滇池入湖河流磷负荷时空变化及形态组成贡献
滇池流域水生态环境演变趋势、治理历程及成效

滇池流域水生态环境演变趋势、治理历程及成效滇池流域水生态环境演变趋势、治理历程及成效一、引言滇池作为中国最大的内陆淡水湖泊,具有丰富的生态资源和重要的生态功能,对于滇西地区生态安全和经济发展起到了举足轻重的作用。
然而,由于长期以来的过度开发利用以及不合理的污水排放等人类活动,滇池流域的水生态环境面临严重的威胁和挑战。
为了保护滇池的水生态环境,滇池流域进行了一系列的治理措施和行动,并取得了显著成效。
本文将围绕滇池流域水生态环境演变趋势、治理历程及成效展开论述。
二、滇池流域水生态环境演变趋势1. 生态环境状况长期以来,滇池流域的水生态环境受到人类活动的严重破坏,表现为水质恶化、湖泊富营养化、湿地退化等问题。
水质恶化主要体现为富营养化和污染物排放导致的水体浑浊、藻类过度繁殖等现象。
湖泊富营养化对滇池的生态环境造成了严重的影响,使得水生生物种类和数量明显减少。
湿地退化则导致湿地面积减少、湿地功能丧失,加剧了地区的水土流失和生态环境恶化。
2. 生态系统风险滇池流域的生态系统面临多种风险,主要包括水资源短缺、生物多样性丧失和土壤侵蚀等问题。
水资源短缺主要是由于河流湖泊的水量减少、地下水位下降以及水生态环境受到破坏等原因导致的。
生物多样性丧失是指由于栖息地的破坏、生态连通建设等因素导致物种数量和种群数量减少的现象。
土壤侵蚀是指土地利用方式不合理以及不恰当的农业种植方式导致的土壤流失现象,使得土壤质量下降,进而影响生态系统的稳定性和可持续性发展。
三、滇池流域水生态环境治理历程1. 环境意识的觉醒随着人们对环境问题的认识不断加深,滇池流域的水生态环境开始引起人们的关注。
相关政府部门加大了生态环境保护的宣传力度,提高了公众的环境意识,推动了环境问题的解决。
2. 监测和评估为了了解滇池流域水生态环境的实际情况,政府部门组织了一系列的水质监测和生态评估活动。
通过连续多年的监测和评估,政府对滇池流域水生态环境问题有了更为全面和准确的认识,为制定治理措施提供了科学依据。
滇池水体不同形态磷负荷时空分布特征

滇池水体不同形态磷负荷时空分布特征∗余佑金;方向京;王圣瑞;张蕊;焦立新;李乐;汪学华【期刊名称】《湖泊科学》【年(卷),期】2017(029)001【摘要】利用 ArcGIS 空间插值的方法,通过2013年逐月监测(12个月)36个站点水量及不同形态磷浓度,揭示滇池水体磷浓度和磷负荷的时空变化,并探讨不同形态磷负荷的组成贡献,旨在为进一步实施滇池水污染治理及污染负荷控制提供依据.结果表明:滇池水体总磷(TP)浓度在0.13~0.46 mg/ L 之间,其中颗粒态磷(PP)浓度占 TP 浓度的72.6%,溶解性活性磷(SRP)浓度占 TP 浓度的12.8%,溶解性有机磷(DOP)浓度占 TP 浓度的14%;2013年水体 TP 负荷为251 t/ a,其中PP 负荷为190 t/ a,SRP 负荷为26 t/ a,DOP 负荷为34 t/ a;滇池水体 PP 负荷对 TP 负荷的贡献最大,为76%,其次为 DOP和 SRP,贡献分别为13%和10%; TP 及不同形态磷浓度与其负荷在季节分布上差异显著,负荷随季节变化呈现秋、冬季较高,春、夏季较低,而浓度呈现夏、秋季较高,冬、春季相对较低的趋势.定量评估滇池水体不同形态磷负荷及其组成贡献,对进一步揭示滇池藻源和泥源内负荷对水污染的贡献具有重要意义.%With the help of GIS spatial interpolation, based on the monthly observed data of water yield and phosphorous (P) con-centrations in 36 sampling sites in Lake Dianchi, the loading contributions of different P forms was explored and the spatial and temporal patterns of the P concentrations and loadings were revealed in this paper, aiming at providing evidence for water pollution treatment and inner loading control. The results showed: The changes in totalphosphorus (TP) concentrations in the water ranged between 0.13 and0.64 mg/ L, among which particulate phosphorus (PP) covered 72.6% , soluble reactive phosphorus ( SRP) 12.8% , and dissolved organic phosphorus (DOP) 14% . During 2013 the average annual TP loading was 251 t/ a, among PP load-ing 190 t/ a, SRP 26 t/ a, and DOP 34 t/ a. TP loading in Lake Dianchi was mostly contributed by PP loading, averaging 76% , and secondly by DOP and SRP, averaging 10% and 13% , respectively. There was a significant difference in seasonal distributions in TP concentrations and loadings and in different P forms. The concentration was characterized with a higher value in summer and autumn in contrastto a relatively low value in winter and spring, while the loading was characterized with a higher value in autumn and winter in contrast to that in spring and summer. Thus, to quantitatively assess the loading of PP and SRP as well as their con-tributions to TP, was of great importance in guiding the control over the inner loading in Lake Dianchi.【总页数】10页(P59-68)【作者】余佑金;方向京;王圣瑞;张蕊;焦立新;李乐;汪学华【作者单位】西南林业大学环境科学与工程学院,昆明 650224; 云南省林业科学院,昆明 650204; 中国环境科学研究院环境基准与风险评估国家重点实验室,北京 100012; 中国环境科学研究院国家环境保护湖泊污染控制重点实验室,湖泊生态环境创新基地,北京 100012;云南省林业科学院,昆明 650204;中国环境科学研究院环境基准与风险评估国家重点实验室,北京 100012; 中国环境科学研究院国家环境保护湖泊污染控制重点实验室,湖泊生态环境创新基地,北京 100012;中国环境科学研究院环境基准与风险评估国家重点实验室,北京 100012; 中国环境科学研究院国家环境保护湖泊污染控制重点实验室,湖泊生态环境创新基地,北京 100012;中国环境科学研究院环境基准与风险评估国家重点实验室,北京100012; 中国环境科学研究院国家环境保护湖泊污染控制重点实验室,湖泊生态环境创新基地,北京 100012;中国环境科学研究院环境基准与风险评估国家重点实验室,北京 100012; 中国环境科学研究院国家环境保护湖泊污染控制重点实验室,湖泊生态环境创新基地,北京 100012;西南林业大学环境科学与工程学院,昆明 650224【正文语种】中文【相关文献】1.滇池入湖河流磷负荷时空变化及形态组成贡献 [J], 李乐;王圣瑞;王海芳;张蕊;焦立新;丁帅;余佑金2.洞庭湖不同形态氮、磷和叶绿素a浓度的时空分布特征 [J], 黄代中; 李芬芳; 欧阳美凤; 张屹; 龚正; 符哲3.滇池草海水体枯水期不同形态氮磷空间分布差异性 [J], 张宇; 颜翔; 房晟忠4.三峡水库不同调度期水体氮形态时空分布特征 [J], 时瑶;赵艳民;秦延文;马迎群;韩超南;张雷;杨晨晨;刘志超5.乌江流域东风水库水体中不同形态汞的时空分布特征 [J], 潘鲁生;商立海;冯新斌;孟博;姚珩;尹润生;陈瑜鹏因版权原因,仅展示原文概要,查看原文内容请购买。
滇池沉积物总磷的时空分布特征研究

(o ee f eo re dE vrn na SineY n a gi l rl nvr t K n n 5 2 1 C l g sucs n n i met cec, u nnA r ut a U i sy u mi 6 0 0 ) l oR a o l c u e i, g
Ab t a t T e d n miso tlp o p o u o c n r t n a i e e t e t so d me t n 5 r p e e tt estso a c i a e Ha g n , sr c : h y a c f o a h s h r sc n e t i tdf r n p h f e i n e r s n a i i f n h k , ie g t ao d s i v e Di l
维普资讯
农 业 环境 科 学 学 报 2 0 ,615 — 7 0 7 () 5 2 :1
Jun l f r- n i n n ce c o ra oE vr me t in e o Ag o S
滇池沉积物总磷 的时空分布特征研究
陈永川 ,汤 利 ,张德 刚 ,李 少明 ,郑 毅
sdm n (- 0a ) a . ・g , t ecne tf - ei n m r i e ta a i wne adr gd09 - .4 ・g 1 ei et0 2 m w s 1 g k~ wh t t T Pi sd 26 i h o no n metns mehg rh n htni trn e . 47 gk 一 i u h t , n a 8
滇池沉积物磷负荷估算

中国环境科学 2005,25(3):329~333 China Environmental Science滇池沉积物磷负荷估算*张燕1,邓西海2,陈捷2,彭补拙1 (1.南京大学城市与资源学系,江苏南京 210093;2.中国科学院南京土壤研究所,江苏南京 210008)摘要:采集了滇池100多个沉积物柱样,并借助GIS对滇池作了分区;分段测试每个柱样的全磷(TP)含量及各区代表性柱样的137Cs含量,利用137Cs定年法确定0~5cm,5~10cm,10~15cm深度区间对应的时段是1986~2003年,1963~1986年,1954~1963年.在此基础上估算滇池不同区域与泥沙沉积量对应的TP沉积通量和总量.结果表明,近50年,全湖TP年均蓄积量为780t,表层15cm沉积物中TP累积量为3.89×104t.沉积物中磷蓄积已成为滇池水体磷的重要内部来源.关键词:137Cs计年;泥沙沉积通量;磷沉积通量;磷负荷;滇池中图分类号:X524 文献标识码:A 文章编号:1000-6923(2005)03-0329-05 Evaluating phosphorus load in sediment of Dianchi Lake. ZHANG Yan1*, DENG Xi-hai2, CHEN Jie2, PENG Bu-zhuo1 (1.Department of Urban and Resources Science, Nanjing University, Nanjing 210093, China;2.Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China). China Environmental Science, 2005,25(3):329~333Abstract:The load of phosphorus in sediment of Dianchi Lake was studied and evaluated. The lake was divided into areas with the aid of GIS. The total phosphorus (TP) content of each area were measured in sections. The time sections were corresponding to the interarea depth of 0~5, 5~10, 10~15cm 1986~2003, 1963~1986, 1954~1963, utilizing 137Cs dating technique. Bared on this, the TP sedimentation flux and total amount, corresponding to different depth or time section, were evaluated. Average annual accumulation amount in entire lake was 780t in lately 50 years and the TP accumulation in 15cm depth of sediment was 3.89×104t. Phosphorus accumulation in sediment had become an important internal source of phosphorus in Dianchi Lake water body.Key words:137Cs dating;sedimentation flux;phosphorus sedimentation flux;phosphorus load;Dianchi Lake磷是影响湖泊富营养化的关键因子,因而沉积物的磷负荷成为关注的重点之一.近年来滇池的污染日趋严重,不同研究对滇池磷负荷的估算有较大出入[1],甚至同一文献的不同部分提供的数值也不同[2].一个重要原因在于估算时过于简化或仅对有限时段的测量值作放大处理;尤其缺少磷的年沉积资料,以致难以判断不同时期磷负荷的变动情况.本研究除密集采样外,还利用137积298km2,补给系数8.38,最大水深5.9m,平均湖底坡度为5′31″,换水周期981d.受断陷盆地控制,滇池呈南北长、东西窄的弓弦形,海埂以北称草海,以南称外海.有多条河流呈向心状注入湖区,湖水经海口河出湖[2,3](图1).入湖河流多流经农田、城镇、磷矿区,携带着丰富的泥沙及营养物质入湖.受流域地形、湖盆形态、水动力及物源供给条件等因素的影响,沉积物的平面分布存在区域差异.为准确估算滇池泥沙沉积总量及磷负荷, 本研究对滇池划分了不同的沉积区域. 收稿日期:2004-08-19基金项目:国家“973”项目(2002CB412401);中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室重点项目资助(5022505) * 责任作者, 副教授, zhangynju@Cs定年法及GIS手段,并考虑了沉积物存在的压实效应,通过估算泥沙沉积量和测量磷含量,估算了滇池沉积物的磷负荷. 1 材料与方法1.1 滇池概况及沉积分区滇池(24°40′~25°02′N,102°36′~102°47′E)面330 中国环境科学 25卷图1 采样点分布及滇池分区Fig.1 Sampling sites and distribution boundary ofDianchi Lake■测磷采样点▲ DC-1定年采样点滇池沉积物以陆源碎屑为主,沉积相大致呈环状分布[3],因此,首先以等深线作为分界线确定湖心区.其中又以深度大于5.0m区域为远岸湖心区(Ⅰ),深度在4.5~5.0m 之间的区域为近岸湖心区(Ⅱ),湖心区湖底地形平坦,沉积物为含粉砂黏土及黏土,分选性好;将4.5m等深线和北部湖心中线以西、海口河以北区域定为湖西区(Ⅲ),该区湖水紧逼山麓,湖岸陡,沉积物为含砂、粉沙、细沙质黏土;将4.5m等深线和北部湖心中线以东、柴河三角洲南界以北区域作为湖东区(Ⅳ),湖东区地形较平缓,沉积物为黏土质粉砂;将柴河三角洲南界、4.5m等深线及海口河以南的区域作为湖南区(Ⅴ);草海单独为一区(Ⅵ). 1.2 137Cs时标确定核试验进入大气的137Cs通过干湿沉降至陆地表面与水体.湖泊中的137Cs被沉积物强烈吸附,因此,137Cs沉降量随时间变化可完好保存于沉积物的沉积序列中,即沉积物垂直剖面中各层137Cs含量反映了各层沉积时的大气137Cs沉降量.于是可用137Cs在沉积物中的特异值作时标[4],常用的137Cs时标有1954,1963,1986年.1.3 样品采集与测试采用均匀布点法对滇池进行系统采样,为保证采样点的准确,使用GPS定位,同时结合1:50000地形图进行校正,采样点位置见图1.使用内径6cm聚丙烯筒式原状沉积物取样器采集30cm沉积物柱芯,悬浮层未受扰动,界面水清澈.采样后,多数样点柱芯按0~5cm,5~10cm和10~ 15cm间距进行分割,用以测试沉积物中的全磷(TP);定年样点DC-1~DC-5(分别代表Ⅰ~Ⅴ区域) 柱芯按1cm间距截分,其中86个样品用于测定分层样品容重[5]及137Cs含量.沉积物中的TP测量采用HNO3-HF-HClO4消解方法[6].用美国热电公司生产的ICP-PoemsⅡ仪器测量,对标准土壤样品(GSS1~GSS8)中TP的定值测定表明,测量相对误差<10%.137Cs含量测定采用美国PerkinElmer Instruments公司生产的高纯锗探测器(GEM35P)、数字化γ谱仪(DSPEC-CH)及多道分析系统(MAESTRO-32).γ谱仪的能量分辨率1.68keV,峰康比69:1,在60Co,1.33MeV处的γ相对探测效率为37%.标准样由国防科学技术工业委员会放射性计量一级站提供,标准样容器形状与待测样品容器一致.测量时长86400s,分析精度为90%,置信水平为±10%.1.4 沉积物沉积率及磷负荷的估算由现场采样深度和测定的沉积物干容重,计算单位面积上的泥沙沉积量:∆M = ΣBihi (1)式中:∆M为对应T1~T2间隔(厚度Σhi=∆H, cm)的单位面积泥沙沉积量,g/cm2;Bi为第i层沉积物的容重,g/cm3;hi为第i层沉积物的厚度,cm; i为样3期张燕等:滇池沉积物磷负荷估算 331品的分截号.各时段单位面积年均泥沙沉积质量(沉积通量)Sm[g/(cm2·a)]为:Sm= ∆M/(T2-T1) (2)式中:T1、T2为估算时段的起止年份,a.根据沉积物中磷含量CTP(µg/g)及∆M,计算单位面积TP蓄积量∆P(µg/cm2)为: 用式(4)估算各时段附着于沉积物上的磷的沉积通量STP[µg/(cm2·a)]:2 结果与讨论 2.1 泥沙沉积STP = SmCTP (4)再由GIS测量各区域的湖底面积A(km2),便可估算各湖区沉积物中磷蓄积总量Stot(t):Stot= STPA /100 (5)∆P= ∆MCTP (3) 137Cs测量值及单位面积泥沙沉积量见表1.根据137Cs时标及表1值,由式(2)计算滇池各湖区的泥沙沉积通量,见表2.表1 各湖区沉积物137Cs含量及单位面积泥沙沉积量的垂直分布Table 1 Vertical distribution of 137Cs concentration and sedimentation mass per unit area insediments of Dianchi Lake深度 (cm) 0~1 1~2 2~3 3~4 4~5 5~6 6~7 7~8 8~9DC-1(Ⅰ) DC-2(Ⅱ) DC-3(Ⅲ) DC-4(Ⅳ) DC-5(Ⅴ) DC-6(Ⅵ)Cs M (Bq/kg) (g/cm2)0.3881 0.7774 1.1679 1.5604 1.9632 2.4015 2.9054 3.9950 4.5526137Cs M (Bq/kg) (g/cm2)4.88 6.70 5.58 8.07 8.76 9.16 8.85 9.630.2473 0.5102 0.7902 1.0926 1.4096 2.1028 2.9073 3.3258137CsM (Bq/kg)(g/cm2)4.046.787.507.928.547.9211.608.380.30010.69111.08881.48311.90662.34012.76543.20443.64394.08574.53514.98815.451 25.91606.39776.91837.48858.19478.84179.5417137CsM (Bq/kg)(g/cm2) 3.79 4.05 3.12 5.97 8.44 9.75 7.9211.6010.14 7.59 5.16 3.30 0.00 0.00 0.00 0.00 0.000.29120.60850.94211.28091.65332.53643.03293.54284.05814.62845.87386.50367.926 28.64049.358210.084010.8355137137Cs M Cs2(Bq/kg) (g/cm) (Bq/kg)137M (g/cm2)3.61 6.34 13.77a 10.96 15.88 15.08 15.58 10.693.48 5.72 6.96 7.10 8.73 9.38 10.06 10.64 12.31 b 8.30 5.29 0.00 0.00 0.00 0.00 0.00 0.000.2552 0.5800 0.9075 1.2469 2.0196 2.4323 3.2839 3.7361 4.7936 5.3515 6.45617.0028 7.5729 8.1463 8.7295 9.3438- 0.2127 - 0.4309 - 0.6468 - 0.8699 - 1.2961 - 1.5175 - 1.9749 - 2.2086 - 2.6494 -2.8668 -3.3564 - 3.5917 - 3.8375 -4.0805 - 4.3236 - 4.5678- 1.0849 10.98 a 1.617610.19 a 1.7343 9.86 a10.86 a2.069216.46b 3.4091 8.96 2.4957 9.3511.52 2.8517 - 1.75369~10 6.8710~11 5.28 5.1576 5.28 3.8290 11.3511~12 3.67c 5.8007 7.96 4.3873 10.8412~13 0.00 6.44499.524.975911.8613~14 0.00 7.0901 12.84 b 5.5682 13.57 b14~15 0.00 7.7446 9.20 6.2140 8.5215~16 0.00 16~17 0.00 18~19 0.00 19~20 0.008.4320 9.1394 10.5995 11.35857.56 6.80c4.2419 - 2.429811.34 b5.25562.50 c 5.9076 -3.10982.54 c7.19106.86867.5738 9.1607 9.98476.425.45c17~18 0.00 9.8480 2.28 8.3630 4.200.00 0.000.000.00注: M为泥沙沉积量; a、b、c分别表示该深度对应的年份为1986、1963、1954年; 顶层对应时间为采样年2003年, - 为未检测;DC-6所在湖区(草海)经过清淤, 137Cs值已失去时标意义,故不再测量其137Cs值由表2可见,各时段外海泥沙沉积通量以1986~2003年最小,1963~1986年次之,1954~1963年最大.各湖区泥沙沉积通量为沿岸区(湖西、湖东区)较大,远岸湖心区及湖南区较小. 2.2 TP分布滇池沉积物TP浓度等值线见图2,各区TP平均浓度见表3,其中0~5cm,5~10cm,10~15cm对应的沉积年代大致为1986~2003年,1963~ 1986年,1954~1963年.332 中国环境科学 25卷表2 滇池各湖区泥沙沉积通量Sm及TP沉积通量STPTable 2 Sedimentation fluxes (Sm、STP) of sediment and TP in Dianchi Lake采样点 (区号)Sm [g/(cm2·a)]STP [µg/(cm2·a)]164.4 183.1 427.7 223.5 290.0 491.5 298.4 301.2 475.3 229.4 231.5 301.1 280.7 289.6457.11986~2003 1963~1986 1954~1963 1986~2003 1963~1986 1954~1963DC-1(Ⅰ) 0.0687 0.0974 0.2657 DC-2(Ⅱ) 0.1020 0.1667 0.3105 DC-3(Ⅲ) 0.13770.1555 0.2532 DC-4(Ⅳ) 0.1217 0.1385 0.2150 DC-5(Ⅴ) 0.0952 0.1141 0.1851f i m0~5cmd j lljhjhhlahnbnjnnelniedgjnl j hngnonno5~10cmjgdlon h j h o 10~20cmnlnjhnn a c g j nb e i lni图2 滇池沉积物TP含量等值线Fig.2 Isoline chart of TP in sediments of Dianchi Lakea.>6400b.5600~6400c. 4800~6400d. 4800~5600e. 4000~5600f. 4000~4800g. 3200~4800h. 3200~4000i. 2400~4000j. 2400~3200 k. 1600~3200 l. 1600~2400 m. 800~2400 n. 800~1600 o. <800表3 滇池各湖区泥沙沉积量∆M、TP蓄积量∆P、平均TP浓度CTP及TP蓄积总量StotTable 3 Sedimentation mass ∆M and TP sedimentation amount ∆P per unit area, mean TP concentration CTP andgross accumulation Stot of TP in each area of Dianchi Lake区号 A (km)2∆M (g/cm2) CTP(µg/g) 0~5 5~10 10~15 0~53.1920 2393.52.8882 2190.62.3120 2167.43.1329 1885.12.7200 2949.71.1479 2386.5 5~10 10~151879.01739.61937.51670.72537.91204.71609.71582.71877.31400.42469.7 760.74698.83087.94132.43116.74771.42589.1∆P (µg/cm2) Stot (t) 0~55~10 10~15 0~5 5~10 10~154865.63333.44222.04017.65376.71353.85138.1 2879.9 2982.14571.0 1689.4 1823.74340.3 2176.5 2223.74387.2 2190.4 2823.56717.7 2453.4 2764.7 873.2 231.2 120.93149.22500.82286.03083.33454.3 78.01.96322.5895Ⅰ 61.29Ⅱ 54.71 1.4096 1.91621.9066 2.1791Ⅲ 52.67Ⅳ 70.28 1.6533 2.40481.6176 2.1185Ⅴ 51.42 Ⅵ8.93 1.0849 1.1237注: 0~5,5~10,10~15cm深度区间对应的大致时段是1986~2003年,1963~1986年, 1954~1963年3期张燕等:滇池沉积物磷负荷估算 333由图2和表3可见,草海接纳大量城市污水,沉积物中TP浓度较高,但因草海经过疏浚,故其数据不一定能反映真实情况;外海由北至南TP浓度上升,TP浓度最高的区域是湖南区的西岸与东岸,这两区域正位于昆阳、上蒜、晋宁磷矿开采区下游,大量磷经柴河、古城河进入滇池,沉积于河口三角洲区域,且TP随离岸距离增加而降低;湖东区TP浓度最低;除局部区域外(如受观音山磷矿区影响,湖西区出现局部TP 高值)其余三区浓度差异小,远岸湖心区TP浓度略高.从沉积物层深看,0~5cm层沉积物中TP浓度最高,随深度增加TP降低;TP递减率最大的是草海,外海0~5cm至5~10cm递减率最大的是湖心区,其次是湖南区,最小的是湖东区;5~10cm至10~15cm递减率最大的是湖东区,其次是湖心区,最小的是湖西区.湖东区的沉积物主要来自各入湖河流携带的流域侵蚀土壤入湖沉积,且东岸地形平缓,是主要的农作区,20世纪70年代后又大量推广使用化肥,致使沉积物0~5cm,5~10cm的TP含量差异小,而与10~20cm差异大.比较图2中3个深度各部分的面积可以看出,TP浓度高值区域的面积是从过去到现在逐渐加大. 2.3 TP负荷因为单位面积TP蓄积量∆P由沉积物中TP浓度及单位面积泥沙沉积量决定,因此,并非TP浓度大的区域∆P一定大,但与TP浓度最高为湖南区一致,湖南区∆P在0~5cm、5~10cm、10~15cm均最高.各湖区TP沉积通量是湖西、湖南及近岸湖心区较高,远岸湖心区及湖东区较低.与外海泥沙沉积通量的时段变动相一致,TP沉积通量也是1986~2003年最小,1963~1986年次之,1954~ 1963年最大;近50年来,湖东区TP沉积通量缓慢减少,而近岸湖心区TP沉积通量则减少较快. TP蓄积量最大的区域为湖心区及湖南区;而蓄积量上下层变化最小的区域是湖西区,湖东区与远岸湖心区则较大.0~5cm、5~10cm、10~15cm各深度区间的全湖TP蓄积总量分别为1.16×104、1.27×104、1.46×104t,全湖的0~15cm沉积物中共蓄积TP 3.89×104t.根据137Cs所定时标,近50年来滇池全湖平均沉积厚度约为15cm,据此估计,近50年来滇池沉积物净蓄积TP共计3.89×104t,年均净蓄积TP为780t/a,而滇池TP年入湖量1320t/a*,从年净蓄积比例来看,滇池底泥蓄积TP占年入湖量的60%. 3 结语滇池各湖区沉积物中TP浓度从1954年到2003年均逐渐增加,但相应时期入湖泥沙量逐年减少,使得TP净蓄积量逐渐减少,全湖TP净蓄积量在1954~1963年、1963~1986年和1986~ 2003年分别为1.46×104、1.27×104、1.16×104t.可见控制土壤侵蚀有助于降低湖泊沉积物的磷负荷. 近50年来滇池沉积物净蓄积TP共计3.89×104t,年均净蓄积TP为780t/a,占年入湖量的60%.对入湖TP加以控制后,沉积物多年蓄积的TP可能成为滇池水体磷的重要内部来源, 故应十分重视内源TP对滇池富营养化的影响.参考文献:[1] 夏学惠,东野脉兴,周建民,等.滇池现代沉积物中磷的地球化学及其对环境影响 [J]. 沉积学报,2002,20(3):416-420.[2] 昆明环境科学研究所.滇池富营养化调查研究 [M]. 昆明:云南科技出版社,1992.10,91,101.[3] 中国科学院南京地理与湖泊研究所.云南断陷湖泊环境与沉积[M]. 北京:科学出版社,1989.5,131,322.[4] Pennington W, Cambray R S, Fisher E M. Observations on lakesediments using fallout 137Cs as a trace [J]. Nature, 1973,242 (5396):324-326. [5] 中国科学院南京土壤研究所.土壤理化分析 [M]. 上海:上海科学出版社,1978.508-512,524-525.[6] 谭书香,曹玲江,李天瑞.岩石,土壤和沉积物中主成分的ICP—AES测定 [J]. 光谱学与光谱分析,1994,14(5):51-54,38.作者简介:张燕(1962-),女,江苏南京人,副教授,主要从事资源与环境方面的研究.发表论文22篇.* 国家环境保护总局.滇池流域水污染防治“十五”计划,环发[2003]84号。
滇池水体中磷的时空变化特征研究

滇池水体中磷的时空变化特征研究滇池水体中磷的时空变化特征研究应用GPS定位技术,对滇池海埂、斗南、罗家村、新街、昆阳等5个代表性样点水体总磷及可溶性磷进行了为期1 a的动态监测,全面分析了不同区域、不同层次、不同时期滇池水体总磷、可溶性磷的时空动态变化特征.结果表明,全湖水体总磷的平均浓度为0.10~0.20 mg·L-1,全湖水体可溶性磷的平均浓度为0.003~0.021 mg·L-1.水体磷含量因季节而变化较大,总体趋势是总磷浓度以夏季较高,可溶性磷以5月和10月较高,但不同位点变化高峰和趋势不同.水体总磷浓度以底层较高,除斗南外均显著高于中层,而表层和中层水体总磷浓度差异不大.水体可溶性磷浓度以底层较高,但无显著的层次变化.不同区域总磷浓度1年的平均动态跃迁范围是:表层为0.05~0.41 mg·L-1,中层为0.07~0.30 mg·L-1,底层为0.05~0.88 mg·L-1.水体总磷年均层次变化范围为0.14~0.30mg·L-1.各区域总磷浓度以海埂和昆阳较高,其次是斗南,新街和罗家村较低;可溶性磷含量以昆阳和海埂位点较高.作者:陈永川汤利谌丽李杰CHEN Yong-chuan TANG Li CHEN Li LI Jie 作者单位:陈永川,CHEN Yong-chuan(云南农业大学资源与环境学院,云南,昆明,650201;中国科学院南京土壤所土壤圈物质循环重点实验室,江苏,南京,210008)汤利,谌丽,李杰,TANG Li,CHEN Li,LI Jie(云南农业大学资源与环境学院,云南,昆明,650201)刊名:农业环境科学学报ISTIC PKU英文刊名:JOURNAL OF AGRO-ENVIRONMENT SCIENCE 年,卷(期):2005 24(6) 分类号:X832 关键词:滇池水体总磷可溶性磷时空变化特征。
滇池现代沉积物中磷的地球化学及其对环境影响

滇池现代沉积物中磷的地球化学及其对环境影响夏学惠;东野脉兴;周建民;田升平;张灼;彭彦华【期刊名称】《沉积学报》【年(卷),期】2002(020)003【摘要】湖泊沉积物中,磷是产生富营养化的重要元素.湖泊中磷元素含量、地球化学行为以及它的复杂矿物学特征,使人们对磷的研究极为重视.滇池湖中总磷超标10.3倍,底泥沉积物中P2O5平均含量0.52%,最高可达1.92%.滇池地处磷矿区,是磷质来源最丰富的湖泊,统计表明,磷含量每年在不断增长.滇池沉积物中磷主要以吸附态、有机态、铁结合态、钙结合态、铝结合态等几种形式存在.这些形态磷在底泥中是不稳定的,它们在环境改变条件下,又将磷释放到水体中.微生物在磷的循环过程中起了重要作用,乳酸菌对不溶性磷酸盐的分解,使湖泊中可溶磷含量增高.聚磷菌对磷元素的富集以及聚磷菌死亡后发生有机磷的矿化作用,是湖泊中水合磷酸盐矿物沉积的重要途径.当湖泊中这种不稳定的水合磷酸盐矿物在条件具备的情况下,经沉积物覆盖成岩作用后,最终形成磷灰石.【总页数】5页(P416-420)【作者】夏学惠;东野脉兴;周建民;田升平;张灼;彭彦华【作者单位】化学矿产地质研究院,河北涿州,072754;化学矿产地质研究院,河北涿州,072754;化学矿产地质研究院,河北涿州,072754;化学矿产地质研究院,河北涿州,072754;云南大学生物系,昆明,650091;云南大学生物系,昆明,650091【正文语种】中文【中图分类】P512;X141【相关文献】1.湖泊现代化沉积物中磷的地球化学作用及环境效应 [J], 王雨春;万国江;黄荣贵;邹申清;陈刚才2.滇池沉积物中氮的地球化学特征及其对水环境的影响 [J], 朱元荣;张润宇;吴丰昌3.湖泊现代化沉积物中磷的地球化学作用及环境效应 [J], 王雨春;万国江;黄荣贵;邹申清;陈刚才4.滇池福保湾沉积物磷的形态及其与间隙水磷的关系 [J], 李宝;范成新;丁士明;张路;钟继承;尹洪斌;赵斌5.滇池沉积物磷的释放以及不同形态磷的贡献 [J], 高丽;杨浩;周健民;陈捷因版权原因,仅展示原文概要,查看原文内容请购买。
滇池沉积物磷历史变化

滇池沉积物磷历史变化通过选取滇池4个柱状样沉积物样品,研究了其不同形态磷的含量及分布特征,并结合沉积物有机碳数据,探讨了滇池柱状沉积物磷的历史演变。
结果表明:沉积物中各形态磷的分布特征基本呈现NH4Cl-P<NaOH-nrp或Res-P<BD-P<NaOH-rp或HCl-P。
标签:滇池;沉积物;磷形态滇池是中国著名的高原淡水湖泊,近几年来富营养化日益严重,已经被列为“三河、三湖”的重点治理对象之一。
其水体滞留时间较长,外源输入到湖泊中的营养盐不容易交换出去,越来越多的氮、磷、重金属等污染物以及生物残体等有机物沉积到湖底。
通过测定湖泊柱状沉积物中磷的不同形态及含量,对研究沉积物磷的行为特征及湖泊富营养化状况具有重要意义。
1 材料与方法1.1 研究区域与样品采集使用GPS定位在滇池设置了采样点,将滇池划分为草海、外海北部、中部、南部四个区域,并各选取一个点(见图1)。
于2013年5月使用柱状采泥器采集柱状沉积物样品,现场切层收集表层0~20cm样品。
采集的样品经风干、研磨、过100目筛后,在室温条件下密封保存。
1.2 样品分析沉积物总磷(TP)采用欧洲标准测试委员会框架下发展的SMT法[1],沉积物有机质含量根据沉积物在500℃下煅烧2h的烧失量计算[2],沉积物磷形态提取方法采用Psenner[3]提出的连续提取法。
2 结果与分析2.1 沉积物有机碳和总磷历史变化参照放射性核素(210Pb和137Cs)计算的精确沉积年代和高精度的采样分辨率,滇池的平均沉积速率约为3mm/a[4]。
即0~2、2~5、5~8、8~12、12~16、16~20cm分别代表7、17、27、40、53、67年。
D2采样泥土为沙土,沙土的透气、渗水能力很好,易耕作,但大孔隙渗水速度快,保水性差,土壤含水量低,易漏水漏肥,保水保肥能力较差,保存在土壤中的养分也比较低,故有机碳含量很低,甚至为负值。
草海柱状沉积物有机碳含量较高,质量比为29.71~53.63%,随着时间的推移有机碳含量持续降低,降低幅度很大;外海柱状沉积物有机碳含量低,随着时间的推移有机碳含量持续升高,升高幅度较小,其垂向变化特征见图2。
滇池水-沉积物界面磷形态分布及潜在释放特征

( 2 1 8 . 5 2 ̄ 8 3 . 1 1m s / k g )> 可还原态磷( F e — P ) ( 1 2 8 . 1 3±1 O 1 . 5 6m /k s g )> 弱吸附态磷( N H 4 C 1 一 P ) ( 2 . 2 6± 3 . 0 5ms /k g ); 滇池上覆
水草海 总磷浓度处于劣Ⅳ类水平 , 外海不同湖区总磷 浓度介 于Ⅳ ~V类 之间 ; 滇池 水体 中的磷 以颗粒 态磷含量 最高 ; 滇
滇 池 水一 沉 积 物 界 面磷 形态 分 布 及 潜 在 释 放特 征
何 佳 , 陈春瑜 , 邓 伟 明’ , 徐 晓梅 H , 王 圣瑞 , 刘文斌 , 吴 雪 , 王 丽
( 1 : 昆明市环境科学研究院 , 昆明 6 5 0 0 3 2) ( 2: 中国环境科学研究院湖泊生态环境创新基地 , 国家环境保护 湖泊污染控制重点实验室 , 北京 1 0 0 0 1 2) 摘 要 :通过现场调查和室内模拟实验 , 对滇池 3 5个上覆水一 沉积物磷的分布特征以及沉 积物中磷 释放动力学特征进行研
池表层沉积物 中磷 的释放是 由快反应和慢反应两部分组 成. 释放过程主要发生 在前 8 h内; 不 同区域沉 积物磷 的最大释 放速率 、 最 大释放量 、 磷的释放潜力平均值均表现为 : 草海 >外海北部 >外 海南部 >湖心 区; 滇池表层沉积 物中磷的释放 主要由 N H C 1 . P 、 F e — P 、 A 1 . P和 OP进行 , 其 中, N H 4 C I — P和 F e — P所 占比重较大 ; 磷 的释放 与上覆水 中溶解性 总磷、 溶解态
L a k e S c i . ( 湖泊科学) , 2 0 1 5 , 2 7 ( 5 ) : 7 9 9 - 8 1 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滇池入湖河流磷负荷时空变化及形态组成贡献李乐;王圣瑞;王海芳;张蕊;焦立新;丁帅;余佑金【摘要】The temporal and spatial changes of total phosphorus(TP) and various forms of phosphorus concentration, and the inlet load characteristics were studied in major inlet river of Lake Dianchi. At the same time, the contribution of different forms of phos-phorus from the inlet load was discussed. The results showed:(1) The TP concentrations of the inlet river into Lake Dianchi were between 0.11-1.93 mg/L, and the particulate phosphorus(PP) and dissolved inorganic phosphorus(DIP) forms were the main part. (2) The TP loading of the inlet rivers of Lake Dianchi was 280.51 t/a, and DIP was the main form in most rivers into the lake with an average contribution of 43.48%. PP form into the lake load followed with an average contribution of 31.64%. DOP form into the lake load was relatively low with an average contribution of 24.88%. (3) DIP load into the lake with the higher con-tribution value appeared in dry season (March, April and November), which the average contribution rate reached to 55.30%. Higher values of PP forms into the lake load occurred in January and July, with the average contribution of 56.14%. Change of the DOP load into the lake was relatively low, with the highest value appeared in December and its contribution was 21.85%. (4) The river pollution load into Lake Dianchi not only needs to be considered the contribution of the dissolved inorganic phosphorus into the lake, but also to be paid an attention on the dissolved organic phosphorus andparticulate phosphorus loading. During the process of comprehensive improvement of the inlet river loading into the lake, we should take corresponding measures according to different forms of phosphorus loading in different rivers and in different months in order to attempt getting a better effect.%研究了2013年滇池主要入湖河流总磷( TP )及各形态磷浓度的时空变化与入湖负荷特征,并探讨了不同形态磷的入湖负荷贡献.结果表明:(1)滇池河流入湖TP浓度在0.11~1.93 mg/L之间,以溶解性无机磷(DIP)和颗粒态磷(PP)为主,溶解性有机磷(DOP)浓度较低;(2)滇池河流入湖磷负荷总量为280.51 t/a,绝大多数河流主要以DIP形态入湖,平均贡献率为43.48%;PP形态入湖负荷次之,平均贡献率为31.64%;DOP 入湖负荷较低,平均贡献率为24.88%;(3)DIP入湖负荷贡献率较高值出现在3、4和11月的枯水期,平均入湖负荷贡献率达到55.30%;PP入湖负荷贡献率较高值出现在1和7月,平均入湖负荷贡献率为56.14%;DOP 入湖负荷贡献率月变化差异较小,最高值出现在12月,贡献率为21.85%;(4)研究滇池入湖河流污染负荷不仅要考虑溶解态无机磷的贡献,而且需要重视PP和DOP负荷,控制滇池入湖河流污染负荷需要考虑不同河流不同形态磷负荷组成及月变化差异特征,有针对性地采取相应措施.【期刊名称】《湖泊科学》【年(卷),期】2016(028)005【总页数】10页(P951-960)【关键词】滇池;入湖河流;磷负荷;时空变化;贡献【作者】李乐;王圣瑞;王海芳;张蕊;焦立新;丁帅;余佑金【作者单位】中国环境科学研究院环境基准与风险评估国家重点实验室,北京100012; 中国环境科学研究院国家环境保护湖泊污染控制重点实验室,湖泊生态环境创新基地,北京100012; 中北大学化工与环境学院,太原030051;中国环境科学研究院环境基准与风险评估国家重点实验室,北京100012; 中国环境科学研究院国家环境保护湖泊污染控制重点实验室,湖泊生态环境创新基地,北京100012;中北大学化工与环境学院,太原030051;中国环境科学研究院环境基准与风险评估国家重点实验室,北京100012; 中国环境科学研究院国家环境保护湖泊污染控制重点实验室,湖泊生态环境创新基地,北京100012;中国环境科学研究院环境基准与风险评估国家重点实验室,北京100012; 中国环境科学研究院国家环境保护湖泊污染控制重点实验室,湖泊生态环境创新基地,北京100012;中国环境科学研究院环境基准与风险评估国家重点实验室,北京100012; 中国环境科学研究院国家环境保护湖泊污染控制重点实验室,湖泊生态环境创新基地,北京100012;中国环境科学研究院环境基准与风险评估国家重点实验室,北京100012; 中国环境科学研究院国家环境保护湖泊污染控制重点实验室,湖泊生态环境创新基地,北京100012【正文语种】中文磷是湖泊初级生产力的限制性营养元素[1],也是导致水体富营养化的重要营养物质之一[2]. 我国的水功能区水质达标率小于60%[3],在滇池、太湖和巢湖流域,由于人口密集,农业生产集约化程度高,流域总磷(TP)浓度比20年前提高了10倍以上[4-5]. 滇池是云贵高原最大的淡水湖泊,近些年来由于城市扩展,人口增长,经济快速发展,大量含磷污染物通过河流进入滇池,导致水体不断污染,富营养化趋势加重,蓝藻水华暴发更为频繁[6-7]. 据统计,滇池每年约有70%~80%的入湖水量是来自河流水体的补给[8]. 因此,滇池入湖河流不仅是滇池的主要水量来源,又是污染物汇入河流的主要通道,大部分点源与面源污染物通过入湖河流进入湖泊[9]. 故控制入湖河流磷污染是减弱湖泊磷污染的重要途径[10]. 进入滇池的磷营养负荷主要来自工业废水和城市污水等点源及农田地表径流流失和磷矿开采[11]. 对美国与日本等国的研究表明,即使点源污染已完全控制,河流水质达标率仅为65%,湖泊的水质达标率仅为42%,而在中国,面源污染已接近甚至高于点源污染,一些流域的面源污染已成为水环境的主要威胁[12-13]. 因而推行入湖河流磷负荷的控制是治理滇池富营养化的重要措施之一,也成为滇池流域磷总量控制的重要基础[14].外源负荷对浅水湖泊富营养化的影响往往至关重要[15-16],滇池入湖河流所携带的污染物是造成滇池富营养化的重要原因之一. 滇池流域入湖氮磷负荷已有较多报道[17-20],但相关研究多集中在入湖流量模型验证以及总氮(TN)和TP入湖负荷总量评估方面,而系统研究入湖河流氮、磷负荷时空变化的报道较少,尤其是对不同形态氮、磷负荷及其对TN、TP贡献的报道罕见. 本文通过研究入湖河流中TP和不同形态磷负荷及其负荷贡献的时空变化,了解并掌握各个入湖河流对湖泊磷负荷的贡献大小是准确评估入湖河流污染负荷的前提,可以为入湖河流污染现状和治理及滇池富营养化防治提供基础数据.1.1 样品采集与流域特征根据滇池流域入湖河流及子流域分布情况,于2013年1-12月,对盘龙江、新运粮河、老运粮河、广普大沟、老宝象河、东大河等28条主要入湖河流的河口布设监测点,采样时用GPS仪记录下滇池入湖河流位点的经纬度坐标及河流名称(图1). 分别在每个月的15-25日期间(采样时间避开风雨天气)采集入湖河口表层水样,同时现场监测流量. 每个水样充分混合后分别装入1 L聚乙烯塑料瓶内,当天带回实验室并测定ρ(TN)、溶解性总磷浓度(ρ(DTP))和溶解性无机磷浓度(ρ(DIP))等指标. 根据昆明市环境科学研究院监测结果,滇池28条主要入湖河流中达到劣V类水质标准的有20条,占74.1%;达到V类水质标准的有4条,占14.8%. 河流入湖流速为0.01~0.50 m/s,pH值为6.22~9.92,4-10月水温在17.0~20.3℃之间. 滇池入湖河流及子流域水量根据河口监测流速计算,并参考HSPF模型结果. 滇池流域以盘龙江(24667.61 m3/a)和新运粮河(10438.82 m3/a)入湖水量最高,老运粮河、大清河、捞鱼河、老宝象河、新宝象河等次之,入湖水量在2000~4000 m3/a之间,西坝河、金家河、大沟河和六甲宝象河等入湖水量最低,小于200 m3/a. 入湖水量以7-8月较高,8月最高达10703.65 m3/a.1.2 分析及计算方法ρ(TP)和ρ(DTP)采用过硫酸钾-钼锑抗分光光度法测定,ρ(DIP)采用钼锑抗分光光度法测定,具体方法参照文献[21].式中,DOP为溶解性有机磷,DIP为溶解性无机磷,PP为颗粒态磷,单位均为mg/L.入湖河流TP负荷计算公式为:式中,Wij为i年j月入湖河流TP负荷(t/a);Cij为i年j月河流入湖口ρ(TP)平均值(mg/L);Qij为i年j月入湖水量平均值(m3/s),入湖负荷计算方法参考文献[22-24].1.3 数据统计分析数据统计分析及制图采用Origin 8.5和ArcGIS 10.0软件.2.1 入湖河流磷浓度的时空变化通过计算不同月份入湖河流磷浓度的平均值得到磷浓度空间变化特征(图2). 滇池不同入湖河流磷浓度差别显著,ρ(TP)在0.11~1.93 mg/L之间,平均值为0.66 mg/L,最高值出现在广普大沟,茨巷河、海河和金家河浓度相对较高,为1.0~1.8 mg/L,绝大部分入湖河流ρ(TP)小于0.8 mg/L;水体ρ(DIP)在0.02~1.13 mg/L之间,平均值为0.28 mg/L,最高值出现在广普大沟,海河次之;ρ(PP)在0.03~1.57 mg/L之间,平均值为0.25 mg/L,最高值出现在茨巷河,广普大沟次之(0.45 mg/L);而ρ(DOP)相对较低,在0.04~0.39 mg/L之间,平均值为0.13 mg/L.总体来看,滇池草海及外海北部入湖河流较多,主要有新运粮河、老运粮河、盘龙江和广普大沟等较大河流. 入湖河流流经昆明市主城区,以城市点源污染为主,大量工业废水及城市生活污水、雨水等汇入河流,故污染情况严重,磷浓度较高,且以DIP为主. 其中,广普大沟污染最为严重,各形态磷浓度均较高,主要由于河道汇集了沿线居民小区生活污水、农村面源污水和工业生产废水,且均为直排河道,再加之污水管道堵塞,导致河水污浊且散发着阵阵恶臭[25]. 外海东部及南部流域入湖河流相对较少,主要包括洛龙河、捞鱼河、茨巷河和东大河等,以农业面源污染为主,城市点源污染较少,除茨巷河外,大部分河流水质较好. 茨巷河的磷浓度仅次于广普大沟,以PP为主,是典型的农业灌溉与养殖污染影响下的滇池入湖河流[26]. 同时受到磷矿开采区的影响,在雨季降雨量很大时,其污染物浓度增长更为迅速[27]. 由此可见,农田地表径流和磷矿的开采成为滇池水体富营养化亟需控制的重要内容[28-29]. 除农业面源外,在开采磷矿的过程中,大量的扬尘随即产生,污染物会通过降雨进入河流,故茨巷河的磷浓度很高,并以PP为主. 海河磷浓度较广普大沟和茨巷河再次之,以DIP为主,其流域周围分布着农村、学校和工厂,污染物以农村生活污水、工业和企业废水为主. 而滇池东部随着“十二五”城市重心的转移、呈贡新区的建设、生活污染源和城市面源污染的增加[30],东部入湖河流水质面临着新的压力,使滇池入湖河流磷污染由北部逐渐向东部转移.通过计算每月不同入湖河流磷浓度的平均值得出磷浓度月变化特征(图3). 滇池入湖河流磷浓度总体呈波动式先升后降的趋势,ρ(TP)在0.53~0.87 mg/L之间,4月最高,7月最低,6月出现次峰值;不同月份ρ(DTP)在0.30~0.61 mg/L之间,4月最高,9月出现次峰值;不同月份ρ(DIP)在0.20~0.50 mg/L之间,4月最高,8月出现次峰值;ρ(PP)在5月(0.47 mg/L)最高,8月(0.09 mg/L)最低;DOP浓度在8月(0.24 mg/L)最高,7月(0.04 mg/L)最低. 从图3中可以明显看出,冬季降雨量少,各指标相对较低,4-9月降雨量大,各指标显著升高. ρ(TP)、ρ(DTP)和ρ(DIP)高峰值都出现在4月,主要原因可能是滇池西南地区干旱,降水稀少,排入河道的工业废水和生活污水中的磷污染物得不到稀释;较低值出现在7月和10月,原因可能是雨季的降水不断补给河流,使外源污染得到了稀释[31].总体来说,磷在水体中的浓度一般较低,主要吸附于土壤颗粒中[32],降雨、开沟排水等产生的地表径流,使营养丰富的表层底泥被侵蚀从而进入河流,使水体中磷浓度升高. 所以入湖河流在雨季时的磷浓度往往高于旱季,也就是说,降雨较少的时期,对土壤的冲刷作用较弱,流入河流的土壤颗粒较小,导致河流磷浓度较低. 2.2 入湖河流磷负荷的时空变化根据滇池入湖河流水量及水质数据,计算得到滇池入湖河流TP及不同形态磷的入湖负荷. 滇池入湖河流TP负荷为280.51 t/a,其中,DIP入湖负荷为124.81 t/a,占TP负荷的44.49%;PP入湖负荷为116.18 t/a,占TP负荷的41.42% ;DOP 入湖负荷为39.52 t/a,占TP负荷的14.09%. 总体来看,各河流不同形态磷负荷均以DIP和PP负荷为主,DOP负荷较低(图4).从滇池主要入湖河流磷负荷的空间变化来看,TP负荷量较大的(>20 t/a)有新运粮河、盘龙江、老运粮和大清河,其中新运粮河(75.35 t/a)和盘龙江(55.78 t/a)分别占TP负荷的26.86%和19.89%. 与国内学者[33-34]对盘龙江的研究结论一致:盘龙江主要污染因子为TP,是引起水体富营养化的重要因素. 盘龙江流域城镇众多,人口密集,生活污水及工业废水排放量大,湖水流速较快,形成较大的水环境容量,故TP负荷很高. 对于水流速度较小的新运粮河,由于分布在河流两岸的323个排污口持续汇入大量污染物,同时在河道整治过程中忽视了河道整体的生态治理和修复,河流磷负荷持续升高[35]. 因而,盘龙江和新运粮河的磷负荷很高的最主要原因是入湖水量极高,其中盘龙江入湖水量高达24667.61 m3/a. 可见,滇池入湖河流磷负荷主要来源于北部的2条主要入湖河流,总体来说东部和南部的入湖河流磷负荷均较低. 蔡佳亮等[36]的研究发现,滇池入湖河流污染状况严重程度为北部入湖河流>南部入湖河流>东部入湖河流,与本研究印证. 因此亟需加强对滇池北部(特别是新运粮河、盘龙江及其流域)的综合治理,以减少该河流的入湖磷负荷. 滇池入湖河流TP及不同形态磷入湖负荷季节性差异显著(图5),TP负荷呈现先升后降的趋势,8月最高,占入湖河流磷负荷总量的20.93%,最低值出现在5月. PP负荷在7月最高,占全年的23.44%;DIP负荷和DON负荷均在8月最高,分别占全年的23.48%和21.86%. 入湖河流中PP负荷所占比例较高,尤其是在水中含有大量泥沙的雨期(7-8月),这与水体TP浓度在入湖河流较高相互印证. 滇池一年内干湿季节分明[37],在汛期的7、8月,TP及不同形态磷负荷均最高;11月至次年4月的旱季,雨量稀少,磷负荷变化平稳且处于较低水平. 总体来讲,全年的磷浓度在时空分布上均具有较大差异,变化趋势是夏季高于冬季,入湖河流的磷负荷均主要集中在7-10月,占全年TP负荷的62.04%. 入湖河流TP、DIP及DOP负荷均在8月出现最大值,而PP负荷在7月出现最大值,之后随时间推移显著降低. 入湖河流各形态磷负荷均在5月出现最低值,故此时水质状况最佳. 之后随着降雨量的增加各种磷负荷持续增加,8月达到最大值(8月入湖水量是5月的9倍多),故控制滇池河流入湖磷负荷,可以考虑在雨季之初加以控制.2.3 不同形态磷的入湖负荷贡献根据滇池不同河流各形态磷入湖负荷占总磷入湖负荷的百分比计算得到各形态磷的入湖负荷贡献率(图6). 总体来讲,滇池绝大多数河流以DIP和PP入湖负荷为主,其中DIP占TP入湖负荷的5.14%~64.36%,平均贡献率为43.48%;PP占TP 入湖负荷的12.07%~59.77%,平均贡献率为31.64%. DOP负荷贡献相对较小,占TP入湖负荷的1.95%~64.12%,平均贡献率为24.88%. 故不同入湖河流各形态磷对TP入湖负荷的贡献差异显著. 茨巷河、盘龙江和东大河PP入湖负荷占有相对较高的比例,其对TP负荷的贡献率可达到50%以上,而洛龙河、中河和马料河PP入湖负荷占有相对较高的比例,其对TN负荷的贡献率可达到60%以上,其中PP负荷贡献率最高值出现在茨巷河,DON负荷贡献率最高值出现在洛龙河(图6). PP和DOP均是河流入湖磷负荷的重要组成部分,以往针对滇池及其流域的研究多集中在TP和DIP入湖负荷方面,而有关PP和DOP入湖负荷的报道较少. 近几十年,随着滇池周边工、农业的发展,不仅无机磷入湖负荷逐年增加,而且DOP 和PP入湖负荷也显著提高,并已经成为影响滇池水质的重要因素之一[38]. 茨巷河流域的农田有大量的蔬菜、花卉等作物种植区,雨水冲刷和灌溉流失的农田土壤绝大多数进入茨巷河,从而导致PP负荷最高. 要减少茨巷河等河流的PP负荷,首先要避免农业生产中过量施放磷肥,然后进行水土保持工作,使附着于土壤颗粒中的磷减少流失. 洛龙河流经人口较为密集的龙城镇,龙城镇是呈贡县城所在地,人口较为集中,每天约有0.22×104 t的城市污水流入洛龙河,加之农田灌溉是洛龙河的主要功能(2007年前共灌溉农田284.4 hm2)[39],主要污染源为来自流经区域的农业面源,使得DOP负荷贡献占主导地位.不同形态磷入湖负荷贡献率的月变化差异明显(图7),DIP入湖负荷贡献率较高值出现在3、4和11月的枯水期,平均入湖负荷贡献率达到55.30%;PP入湖负荷贡献率较高值出现在1和7月,平均入湖负荷贡献率为56.14%; DOP入湖负荷贡献率较高值出现在12月,为21.85%. PP与DIP月负荷贡献率呈此消彼长的震荡趋势,而DOP月负荷贡献率在全年中都处于较低地位,也就是说全年以PP与DIP负荷贡献率为主,两者波动明显,但DOP与DIP总体趋势相近. PP负荷贡献率在1-4月持续下降,而DOP和DIP负荷贡献率持续上升,这是因为磷在DTP 和PP两种形态之间转化并达到动态平衡. 而随着颗粒物进入水体的磷通常有两种运移方式:一部分附着在悬浮颗粒物表面,可以很快解吸附进入水体[40];另一部分与固体颗粒物基质紧密相连的磷有较小的释放速率,这部分含磷固体颗粒物易沉降形成沉积物,也将成为内源磷负荷的主要来源[40]. 故合理并有效控制PP负荷至关重要,如适当地河道清淤,内布设人工水草、浮床、沉床等,以减弱PP负荷贡献.2)2013年滇池河流入湖磷负荷总量为280.51 t,绝大多数河流以DIP入湖负荷为主,平均贡献率分别为43.48%;PP入湖负荷次之,平均贡献率为31.64%;DOP入湖负荷较低,平均贡献率为24.88%. 不同形态磷入湖负荷贡献率的月变化差异明显,DIP入湖负荷贡献率较高值出现在3、4和11月的枯水期,平均入湖负荷贡献率达到55.30%;PP入湖负荷贡献率较高值出现在1和7月,平均入湖负荷贡献率为56.14%;DOP入湖负荷贡献率月变化差异较小,最高值出现在12月,贡献率为21.85%.3)滇池入湖河流PP和DOP入湖负荷贡献率占有一定的比例,不同季节有机磷和无机磷入湖负荷贡献率差异显著. 滇池入湖河流污染负荷评估,不仅要考虑对DIP 的入湖负荷,而且需要重视PP和DOP负荷,在入湖河流河道综合整治过程中应根据不同河流磷负荷组成及其月变化差异,有针对性地采取相应措施,力求得到事半功倍的效果.【相关文献】[1] Søndergaard M, Jensen JP, Jeppesen E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 2003, 506(1/2/3): 135-145.[2] Sanclements MD, Fernandez IJ, Norton SA. Soil and sediment phosphorus fractions ina forested watershed at Acadia National Park, ME, USA. Forest Ecology and Management, 2009, 258(1): 2318-2325.[3] Zhang Ping, Gao Linna, Sun Chong et al. Integrated evaluation on aquatic ecosystems of main rivers and lakes in China. Journal of Hydraulic Engineering, 2016, 47(1): 94-100 (in Chinese with English abstract).[张萍, 高丽娜, 孙翀等. 中国主要河湖水生态综合评价. 水利学报,2016, 47(1): 94-100.][4] Xi Shanshan, Zhou Chuncai, Liu Guijian et al. Spatial and temporal distributions of nitrogen and phosphate in the Chaohu Lake. Environmental Science, 2016, 37(2): 542-547(in Chinese with English abstract).[奚姗姗, 周春财, 刘桂建等. 巢湖水体氮磷营养盐时空分布特征. 环境科学, 2016, 37(2): 542-547.][5] Zhang Weili, Wu Shuxia, Ji Hongjie et al. Estimation of agricultural non-point source pollution in China and the alleviating strategies. Scientia Agricultura Sinica, 2004, 37(7): 1008-1017(in Chinese with English abstract).[张维理, 武淑霞, 冀宏杰等. 中国农业面源污染形势估计及控制对策. 中国农业科学, 2004, 37(7): 1008-1017.][6] Guo Huaicheng, Sun Yanfeng. Characteristic analysis and control strategies for the eutrophicated problem of the Lake Dianchi. Progress in Geography, 2002, 21(5): 500-506(in Chinese with English abstract).[郭怀成, 孙延风. 滇池水体富营养化特征分析及控制对策探讨. 地理科学进展, 2002, 21(5): 500-506.][7] Wang Hongmei, Chen Yan. Change trend of eutrophication of Dianch Lake and reason analysis in recent 20 years. Environmental Science Survey, 2009, 28(3): 57-60(in Chinese with English abstract).[王红梅, 陈燕. 滇池近20 a富营养化变化趋势及原因分析. 环境科学导刊, 2009,28(3): 57-60.][8] Li Yuexun, Xu Xiaomei, He Jia et al. Point source pollution control and problem in Lake Dianchi basin. J Lake Sci, 2010, 22(5): 633-639(in Chinese with English abstract). DOI: 10.18307/2010.0502.[李跃勋, 徐晓梅, 何佳等. 滇池流域点源污染控制与存在问题解析. 湖泊科学, 20l0, 22(5): 633-639.][9] Jin Xiangcan, Xin Weiguang, Lu Shaoyong et al. Effect of polluted inflow river on water quality of lake bay. Research of Environmental Sciences, 2007, 20(4): 52-56(in Chinese with English abstract).[金相灿, 辛玮光, 卢少勇等. 入湖污染河流对受纳湖湾水质的影响. 环境科学研究, 2007, 20(4): 52-56.][10] Xia Yu, Yan Bangyou, Fang Yu. Nutrient loading and its controlling factors in Le’an River watershed, Lake Poyang basin. J Lake Sci, 2015, 27(2): 282-288(in Chinese with English abstract). DOI: 10.18307/2015.0212.[夏雨, 鄢帮有, 方豫. 鄱阳湖区乐安河流域营养盐负荷影响因素分析. 湖泊科学, 2015, 27(2): 282-288.][11] Yu Xiaofei, He Shuzhuang, Hu Bin et al. Study on the in the storm runoff of Chaihe reaches of Dianchi Lake. Environmental Pollution & Control, 2012, 34(10): 61-70(in Chinese with English abstract).[余晓飞, 和树庄, 胡斌等. 滇池柴河小流域暴雨径流中COD的输移特征研究. 环境污染与防治, 2012, 34(10): 61-70.][12] Li XY, Weller DE, Jordan TE. Watershed model calibration using multi-objective optimization and multi-site averaging. Journal of Hydrology, 2010, 380(3/4): 277-288. [13] Shen ZY, Liao Q, Hong Q et al. An overview of research on agricultural non-point source pollution modelling in China. Separation & Purification Technology, 2012, 84(2):104-111.[14] Schindler DW, Hecky RE, Findlay DL et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences, 2008, 105(32): 11254-11258.[15] Xia XH, Yang ZF, Zhang XQ et al. Nitrification in natural waters with high suspended-solid content—A study for the Yellow River. Chemosphere, 2004, 57(8): 1017-1029.[16] Xia XH, Yang ZF, Zhang XQ. Effect of suspended-sediment concentration on nitrification in river water: importance of suspended sediment—water interface. Environmental Science & Technology, 2009, 43(10): 3681-3687.[17] Liu Yan, Zhou Feng, Zhao Zhijie. Forecasting and early-warning system for riverine TN and TP loadings of Lake Dianchi Watershed. Acta Scientiae Circumstantiae, 2015, 35(9): 2916-2923(in Chinese with English abstract).[刘岩, 周丰, 赵志杰. 滇池流域TN、TP入湖负荷预报预警系统. 环境科学学报, 2015, 35(9): 2916-2923.][18] Liu ZH, Liu XH, He B et al. Spatio-temporal change of water chemical elements in Lake Dianchi, China. Water and Environment Journal, 2009, 23(3): 235-244.[19] Liu Zhonghan, He Bin, Wang Yiming et al. Effects of rainfall runoff on total nitrogen and phosphorus flux in different catchments of Dianchi Lake, Yunnan, China. Geogr Res, 2004, 23(5): 593-604(in Chinese with English abstract).[刘忠翰, 贺彬, 王宜明等. 滇池不同流域类型降雨径流对河流氮磷入湖总量的影响. 地理研究, 2004, 23(5):593-604.][20] Chen QW, Tan K, Zhu CB et al. Development and application of a two-dimensional water quality model for the Daqinghe River Mouth of the Dianchi Lake. Journal of Environmental Sciences, 2009, 21(3): 313-318.[21] Wei Fusheng, Bi Tong, Qi Wenqi eds. Methods for monitoring and analysis of water and wastewater (Fourth Edition). Beijing: Chinese Environmental Science Press, 2002 (in Chinese).[魏复盛, 毕彤, 齐文启. 水和废水检测分析方法(第四版). 北京: 中国环境科学出版社, 2002.] [22] Zhao Haichao, Wang Shengrui, Jiao Lixin et al. Characteristics of temporal and spatial distribution of nitrogen loading in Er’hai Lake in 2010. Res Environ Sci, 2013,26(4): 389-395(in Chinese with English abstract).[赵海超, 王圣瑞, 焦立新等. 2010年洱海全湖氮负荷时空分布特征. 环境科学研究, 2013, 26(4): 389-395.][23] Liu Xincheng, Shen Huanting, Huang Qinghui. Concentration variation and flux estimation of dissolved inorganic nutrient from the Changjiang River into its estuary. Oceanologia et Limnologia Sinica, 2002, 33(3): 332-340(in Chinese with English abstract).[刘新成, 沈焕庭, 黄清辉. 长江入河口区生源要素的浓度变化及通量估算. 海洋与湖沼, 2002, 33(3): 332-340.][24] Tohru S, Hirofumi I, Etsuji D. Benthic nutrient remineralization and oxygen consumtion in the coastal area of Hiroshima Bay. Water Research, 1989, 23(2): 219-228.[25] Guan Xipeng. Temporal and spatial variations of nitrogen and phosphorus in main into-lake rivers for Dianchi Lake and the impact of rain force[Dissertation]. Kunming: Yunnan Agricultural University, 2009 (in Chinese with English abstract).[管锡鹏. 主要入滇池河道氮磷污染物的时空变化及强降雨对其影响[学位论文]. 昆明: 云南农业大学, 2009.][26] Li Xiaoming, Yang Shuping, Zhang Yu et al. Planktonic algae diversity and its water quality monitoring in Chai River, Baoxiang River and Panlong River, three inflow river of Dianchi Lake. Journal of Yunnan University: Natural Science Edition, 2014, 36(6): 950-958 (in Chinese with English abstract).[李晓铭, 杨树平, 张宇等. 入滇池河流柴河、宝象河与盘龙江浮游藻类多样性调查及其水质监测研究. 云南大学学报: 自然科学版, 2014, 36(6): 950-958.][27] Li Farong, Qiu Xueli, Zhou Jing et al. Surface runoff and pollutants characteristics of inflowing rivers in the agricultural and phosphorus-rich region on the southeast coast of the Lake Dianchi. China Environmental Monitoring, 2014, 30(6): 93-101 (in Chinese with English abstract).[李发荣, 邱学礼, 周璟等. 滇池东南岸农业和富磷区入湖河流地表径流及污染特征. 中国环境监测, 2014,30(6): 93-101.][28] Zhan Fangdong, Fu Zhixing, Yang Jing et al. Effects of maize intercropping on characteristics of surface runoff pollution from vegetables fields in Dianchi watershed. Acta Scientiae Circumstantiae, 2012, 32(4): 847-855(in Chinese with English abstract).[湛方栋, 傅志兴, 杨静等. 滇池流域套作玉米对蔬菜农田地表径流污染流失特征的影响. 环境科学学报, 2012, 32(4): 847-855.][29] Kong Yan, He Shuzhuang, Hu Bin et al. The settlement and transfer rule of phosphorus in stormwater runoff from phosphorus-rich area in Dianchi Watershed. Acta Scientiae Circumstantiae, 2012, 32(9): 2160-2166(in Chinese with English abstract).[孔燕, 和树庄, 胡斌等. 滇池流域富磷地区暴雨径流中磷素的沉降及输移规律. 环境科学学报, 2012, 32(9): 2160-2166.][30] Liu Ruizhi, Zhu Lina, Lei Kun et al. Comprehensive treatment effect analysis of river inflowing into Dianchi Lake during‘Eleventh Five Year Plan’ period. Environmental Pollution & Control, 2012, 34(3): 95-100 (in Chinese with English abstract).[刘瑞志, 朱丽娜, 雷坤等. 滇池入湖河流“十一五” 综合整治效果分析. 环境污染与防治, 2012, 34(3): 95-100.] [31] Wang Huaguang, Liu Bibo, Li Xiaoping et al. Seasonal variation of water quality of Xinyunliang River, Dianchi Basin and the impact of the riparian ecological restoration. J Lake Sci, 2012, 24(3): 334-340(in Chinese with English abstract). DOI:10.18307/2012.0302.[王华光, 刘碧波, 李小平等. 滇池新运粮河水质季节变化及河岸带生态修复的影响. 湖泊科学, 2012, 24(3): 334-340.][32] Jin Xiaodan, Wu Hao, Chen Zhiming et al. Phosphorus fractions, sorption characteristics and its release in the sediments of Yangtze Estuary Reservoir, China. Environmental Science, 2015, 36(2): 448-456(in Chinese with English abstract).[金晓丹, 吴昊, 陈志明等. 长江河口水库沉积物磷形态、吸附和释放特性. 环境科学, 2015, 36(2): 448-456.]。