量计
假设
由 和 d 间的关系 计算出 d
计算Re,并查或计算出

判断 与 是否相同


d 即为所求
1.5.1 简单管路计算
(2) 最适宜管径的确定
1.5.2 复杂管路计算
(1) 并联管路 如图所示,并联管路在主管某处分为几支,然
后又汇合成一主管路。
1.5.2 复杂管路计算
(1) 并联管路 流体流经并联管路系统时,遵循如下原则:
解得 H 5.02m

化工原理1-5

化工原理1-5
管路计算 第五节 管路计算
1-5-1 简单管路 1-5-2 复杂管路
1-5-1 简单管路
在定态流动时, 其基本特点为: (1)流体通过各管段的质量流量不变,对于不 可压缩流体,则体积流量也不变,

V S1 = V S 2 = V S 3
(2)整个管路的总能量损失等于各段能量损失之和 , 即
∑ Wf = Wf 1 + Wf 2 + Wf 3
计算可分为三类:
1-5-2 复杂管路 一、并联管路 特点: (1)主管中的流量为并联的各支管流量之和,对于不可 压缩性流体,则有
(2)并联管路中各支管的能量损失均相等,即
注意:计算并联管路阻力时,可任选一根支管计算, 而绝不能将各支管阻力加和在一起作为并联管路的阻力。 分支管路与 二、分支管路与汇合管路 特点: 总管流量等于各支管流量之和,对于不可压缩性流体,有
返回
返回
截止阀
气动调节阀
返回
返回
返回
返回
管路计算是连续性方程、柏努利方程及阻力损失计算式的具体应用。 常遇到的管路计算问题归纳起来有以下三种情况: 1、简单计算型 已知管径、管长、管件和阀门的设置及流体的输送量,求流体通过 管路系统的能量损失,以便进而确定输送设备所加入的外功、设备 内的压强或设备间的相对位置等。其特点是应用最普遍、最方便。 2、操作型计算 即管路已定,管径、管长、管件和阀门的设置及允许的能量损失 都已定,要求核算在某给定条件下的输送能力或某项技术指标。这 类计算存在一个困难,即因流速未知,不能计算Re值,无法判断流 体的流型,也就不能确定摩擦系数l。在这种情况下,工程计算中 常采用试差法、数群法等其他方法来求解。 3、设计型计算 即流体的输送量已定,管长、管件和阀门的当量长度及允许的阻 力损失均给定,要求设计经济上合理的管径。 应当注意,算出的管径d必须根据手册中的管道规格进行圆整。 有时,最小管径还会受到结构上的限制,如支撑在跨距5m以上的普 返回 通钢管,管径不应小于40mm。

化工原理1.6管路计算

化工原理1.6管路计算
16
)
二、分支管路与汇合管路
A C O
A O C
B 分支管路
B 汇合管路
17
1. 特点 (1)主管中的流量为各支路流量之和 qm = qm 1 + qm 2 不可压缩流体 qV = qV 1 + qV 2 ( 2)分支管路:流体在各支管流动终了时的总机械能 与能量损失之和相等。
pB
1 2 1 2 pA + z B g + uB + W fO − B = + z A g + u A + W fO − A ρ 2 ρ 2
18
例题: 如图所示的分支管路,当阀A关小时,分支点压力 , 分支管流量qVA ,qVB ,总管流量 qVO pO 。
1
1 A O B 2 3
思考题:主管和支管阻力分配问题?
19
例题 :图为溶液的循环系统,循环量为 3m3/h ,溶液的密 度为900kg/m3。输送管内径为25mm,容器内液面至泵入口的 垂直距离为 3m,压头损失为1.8m ,离心泵出口至容器内液面 的压头损失为2.6m。试求: (1)管路系统需要离心泵提供的压头; (2)泵入口处压力表读数。 0 A z 2 1 1
12
B
1.6.2 复杂管路
一、并联管路 qV1 qV qV2 A qV3 1. 特点 (1)主管中的流量为并联的各支路流量之和 B
qm = qm 1 + qm 2 + qm 3
不可压缩流体 qV = qV 1 + qV 2 + qV 3
13
(2)并联管路中各支路的能量损失均相等
∑ W f 1 = ∑ W f 2 = ∑ W f 3 = ∑ W fA− B

化工原理重要单元主要公式汇总

化工原理重要单元主要公式汇总

化工原理课程综合温习提纲化工原理重要单元主要公式汇总第1章 流体流动一、机械能衡算方程式 本章内容的核心公式是机械能衡算方程式:g 2ud L g 2u g P Z H g 2u g P Z 22222e 2111⎪⎭⎫ ⎝⎛++++=+++∑ζλρρ (单位:J/N=m ) (1-1)应用公式(1-1)注意以下几点:(1) 稳固流动、不可紧缩性流体、自1-1至2-2的控制体内流体持续。

(2) Z 1、Z 2选择同一水平基准面,通常选择地平面或控制体1-一、2-2中的较低的一个。

(3) P 1、P 2同时以绝对压计或同时以表压计,而且注意单位均统一到N/m 2 。

(4) 自高位槽或高压容器向其他地方输送流体时一般不需要流体输送机械,现在,H e =0 。

(5) 公式中的每一项均是单位流体的能量,每牛顿流体的能量焦耳,形式上的单位是米。

H e 是流体输送机械加给每牛顿流体的能量焦耳数,阻力损失项亦是每牛顿流体的能量损失焦耳数。

(6) 按照所取的1-一、2-2截面的性质,灵活地肯定u 1、u 2的数值。

(7) 阻力损失项中的流速取产生阻力损失的管段上的流速,有时管段不止一段。

(8) 若控制体内的阀门关闭,1-一、2-2截面上的流体能量便再也不有任何关系。

(9) 若在等直径的管段,无流体输送机械,阻力损失能够忽略,(1-1)式变成流体静力学的形式。

应用公式(1-1)可解决以下方面的问题:(1) 在肯定的控制体中,达到必然的流量,肯定流体输送机械加给每牛顿流体的能量焦耳数及功率。

(2) 在肯定的控制体中,达到必然的流量,肯定起始截面1-1的高度或压强。

(3) 在肯定的控制体中,可达到的流量(流速)。

(4) 在肯定的控制体中,达到必然的流量,肯定管径。

公式(1-1)的另两种形式:2ud L 2u P g Z w 2u P g Z 22222e 2111⎪⎭⎫ ⎝⎛++++=+++∑ζλρρ (单位:J/kg )(1-2)ρζλρρρρρ2udL2u P g Z g H 2u P g Z 22222e 2111⎪⎭⎫ ⎝⎛++++=+++∑ (单位:J/m 3=N/m 2) (1-3)因为机械能衡算式中的每一项均是单位流体的能量,故计算流体输送机械的功率时应注意流体的总流量V q (单位:m 3/s)。

化工原理.管路计算

化工原理.管路计算
A
4.2 复杂管路
一、并联管路
qv qv1 qv2 B qv3
注意:计算并联 管路阻力时,仅 取其中一支管路 即可,不能重复 计算。
A 1、特点:
(1)主管中的流量为并联的各支路流量之和; q m q m1 q m 2 q m 3 不可压缩流体 q v q v 1 q v 2 q v 3 (2)并联管路中各支路的能量损失均相等。
q m q m1 q m 2
不可压缩流体:
q v q v1 q v 2
(2)流体在各支管流动终了时的总机械能与能量损失之和相等。
pA

zAg
1 2
u
2 A
h fOA
pB

zB g
1 2
u B h fOB
2
例1-11 如图所示,从自来水总管接一管段AB向实验楼供水,在B处
q v1 : q v 2 : q v 3
1 ( l l e )1
:
d2
5
2 (l le ) 2
:
d3
5
3 (l l e ) 3
支管越长、管径越小、阻力系数越大—流量越小; 反之 —流量越大。
二、分支管路与汇合管路
A
C O
A
O C
分支管路
特点:
B
B
汇合管路
(1)主管中的流量为各支路流量之和;
hf1 hf
2
hf
3
h fAB
2. 并联管路的流量分配
h fi i (l le ) i u i di
2
2

2
ui
4 q vi
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
4.2 复杂管路
一、并联管路
qv qv1 qv2 B qv3
注意:计算并联 管路阻力时,仅 取其中一支管路 即可,不能重复 计算。
A 1、特点:
(1)主管中的流量为并联的各支路流量之和; q m q m1 q m 2 q m 3 不可压缩流体 q v q v 1 q v 2 q v 3 (2)并联管路中各支路的能量损失均相等。
hf1 hf
2
hf
3
h fAB
2. 并联管路的流量分配
h fi i (l le ) i u i di
2
2

2
ui
4 q vi
d i
2
h fi
( l l e ) i 1 4 q vi i d 2 di 2 i
d1
5
2 8 i q vi ( l l e ) i 2 5 di
q m q m1 q m 2
不可压缩流体:
q v q v1 q v 2
(2)流体在各支管流动终了时的总机械能与能量损失之和相等。
pA

zAg
1 2
u
2 A
h fOA
pB

zB g
1 2
u B h fOB
2
例1-11 如图所示,从自来水总管接一管段AB向实验楼供水,在B处
例1-9
粘度为30cP、密度为900kg/m3 的某油品自容器A流过内径
40mm的管路进入容器B。两容器均为敞口,液面视为不变。管路 中有一阀门,阀前管长50m,阀后管长20m(均包括所有局部阻力
的当量长度)。
当阀门全关时,阀前后的
压力表读数分别为8.83kPa 和4.42kPa。现将阀门打开 至1/4开度,阀门阻力的当 量长度为30m。试求: (1)管路中油品的流量;
分成两路各通向一楼和二楼。两支路各安装一球形阀,出口分别为C和
D。已知管段AB、BC和BD的长度分别为100m、10m和20m(仅包括管 件 的 当 量 长 度 ) , 管 内 径 皆 为 3 0 mm。 假 定 总 管 在 A 处 的 表 压 为 0.343MPa,不考虑分支点B处的动能交换和能量损失,且可认为各管段 内的流动均进入阻力平方区,摩擦系数皆为0.03,试求: (1)D阀关闭,C阀全开(
pa A pa B p1 p2
(2)定性分析阀前、阀后
的压力表的读数有何变化?
例1-10 如附图所示的循环系统,液体由密闭容器 A 进 入 离 心 泵 , 又 由 泵 送 回 容 器 A。 循 环 量 为 1.8m3/h,输送管路为内径等于25mm的碳钢管,容 器内液面至泵入口的压头损失为0.55m,离心泵出 口至容器A液面的压头损失为1.6m,泵入口处静压 头比容器液面静压头高出2m。 试求: (1)管路系统需要离心泵 z 提供的压头; (2)容器液面至泵入口的 垂直距离z。
q v1 : q v 2 : q v 3
1 ( l l e )1
:
d2
5
2 (l le ) 2
:
d3
5
3 (l l e ) 3
支管越长、管径越小、阻力系数越大—流量越小; 反之 —流量越大。
二、分支管路与汇合管路
A
C O
A
O C
分支管路
特点:
B
B
汇合管路
(1)主管中的流量为各支路流量之和;
6 . 4 )时,BC管的流量为多少?
(2)D阀全开,C阀关小至流量减半时,BD管的流量为多少?总管流 量又为多少?
自 来
D B C
水 总 A 管
5m
三、阻力对管内流动的影响
pa
1
阀门F开度减小时:
(1)阀关小,阀门局部阻力系数 ↑→
pA
pB 2
hf,A-B↑→流速u↓→即流量↓;
(2)1-A之间,因流速u↓→ hf,1-A↓ →pA↑;
(3)B-2之间,由于流速u↓→ hf,B-2↓ →pB↓;
A
结论:
F B
(1)当阀门关小时,其局部阻力增大,将使管路中流量下降; (2)下游阻力的增大使上游压力上升; (3)上游阻力的增大使下游压力下降。 可见,管路中任一处的变化,必将带来总体的变化,因此必须将管 路系统当作整体考虑。
第四节 管路计算
4.1 简单管路
qm1,d1
qm2,d2
qm3流量不变,对于不可压缩流体, 则体积流量也不变。
q m1 q m 2 q m 3
不可压缩流体
q v1 q v 2 q v 3
(2) 整个管路的总能量损失等于各段能量损失之和。
hf hf1 hf 2 hf 3
二、管路计算
基本方程: 连续性方程:
qv

4
d u
2
柏努利方程:z 1 g
p1


u1 2
2
W z2 g
p2


u2 2
2
(
l d
)
u
2
2
阻力计算 (摩擦系数):
du , d
物性、一定时,需给定独立的9个参数,方可 求解其它3个未知量。
相关文档
最新文档