信号发生器的发展和主要表现

合集下载

信号发生器

信号发生器

分类介绍
01
正弦
02
低频
03
高频04微波 Nhomakorabea06
频率合成式
05
扫频和程控
1
函数发生器
2
脉冲
3
随机
4
噪声
5
伪随机
信号发生器正弦信号发生器:正弦信号主要用于测量电路和系统的频率特性、非线性失真、增益及灵敏度等。 按频率覆盖范围分为低频信号发生器、高频信号发生器和微波信号发生器;按输出电平可调节范围和稳定度分为 简易信号发生器(即信号源)、标准信号发生器(输出功率能准确地衰减到-100分贝毫瓦以下)和功率信号发生 器(输出功率达数十毫瓦以上);按频率改变的方式分为调谐式信号发生器、扫频式信号发生器、程控式信号发 生器和频率合成式信号发生器等。
电源自适应的方波发生器原理图主振级产生低频正弦振荡信号,经电压放大器放大,达到电压输出幅度的要 求,经输出衰减器可直接输出电压,用主振输出调节电位器调节输出电压的大小。
电源自适应的方波发生器原理图
右图的电路是一种不用电源的方波发生器,可供电子爱好者和实验室作简易信号源用。电路是由六反相器 CD4096组成的自适应方波发生器。当输入端输入小信号正弦波时,该信号分两路传输,其一路径C1、D1、D2、C2 回路,完成整流倍压功能,给CD4096提供工作电源;另一路径电容C3耦合,进入CD4096的一个反相器的输入端, 完成信号放大功能(反相器在小信号工作时,可作放大器用)。该放大信号经后级的门电路处理,变换成方波后 经CD4096的12、8、10脚输出。输出端的R2为可调电阻,以保证输出端信号从0~1.25V可调。该方波发生器电路 简单,制作容易,因此可利用该方波发生器电路,作市电供电的50Hz方波发生器。

《信号发生器》课件

《信号发生器》课件

信号发生器的基本原理
总结词
信号发生器的基本原理概述
详细描述
信号发生器的基本原理是利用振荡器产生一定频率和幅度的正弦波,然后通过波 形合成技术生成其他波形。振荡器通常由电感和电容组成,通过改变电感或电容 的参数,可以改变输出信号的频率。
信号发生器的分类
总结词
信号发生器的分类概述
详细描述
信号发生器有多种分类方式。按波形分类,可分为正弦波信号发生器、方波信号发生器和脉冲信号发生器等;按 频率分类,可分为低频信号发生器、高频信号发生器和微波信号发生器等;按用途分类,可分为测量用信号发生 器和测试用信号发生器等。
《信号发生器》PPT课件
目 录
• 信号发生器概述 • 信号发生器的工作原理 • 信号发生器的应用 • 信号发生器的使用与维护 • 信号发生器的发展趋势与展望
01
信号发生器概述
信号发生器的定义与用途
总结词
信号发生器的定义与用途概述
详细描述
信号发生器是一种能够产生电信号的电子设备,广泛应用于通信、测量、控制 等领域。它可以产生各种波形,如正弦波、方波、三角波等,用于测试、模拟 和控制系统。
干燥、通风良好、无尘的环境中,避免强烈振动和磁场干扰。
05
信号发生器的发展趋势与展望
信号发生器的发展历程
信号发生器的起源
信号发生器的历史可以追溯到20 世纪初,当时它被用于电信和广
播领域。
模拟信号发生器
在20世纪的大部分时间里,模拟信 号发生器占据主导地位,它通过连 续的电压或电流输出信号。
数字信号发生器
信号发生器的正确使用方法
信号发生器的正确使用方法包括
首先,确保电源连接正确,避免电源电压过高或过低;其次,根据需要选择合适的输出信号类型和参 数,如波形、频率、幅度等;再次,确保输出连接正确,避免连接短路或开路;最后,遵循安全操作 规程,避免发生意外事故。

信号发生器的工作原理

信号发生器的工作原理

信号发生器的工作原理
信号发生器是一种用于产生特定频率、振幅和波形的电信号的仪器。

它可以用于各种测试、实验和项目中,如电子设备测试、音频设备校准、电路设计等。

信号发生器的工作原理基于振荡电路的原理。

它通常包含一个振荡器,该振荡器产生一个稳定的频率,并将其放大到所需的振幅。

信号发生器还可以包括不同的电路和滤波器,以产生不同的波形,如正弦波、方波、脉冲波、三角波等。

在信号发生器中,振荡器产生一个稳定的频率。

振荡器通常由一个电感、电容和晶体管组成。

当电荷在电感和电容之间振荡时,振荡器就会产生一个周期性的电信号。

振荡器产生的电信号经过放大电路,增加其振幅,以满足特定的需求。

放大电路通常由一个或多个晶体管组成,它们将输入信号的电压放大到所需的幅度。

有些信号发生器还有滤波器电路,用于过滤掉不需要的频率分量。

这样可以确保输出信号具有所需的波形特征。

一旦信号产生并放大,它通过输出端口发送给需要使用该信号的设备或系统。

信号发生器通常提供多个输出选项,可以根据需求选择不同的输出接口,如BNC接口、螺纹接口等。

总的来说,信号发生器的工作原理是通过振荡器产生稳定的频率信号,并通过放大和滤波电路对该信号进行相应的处理,最
终输出需要的电信号。

这样,信号发生器可以为各种测试和实验提供准确、稳定和可调的电信号。

信号发生器

信号发生器

项目2 信号发生器项目任务通过本项目的学习和实践,使学习者掌握以下理论知识和职业技能;2.1.1 知识点1.信号发生器的基本概念及应用范围;2.函数信号发生器的基本组成原理,以及信号发生器的主要性能指标;3.熟悉信号发生器的使用方法及注意事项;2.1.2 技能点熟练使用函数信号发生器提供各种测试用信号;项目知识2.2.1 信号发生器基本概念2.2.1.1 定义信号发生器又称信号源,它是在电子测量中提供符合一定电技术要求的电信号的设备,它能提供不同波形、频率、幅度大小的电信号,主要是正弦波、方波、三角波、锯齿波和脉冲波等,为测试提供不同的信号源;它与电子线路中的电流源、电压源的区别在于它是提供的是电信号,而后者只是提供的是电能;2.2.1.2 分类信号发生器可按输出波形和输出频率两种方法进行分类;1. 按输出波形分类,信号发生器可分为以下四种类型:1正弦波信号发生器:可产生正弦波或受调制的正弦波;2脉冲信号发生器:可产生脉宽可调的重复脉冲波;3函数信号发生器:可产生幅度与时间成一定函数关系的信号,如正弦波、三角波、方波、锯齿波、钟形波脉冲等;4噪声信号发生器:可产生各种模拟干扰的电信号;2. 按输出频率可分类,信号发生器可为以下六种类型:1超低频信号发生器:频率范围为~1KHz; 2低频信号发生器:频率范围为1Hz ~1MHz; 3视频信号发生器:频率范围为20Hz ~10MHz; 4高频信号发生器:频率范围为200KHz ~30MHz; 5甚高频信号发生器:频率范围为30~300Hz; 6超高频信号发生器:频率范围为300MHz 以上;2.2.2 几种常用信号发生器2.2.2.1 正弦波信号发生器1.频率特性1频率范围;指仪器 各项指标都能得到保证时的输出频率范围,更确切地说,应称为“有效频率范围”;2频率准确度;指信号发生器度盘或数字显示数值o f 与实际输出信号频率f 间的偏差;可用频率的绝对偏离绝对误差0f f f -=∆,或用相对偏离相对误差 α来表示,即0f f∆=α,式中,o f 为标称频率; 3频率稳定度;指在其他外界条件恒定不变的情况下,在规定时间内,信号发生器输出频率相对于预调值变化的大小;频率稳定度实际上是频率不稳定度指标要求与频率准确度有关,一般振荡器的频率稳定度应比所要求的准确度高1~2个数量级;2.输出特性一个正弦信号源的输出特性主要有:1输出信号的幅度;输出信号的幅度常采用两种表示方式:其一,直接用正弦波有效值单位用V,mV 或μV 表示;其二,用绝对电平单位用dBm 或dB 表示;2输出电平范围;表征信号源能提供的最小和最大输出电平的可调范围;3输出电平的频响;指在有效频率范围内调节频率时,输出电平的变化,也就是输出电平的平坦度; 4输出电平准确度;主要由电压表刻度误差、衰减器衰减误差、0dB 准确度和输出衰减器决定;它会随温度与供电电压波动的影响而变化;常用“工作误差”来评价仪器的准确度;5输出阻抗;信号源的输出阻抗视类型不同而异;低频信号发生器输出阻抗一般有75Ω,150Ω,600Ω几种;高频信号发生器一般为50Ω或75Ω不平衡输出;6输出信号的频谱纯度;反映输出信号波形接近正弦波的程度,常用非线性失真度谐波失真度表示;一般信号源的非线性失真度应小于1%;3. 调制特性高频信号发生器在输出正弦波的同时,一般还能输出一种或一种以上的已被调制的信号,多数情况下是调幅信号和调频信号,有些还带有调相和脉冲调制等功能;例如QF1481型合成信号发生器同时具有调幅、调频、调相和脉冲调制特性;当调制信号由信号发生器内部产生时,称为内调制;当调制信号由外部加入信号发生器进行调制时,称为外调制;这类带有输出已调波功能的信号发生器,是测试无线电收发设备等场合不可缺少的仪器;2.2.2.2 低频信号发生器低频信号发生器由主振器、电压放大器、输出衰减器和电子电压表组成;如图2-1所示; 1.主振器主振器是低频信号发生器的核心电路;它产生频率可调的正弦信号,决定了信号发生器的有效频率范围和频率稳定度;低频信号发生器中产生振荡信号的方法很多,但日前主要采用RC 文氏桥振荡器,图2-2所示的振荡器由两级RC 网络和放大器组成;图中R1和C1,R2,C2组成正反馈臂,跨接于放大器的输入端和输出端之间,产生了正弦振荡;振荡频率由R 1,C 1和R 2,C 2各元件参数决定;A 为两级放大器,R F ,R T 组成负反馈臂,起到自动稳幅作用;该电路的振荡频率f n 为:2211021C R C R f π=由上式可知,改变电阻RR 1或R 2电阻CC 1或C 2的大小均可以改变输出信号的振荡频率;通常电阻R 用于频率微调,输出信号的同谋由输入出衰减器控制;2.电压放大器电压放大器兼有隔离和电压放大的作用;隔离是为了不使后级电路影响主振荡器的工作;放大是把振荡器产生的微弱振荡信号进行放大,使信号发生器的输出电压达到预定的技术指标,要求其具有输入阻抗高、输出阻抗低有一定的带负载能力、频率范围宽、非线性失真小等性能;一般采用射极跟随器或运算放大器组成的电压跟随器;3.输出衰减器输出衰减器用于改变信号发生器的输出电压或功率;通常分为连续调节和步进调节;连续调节由电阻电位器实现,即输出微调;步进调节由波段转换开关步进调节电阻分压器实现并以分贝值为刻度,也称为输出粗调;4.电子电压表电子电压表一般采用均值检波器作为信号输出指示器;用来显示输出电压或输出功率的幅度或对外部信号电压进行测量; 2.2.2.3 高频信号发生器高频信号发生器也称为射频信号发生器,信号的频率范围在300KHz-300MHz 之间,广泛应用于高频电子线路的测试实验中;该仪器具有一种或一种以上的组合调制包括正弦调幅、正弦调频以及脉冲调制功能,以满足各种通信电路及设备的测试;此外,该类仪器的输出信号的频率、电平、调制度均可在一定范围内调节,并能准确读数;高频传号发生器组成原理:高频信号发生器主要由主振级、缓冲级、调制级、内调制振荡器、输出级监测器等部分组成;如图2-3所示;1.主振级调制级是信号发生器的核心 ,用于产生高频振荡信号并可实现调频功能;它一般采用可调频率范围、频率准确度高、稳定性好的LC 振荡器,如变压器耦合振荡器、三点式振荡器等;其振荡频率一般改变L 进行分挡粗调;改变C 进行细调; 2.缓冲级缓冲级主要起隔离放大作用,用来隔离调制级对主振级产生的不良影响,保证主振级工作稳定,并将主振信号放大到一定的电平;3.调制级调制级实现调制信号对载波的调制,它包括调频、调幅和脉冲调制等调制方式;调频方式主要用于30Hz-1000MHz 的信号发生器中;调幅方式多用于300kHz-30MHz的高频信号发生器中;脉冲调制方式多用于300MHz以上的微波信号发生器中;信号发生器的调制方式通过面板上的选择开关来进行选择;调制信号可来自内调制振荡器,也可来自外部其他信号源;4.内调制振荡器内调制振荡器用于产生调制信号,提供符合调制级要求的音频正弦调制信号;5.输出级高频信号发生器输出级具有如下功能:1输出级包含功率放大级,提供足够的输出功率;2输出级具有输出微调和步进衰减电路,使得输出信号的幅度大小可以任意调节;3阻抗匹配:在信号发生器输出端与负载之间加入阻抗变换,使其工作在负载匹配的条件下,否则不仅要引起衰减系数误差,而且还可能影响前级电路的正常工作.减少信号发生器的输出功率,在输出电缆中出现驻波;6.监测器监测器一般由调制显示仪表和电子电压表组成;用于检测输出信号的载波幅度、调幅度等参数;7.电源用来供给整机各部分电路所需的交直流电源;函数信号发生器函数信号发生器,它具有调频、调幅等调制功能和压控频度特性,可产生正弦波、方波、三角波等函数波形,广泛用于通信生产测试、仪器维修等工作中;函数发生器主要有比较器、积分器、差分放大器三大主要模块电路构成;经比较器产生方波,再经过积分器产生三角波,而后由积分器输出信号反馈给比较器,比较器和积分器组成正反馈闭合电路,使其能够完成自激震荡,分别输出方波和三角波;再经过级间耦合电容接入差分放大器,使其再对三角波进行整形变换,最后输出标准正弦波;由比较器和积分器组成方波/三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成;差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点;特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波;波形变换的原理是利用差分放大器传输特性曲线的非线性;信号发生器使用与维护常识选择信号发生器的一般原则信号发生器的应用广泛,种类型号繁多,选择时一般根据具体使用情况进行选择:1.根据被测信号波形选择;2.根据被测信号频率选择;3.根据测试功能选择;低频信号发生器主要用于检修、测试或调整各种低频放大器、扬声器、传声器、滤波器等器件的频率特性,也可用于高频信号发生器的外调制信号源;此外,在校准电子电压表时,它可提供交流信号电压;高频信号发生器主要用于测量各种无线电接收机的灵敏度、选择性等参数,同时也为调试高频电子电路提供所需的各种模拟射频信号;函数发生器可用于伺服系统、自动测试系统、音频放大器、滤波器等的实验研究中,也可用于神经刺激和麻醉等医疗研究;脉冲信号发生器是专门用来产生脉冲波形的信号源,可用于测试视频放大器、宽带电路的振幅特性、过度特性,逻辑元件的开关速度、数字电路研究以及示波器的检定与测试等;它广泛用于电子测量系统以及数字通信、雷达、激光、航天、计算机技术、自动控制等领域;4.根据测量准确度要求选择;信号发生源按性能指标可分为普通和标准信号发生器;前者是指对输出信号的频率、幅度准确度和稳定度以及波形失真等要求不高的一类信号发生器,后者是指输出信号的频率、幅度、调制系数等在一定范围内可连续调节,且读数准确、稳定,屏蔽良好的中、高挡信号发生器;使用注意事项1. 使用前应认真阅读仪器说明书,了解其基本性能、使用方法;2. 接通电源前,检查测量装置的接线是否正确;仪器的量程、频段、衰减、输出等旋钮是否有松脱、错位现象;3. 仪器预热;4. 对于表针指示的仪器,应在接通电源前进行机械调零;观察指针是否指零或规定值,如有差异,可用螺丝刀轻轻旋转机械调零旋钮,使表针指示为零;在仪器通电并充分预热后,进行电气调零,将仪器的输入端短路,调节仪器使其读数指示零或规定值;对于具有内部校准装置的仪器,使用前要正确校准;5. 正确连接测量电路连线,并选择合适的量程;6. 日常维护应注意:防尘、防潮、防腐、防振动等;项目实施2.3.1 EE1640C型函数信号发生器发生器简介2.3.1.1 EE1640C函数信号发生器主要特征1.采用大规模单片集成精密函数发生器电路,使得该机具有很高的可靠性及优良性能/价格比;2.采用单片微机电路进行整周期频率测量和智能化管理,对于输出信号的频率幅度用户可以直观、准确的了解到特别是低频时亦是如此,因此极大的方便了用户;3.该机采用了精密电流源电路,使输出信号在整个频带内均具有相当高的精度,同时多种电流源的变换使用,使仪器不仅具有正弦波、三角波、方波等基本波形,更具有锯齿波、脉冲波等多种非对称波形的输出,同时对各种波形均可以实现扫描、FSK调制和调频功能,正弦波可以实现调幅功能;此外,本机还具有单次脉冲输出;4.整机采用中大规模集成电路设计,优选设计电路,元件降额使用, 全功能输出保护,以保证仪器高可靠性,平均无故障工作时间高达数千小时以上;2.3.1.2 主要技术指标1.输出频率:~10MHz,分为1、10、100、1K、10K、100K、1M、10M等8个档位;2.功率输出:≥10W选件;3.可输出点频正弦信号:50Hz选件;4.输出幅度:10V p-p50Ω、20V p-p1MΩ;5.可同时显示频率最大8位和幅度3位,且幅度显示单位可切换显示峰峰值V p-p和有效值Vrms;6.可输出正弦波、三角波、方波、正负向锯齿波等七种波形;7.可输出单次脉冲;8.可输出TTL/CMOS,且CMOS电平可调;9.多调制输出方式:调频、调幅、扫频、FSK;10.具有内外调幅、调频功能;11.正弦波失真度:≤%;12.方波沿:≤20ns;13.输出波形占空比可调,有直流偏置功能;14.输出信号衰减0dB/20dB/40dB/60dB;15.数字频率计测量范围:~100MHz8位显示;16.灵敏度:50mVrms;17.具有全功能输出保护,且主函数输出具有错接报警功能;18.采用大规模集成电路、SMT贴装工艺,高可靠性、散热性能好机后有排风扇,MTBF≥10000小时;2.3.1.3 操作面板说明EE1640C型函数信号发生器发生器操作面板如图2-5所示,各操作按钮及旋钮功能如下:1.频Array率显示窗口:显示输出信号的频率或外测频信号的频率;2.幅度显示窗口:显示函数输出信号的幅度;3.频率微调电位器:调节此旋钮可改变输出频率的1个频程;4.输出波形占空比调节旋钮:调节此旋钮可改变输出信号的对称性;当电位器处在中心位置或“OFF”位置时,则输出对称信号;5.函数输出信号直流电平调节旋钮:调节范围:-10V~+10V空载,-5V~+5V50Ω负载,当电位器处在中心位置时,则为0电平;6.函数信号输出幅度调节旋钮:调节此旋钮可改变输出的幅度,调节范围20dB;7.扫描宽度/调制度调节旋钮:调节此电位器可调节扫频输出的频率宽度;在外测频时,逆时针旋到底绿灯亮,为外输入测量信号经过低通开关进入测量系统;调节此电位器可调节调频的频偏范围、调幅时的调制度和FSK调制时的高低频率差值,逆时针旋到底为关调制;8.扫描速率调节旋钮:调节此电位器可以改变内扫描的时间长短;外测频时,逆时针旋到底绿灯亮,为外输入测量信号经过衰减“20dB”进入系统;电平调节旋钮:调节此电位器可以调节输出的CMOS电平;当电位器逆时针旋到底绿灯亮时,输出为标准的TTL电平;10.频段选择按钮:每按一次此按钮,输出频率向左调整一个频段;11.频段选择按钮:每按一次此按钮,输出频率向右调整一个频段;12.波形选择按钮:按此按钮可选择正弦波、三角波、脉冲波输出;13.衰减选择按钮:可选择信号输出的0dB、20dB、40dB、60dB衰减的切换;14.幅值选择按钮:可选择正弦波的幅度显示的峰-峰值Vp-p与有效值Vrms之间的切换;15.方式选择按钮:可选择多种扫描方式、多种内外调制方式以及外测频方式;16.单脉冲选择按钮:控制单脉冲输出,每揿动一次此按钮,单脉冲输出电平翻转一次;17.整机电源开关:此按键揿下时,机内电源接通,整机工作;此键释放为关掉整机电源;18.外部输入端:当方式选择按钮选择在外部调制方式或外部计数时,外部调制控制信号或外测频信号由此输入;19.函数输出端:输出多种波形受控的函数信号,输出幅度20Vp-p空载,10Vp-p50Ω负载;20.同步输出端:当CMOS电平调节旋钮逆时针旋到底,输出标准的TTL幅度的脉冲信号,输出阻抗为600Ω;当CMOS电平调节旋钮打开,则输出CMOS电平脉冲信号,高电平在5V~≥可调;21.单次脉冲输出端:单次脉冲输出由此端口输出,“0”电平:≤,“1”电平:≥3V;22.点频输出端选件:提供50Hz的正弦波信号;23.功率输出端选件:提供≥10W4Ω负载的正弦波功率输出,频率范围20Hz~40kHz;2.3.1.4 EE1640C系列函数信号发生器操作指南1.测量、试验的准备工作请先检查市电电压,确认市电电压在220V±10%范围内,方可将电源线插头插入本仪器后面板电源线插座内,供仪器随时开启工作;2.自校检查在使用本仪器进行测试工作之前,可对其进行自校检查,以确定仪器工作正常与否;3.仪器启动按下面板上的电源按钮,电源接通;面板上所有数码管和发光二极管全部点亮2秒后,再闪烁显示仪器型号例如“EE1641C”1秒,之后根据系统功能中开机状态设置,波形显示区显示当前波形“~”,频率显示区显示当前频率档“1k”,衰减显示区显示当前衰减档“0dB”;其余则保持上次关机前的状态;2由“频率选择”按钮选定输出函数信号的频段,由“频率调节”旋钮调整输出信号频率,直到所需的工作频率值;3由“波形选择”按钮选定输出函数的波形分别获得正弦波、三角波、脉冲波;4由信号幅度选择器和“幅度调节”旋钮,选定和调节输出信号的幅度;5由信号直流电平设定器选定输出信号所携带的直流电平;6输出波形占空比调节器可改变输出脉冲信号占空比,占空比是指高电平在一个周期之内所占的时间比率;与此类似,输出波形为三角或正弦时可使三角波调变为锯齿波,正弦波调变为正与负半周分别为不同角频率的正弦波形,且可移相180度;2.3.2 操作实例2.3.2.1 函数信号发生器操作实例1技能要求输出频率为的三角波,其幅度为10V p-p;操作步骤1.测量、试验的准备工作;2.自校检查;3.仪器启动;4. 函数信号输出;1由“波形选择”按钮选择三角波档,三角波灯亮;2由“频率选择”按钮“←”或“→”选择C“10k”档灯亮,再调节“频率微调”旋钮,调整输出信号频率至频率显示为;3调节“幅度选值”和“幅度调节”旋钮至幅度显示为10,“V”、“p-p”灯亮;2.3.2.2 函数信号发生器操作实例2技能要求输出方波,其为频率366Hz,幅度为87mV p-p,占空比为70%;操作步骤1.测量、试验的准备工作;2.自校检查;3.仪器启动;4. 函数信号输出;1按下正弦波“波形选择”按钮,正弦波灯亮;2由“频率选择”按钮“←”或“→”选择“100”档灯亮,再调节“频率微调”旋钮,调整输出信号频率至频率显示为366Hz;3按“衰减选择”按钮,40dB衰减灯亮,调节“幅度调节”旋钮至幅度显示为87,“mV”、“p-p” 灯亮;4调节输出波形占空比调节旋钮至70%;常见故障及检修方法EE1640C系列函数信号发生器采用大规模集成电路和贴片电路,可靠性高,发生故障的可能性较小;下面是几种常见的故障以及维修方法:1. 开机无显示;解决方法:首先打开电源插座里的保险丝查看是否完好;保险丝位置处如果完好,则打开仪器的外壳,将仪器内部的排线重新插紧;2. 调节多圈电位器时,频率不起作用;解决方法:由于多圈电位器属于易损件,在使用很长时间后易损坏;如果在使用时发现调节频率旋钮不可调时,基本可判断是多圈电位器损坏;3. 无同步输出;解决方法:首先检查同步输出高频头射频电缆是否符合芯线与芯线通,地线与地线通,芯线与地线不通的原则;其次,检查N1674LS044脚有无输出信号,如无则检查N1574HC1328脚有无输出信号;4. 无CMOS输出信号;解决方法:首先检查面板上的CMOS电平调节电位器是否已坏,其次检查仪器主板N17B74LS068脚有无输出电8压以及判断K2G6H-2-5V继电器是否已坏;5. 主函数无输出;解决方法:首先检查主函数输出高频头射频电缆是否符合芯线与芯线通,地线与地线通,芯线与地线不通的原则;其次,检查电阻R165或R166有无输出信号,如有则可判断是衰减器坏,如无则是幅度放大电路坏;6. 单脉冲无输出;解决方法:首先检查单脉冲输出高频头射频电缆是否符合芯线与芯线通,地线与地线通,芯线与地线不通的原则;其次,检查显示板上的D1774HC1234脚、5脚有无信号,74HC74脚和6脚有无信号,D185以及D1974HC04 8脚有无信号;7. 不测频;解决方法:检查是否将输入灵敏度设置过低;如果输入灵敏度合适,那么检查外部输入高频头射频电缆是否符合芯线与芯线通,地线与地线通,芯线与地线不通的原则;如果测频灵敏度不够可调节电位器RP13,使计数灵敏度能够满足要求;如果低通和衰减不正常,则检查对应的两个继电器K7、K8是否完好;8. 输出波形不衰减;解决方法:有可能是衰减器坏,打开衰减器的上盖,检查里面的继电器K5、K6是否损坏;9. 幅度显示不对;解决方法:检查N33LM331的第7脚有一随之变化的直流电平,而第3脚应有一随之变化的脉冲波;如无便可判定LM331坏;10. 主函数无正弦波输出;解决方法:检查K4G6H-2-5V继电器是否损坏;11. 功率输出无波形输出;解决方法:与功率放大电路板连接的排线有无连接牢固,是否松动;如果排线没问题,则检查N507815为15V和N517915为-15V的电压是否正常;。

射频信号发生器

射频信号发生器

射频信号发生器射频信号发生器是无线通信系统中的一种重要设备,用于产生特定频率和幅度的射频信号,以在无线通信系统中进行信号调制、频谱分析、测试验证等操作。

本文将介绍射频信号发生器的工作原理、分类、应用领域以及未来发展趋势。

工作原理射频信号发生器通常由振荡器、频率合成器、功率放大器、控制电路等部分组成。

首先,振荡器产生一个基础频率的连续波信号,然后通过频率合成器将其调频至目标频率,再经过功率放大器进行信号放大,最终输出到外部设备中。

分类根据工作频率范围的不同,射频信号发生器可分为微波信号发生器和毫米波信号发生器。

微波信号发生器一般工作在几百兆赫兹到几十吉赫兹的频段,主要用于通信、雷达和卫星通信等领域。

毫米波信号发生器则覆盖了毫米波频段,适用于5G通信、无线高清视频传输等新兴领域。

应用领域射频信号发生器在无线通信、广播电视、医疗诊断、科学研究等领域均有广泛应用。

在无线通信中,射频信号发生器被用于手机基站、卫星通信、无线局域网等系统中,确保信号的稳定性和可靠性。

在科学研究领域,射频信号发生器可用于频谱分析、射频辐射实验等研究项目中。

未来发展趋势随着5G技术的普及和产业升级,射频信号发生器的需求将进一步增加。

未来,射频信号发生器将朝着频率范围更宽、功耗更低、体积更小、智能化程度更高等方向发展。

同时,结合人工智能、物联网等新兴技术,射频信号发生器也将在多元化、定制化方面有更广阔的应用前景。

射频信号发生器作为无线通信系统的重要组成部分,扮演着至关重要的角色。

随着无线通信技术的不断发展,射频信号发生器将会迎来更大的发展机遇和挑战,为无线通信领域的进步做出更大贡献。

信号发生器的发展现状

信号发生器的发展现状

信号发生器的发展现状
随着科技的不断进步和应用场景的不断扩展,信号发生器作为一种重要的测试仪器设备,也在不断地发展和完善,以满足不同领域和需求的测试要求。

以下是信号发生器的发展现状的简要概述:
1. 高频率和宽带化:随着无线通信系统的不断发展,对于高频和宽带的信号发生器需求不断增加。

目前的信号发生器能够提供更高的输出频率范围和更大的带宽,以应对高速数据传输和宽带通信系统的测试需求。

2. 高分辨率和低噪声:现代通信技术对于信号质量和精度要求越来越高,因此信号发生器需要具备更高的分辨率和更低的噪声水平,以生成更准确、稳定、干净的测试信号。

3. 多功能和综合性:为了满足不同领域、不同测试需求的多样化要求,现代信号发生器不仅具备基本的波形发生功能,还集成了多种调制功能(如调频、调幅、调相等),以及多种模拟和数字调制信号的产生能力,提供更丰富的测试手段和场景模拟能力。

4. 功耗优化和节能设计:随着节能环保意识的不断增强,现代信号发生器也在设计上注重功耗优化和节能性能。

通过采用更高效的功率放大器、智能调节电路或自动休眠模式等技术手段,以降低能耗、延长设备寿命,并减少对环境的影响。

5. 数字化和智能化:随着数字技术的快速发展,信号发生器逐
渐向数字化和智能化方向发展。

例如,现代信号发生器普遍支持通过电脑、手机或其他移动设备进行远程操作和控制,方便用户进行远程监测、配置和控制。

总的来说,信号发生器在高频率、宽带化、高分辨率、低噪声、多功能、功耗优化和数字化智能化等方面不断发展和完善,以满足不同行业、不同领域测试要求的不断升级和多样化需求。

信号发生器发展浅析(下)

信号发生器发展浅析(下)

表 lMG O O 8 O A信 号 发 生器 性 能
德 霾 彝 鏊
频 率 范 围 频 率 分 辨 率 输 出幅 度 幅 度 分 辨 率
幅 度 平 锾 度
2 5 0 K z ~2 0 G z 和 H H
3所示 。
~0 璧 翳 鐾 罄 琵 露 l 饕螯2 0 霪 翳霪 露 萋 蓁 蠹翼 雾 5 KHz 4 GHz两 种 频 段 和
覆盖 9 KHz .GHz22  ̄11 / .GHz 位 高 取 样 率 D A 转 换 器 和 直 接 上 变 / /
扫 描 时 间
调 制 方 式
1 MHz至 22 0 .GHz 段 采 用 数 字下 变 范 围 。 几种 信 号 发生 器 除 频 率 范 围 频 这 从 1 至 3 移 动 通 信 设 备 的 测 量 应 G G
这 频( DDC) YI 对 G振 荡 源 作 连 续 分 频 产 有 差 别之 外 , 主 要 电 学 性 能 方 面 是 用 。 种 矢 量 信 号 发 生 器 采 用 模 块 结 在 从 00 生 输 出频 率 ,在 2 H 至 4 GH 频 段 很 相 近 的 。 MG8 0 A的 结 构 可 知 , G z 0 z 环 (L ) P L ,保 证 在 宽 的频 段 内具 有 很 很 高 的 电 学 指标 。
l Hz一4 K 0GHz
的 高 水 平 仪 器 ,而 且 种 类 和 它 的 A至 F共 6 滤 波 器 可 产 生 标 准 组
型号最 多。 /公 司的S RS ML系 或 用 户 设 定 的 多种 载 频 信 号 。
列信 号 发 生 器现 有 三种 型 号 ,

超 线 性 的信 号 合 成— — 它 的 1 4

标准信号发生器

标准信号发生器

标准信号发生器标准信号发生器是一种用来产生各种标准信号的仪器,它在电子、通信、无线电、自动控制等领域都有着广泛的应用。

它能够产生各种频率、幅度、相位、波形等参数的信号,是电子测试、仪器校准、通信系统调试等工作中不可或缺的设备。

一、工作原理。

标准信号发生器的工作原理主要是利用振荡器产生基本信号波形,然后通过频率、幅度、相位调制等电路对基本信号进行调制,最终输出所需的标准信号。

在振荡器中,常用的振荡器有RC振荡器、LC振荡器、晶体振荡器等,它们能够产生稳定的基本信号波形。

而在调制电路中,通过对基本信号进行调制,可以得到各种不同参数的标准信号。

二、主要特点。

1. 高稳定性,标准信号发生器通常采用高稳定性的振荡器和调制电路,能够产生稳定、准确的标准信号。

2. 宽频率范围,标准信号发生器能够覆盖从几赫兹到数千兆赫的频率范围,适用于不同频率下的测试和校准。

3. 多种波形输出,标准信号发生器可以输出正弦波、方波、三角波等多种波形,满足不同测试需求。

4. 灵活性强,标准信号发生器通常具有丰富的调制功能,可以实现频率调制、幅度调制、相位调制等功能。

5. 易操作性,现代的标准信号发生器通常采用数字化控制,操作简便,功能丰富。

三、应用领域。

1. 电子测试,在电子产品的研发、生产过程中,需要对各种电路、器件进行测试,标准信号发生器可以提供标准的测试信号,用于测试电路的性能、参数等。

2. 仪器校准,各种仪器设备在使用前需要进行校准,标准信号发生器可以提供标准的校准信号,用于仪器的校准工作。

3. 通信系统调试,在通信系统的建设和维护中,需要对各种设备进行调试和测试,标准信号发生器可以提供符合标准的测试信号,用于通信系统的调试工作。

4. 无线电领域,在无线电通信、雷达、导航等领域,需要对各种无线电设备进行测试和校准,标准信号发生器可以提供各种标准的无线电信号。

四、发展趋势。

随着科学技术的不断发展,标准信号发生器也在不断更新换代,主要体现在以下几个方面:1. 高频率、宽带化,随着通信技术的发展,对于高频率、宽带的需求越来越大,标准信号发生器也在不断提高工作频率和带宽。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号发生器的发展和主要表现
信号发生器又称波形发生器,是一种常用的信号源,被广泛地应用于无线电通信、自动测量和自动控制等系统中。

传统的信号发生器绝大部分是由模拟电路构成,借助电阻电容,电感电容、谐振腔、同轴线作为振荡回路产生正弦或其它函数波形。

频率的变动由机械驱动可变元件完成,当这种模拟信号发生器用于低频信号输出往往需要的RC值很大,这样不但参数准确度难以保证,而且体积和功耗都很大,而由数字电路构成的低频信号发生器,虽然其低频性能好但体积较大,价格较贵。

在今天,随着大规模集成电路和信号发生器技术的发展,许多新型信号发生器应运而生。

用信号发生器并配置适当接口芯片产生程控正弦信号,则可替代传统的正弦信号发生器,从而有利于测试系统的集成化、程控化和智能仪表的多功能化。

而信号发生器的最大特点是面向控制,由于它集成度高、运算速度快、体积小、运行可靠、价格低,因此在数据采集、智能化仪器等技术中得到广泛的应用,从而使得信号发生器的应用成为工程技术多学科知识汇集的一个专门研究领域,其应用产生了极高的经济效益和社会效益。

信号发生器的发展
单片微型计算机简称信号发生器,是指集成在一块芯片上的计算机,信号发生器的产生与发展和微处理器的产生与发展大体同步,自1971年美国Intel公司首先推出4位微处理器以来,它的发展到目前为止大致可分为5个阶段:
第1阶段(1971~1976):信号发生器发展的初级阶段。

发展了各种4位信号发生器,
第2阶段(1976~1980):初级8位机阶段。

以1976年Intel公司推出的MCS—48系列为代表,采用将8位CPU、8位并行I/O接口、8位定时/计数器、RAM和ROM等集成于一块半导体芯片上的单片结构,功能上可满足一般工业控制和智能化仪器、仪表等的需要。

第3阶段(1980~1983):高性能信号发生器阶段。

这一阶段推出的高性能8位信号发生器普遍带有串行口,有多级中断处理系统,多个16位定时器/计数器。

片内RAM、ROM的容量加大,且寻址范围可达64KB。

第4阶段(1983~80年代末):16位信号发生器阶段。

1983年Intel公司又推出了高性能的16位信号发生器MCS—96系列,网络通信能力有显著提高。

第5阶段(90年代):信号发生器在集成度、功能、速度、可靠性、应用领域等全方位向更高水平发展。

目前,信号发生器正朝着高性能和多品种方向发展,尤其是八位信号发生器已成为当前信号发生器中的主流。

信号发生器的发展具体体现在如下四个方面:
1.CPU功能增强
CPU功能增强主要表现在运算速度和精度的提高方面。

为了提高运算速度和精度,信号发生器通常采用布尔处理机和把CPU的字长增加到16位或32位。

例如MCS—96/98和HPCI6040等信号发生器。

2.内部资源增多
目前,信号发生器内部的ROM容量已达32KB,RAM数量已达1KB,并具有掉电保护功能,常用I/O电路有串行和并行I/O接口,A/D和D/A转换器,定时器/计数器,定时输出和信号捕捉输入,系统故障监测和DMA通道电路等。

3.引脚的多功能化
随着芯片内部功能的增强和资源的丰富,信号发生器所需的引脚数也会相应增加,这是不可避免的。

例如:一个能寻址1MB存储空间的信号发生器需要20条地址线和8条数据线。

太多的引脚不仅会增加制造时的困难,而且也会使芯片的集成度大为减小。

为了减少引脚数量,提高应用灵活性,信号发生器中普遍采用一脚多用的设计方案。

4.低电压和低功耗
在许多应用场合,信号发生器不仅要有很小的体积,而且还需要较低的工作电压和极小的功耗。

因此,信号发生器普遍采用CHMOS工艺,并增加空闲和掉电两种工作方式。

本文来源:/shownews.asp?id=449。

相关文档
最新文档