北京市平谷区2017-2018学年第一学期期末八年级数学试题(含答案)

合集下载

【名师精编】北京市平谷区2017-2018学年八年级上期末考试数学试卷(有答案)

【名师精编】北京市平谷区2017-2018学年八年级上期末考试数学试卷(有答案)

2017-2018学年北京市平谷区八年级(上)期末数学试卷一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个是符合题意的.1.9的算术平方根是()A.﹣3B.3C.±3D.812.下列图形中,不是轴对称图形的是()A.B.C.D.3.用直角三角板,作△ABC的高,下列作法正确的是()A.B.C.D.4.下列各式中,正确的是()A.B.C.D.5.如图,△ABC中,AB=AC,BE平分∠ABC,CD平分∠ACB,则下图中共有几对全等三角形()A.2B.3C.4D.56.下列二次根式中,与是同类二次根式的是()A.B.C.D.7.一个不透明的盒子中装有3个白球,5个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是()A.B.C.D.8.如图,在Rt△ABC中,∠C=90°,点D为AB边中点,DE⊥AB,并与AC边交于点E.如果∠A=15°,BC=1,那么AC等于()A.2B.C.D.二、填空题(共8小题,每小题2分,满分16分)9.使有意义的的取值范围是.10.等腰三角形的两边长为3,7,则其腰长为.11.如图,用两个边长分别为1的小正方形,拼成一个大正方形,则该大正方形的边长为.12.计算:=.13.如图,线段AE,BD交于点C,AB=DE,请你添加一个条件,使得△ABC≌△DEC.14.若分式的值为0,则=.15.如图,△A1OM是腰长为1的等腰直角三角形,以A1M为一边,作A1A2⊥A1M,且A1A2=1,连接A2M,再以A2M为一边,作A2A3⊥A2M,且A2A3=1,则A1M=,照此规律操作下去…则A n M=.16.阅读下面材料:数学活动课上,老师出了一道作图问题:“如图,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”小艾的作法如下:(1)在直线l上任取点A,以A为圆心,AP长为半径画弧.(2)在直线l上任取点B,以B为圆心,BP长为半径画弧.(3)两弧分别交于点P和点M(4)连接PM,与直线l交于点Q,直线PQ即为所求.老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是.三、解答题(共10个题,共50分,每小题5分)17.计算:﹣(+2).18.计算:﹣(π﹣2017)0+|1﹣|+.19.计算:.20.已知:如图,B,A,E在同一直线上,AC∥BD,AB=BD,∠ABC=∠D.求证:AC=BE.21.计算:.22.解分式方程:﹣=1.23.已知:a2+3a﹣2=0,求代数的值.24.若,求的值.25.随着几何部分的学习,小鹏对几何产生了浓厚的兴趣,他最喜欢利用手中的工具画图了.如图,作一个∠AOB,以O为圆心任意长为半径画弧分别交OA,OB于点C和点D,将一副三角板如图所示摆放,两个直角三角板的直角顶点分别落在点C和点D,直角边中分别有一边与角的两边重合,另两条直角边相交于点P,连接OP.小鹏通过观察和推理,得出结论:OP平分∠AOB.你同意小鹏的观点吗?如果你同意小鹏的观点,试结合题意写出已知和求证,并证明.已知:∠AOB中,=,⊥,⊥.求证:OP平分∠AOB.26.列方程解应用题:为了提升阅读速度,某中学开设了“高效阅读”课.小敏经过一段时间的训练,发现自己现在每分钟阅读的字数比原的2倍还多300字,现在读9100字的文章与原读3500字的文章所用的时间相同.求小敏原每分钟阅读的字数.四、解答题(本题共18分,其中第27题6分,28题5分,29题7分)27.边长为1的小正方形网格中,点A,B,C均落在格点上.(1)猜想△ABC的形状,并证明;(2)直接写出△ABC的面积=;(3)画出△ABC关于直线l的轴对称图形△A1B1C1.28.对于实数a,我们规定:用符号表示不大于的最大整数,称为a的根整数,例如:,.(1)仿照以上方法计算:=;=.(2)若,写出满足题意的的整数值.如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次,这时候结果为1.(3)对100连续求根整数,次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是.29.在△ABC中,AB=AC,以BC为边作等边△BDC,连接AD.(1)如图1,直接写出∠ADB的度数;(2)如图2,作∠ABM=60°在BM上截取BE,使BE=BA,连接CE,判断CE与AD的数量关系,请补全图形,并加以证明;(3)在(2)的条件下,连接DE,AE.若∠DEC=60°,DE=2,求AE的长.2017-2018学年北京市平谷区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个是符合题意的.1.9的算术平方根是()A.﹣3B.3C.±3D.81【分析】如果一个非负数的平方等于a,那么是a的算术平方根,根据此定义即可求出结果.【解答】解:∵32=9,∴9算术平方根为3.故选:B.【点评】此题主要考查了算术平方根,其中算术平方根的概念易与平方根的概念混淆而导致错误.2.下列图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【解答】解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.【点评】此题主要考查了轴对称图形,关键是掌握轴对称的定义.3.用直角三角板,作△ABC的高,下列作法正确的是()A.B.C.D.【分析】根据高线的定义即可得出结论.【解答】解:A、B、C均不是高线.故选:D.【点评】本题考查的是作图﹣基本作图,熟知三角形高线的定义是解答此题的关键.4.下列各式中,正确的是()A.B.C.D.【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:∵,故选项A错误,∵当≠0时,,故选项B错误,∵,故选项C正确,∵不能化简,故选项D错误,故选:C.【点评】本题考查分式的基本性质,解答本题的关键是可以对各个选项中的式子进行化简.5.如图,△ABC中,AB=AC,BE平分∠ABC,CD平分∠ACB,则下图中共有几对全等三角形()A.2B.3C.4D.5【分析】首先证明△ACD≌△ABE可得AD=AE,DC=BE,根据等式的性质可得AB﹣AD=AC﹣AE,即BD=CE;再证明△EBC≌△DCB,△EOC≌△DOB即可.【解答】解:△ACD≌△ABE,△EBC≌△DCB,△EOC≌△DOB,∵AB=AC,∴∠ACB=∠ABC,∵BE平分∠ABC,CD平分∠ACB,∴∠ACD=∠ABE,在△ADC和△AEB中,,∴△ACD≌△ABE(ASA);∴AD=AE,DC=BE,∴AB﹣AD=AC﹣AE,即BD=CE,在△EBC和△DCB中,,∴△EBC≌△DCB(SSS),在△EOB和△DOC中,,∴△EOB≌△DOC(AAS).故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.下列二次根式中,与是同类二次根式的是()A.B.C.D.【分析】先把各选项中的二次根式化简,然后根据同类二次根式的定义进行判断.【解答】解:=2,=2,=2,=3,所以与是同类二次根式.故选:B.【点评】本题考查了同类二次根式:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.7.一个不透明的盒子中装有3个白球,5个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是()A.B.C.D.【分析】先求出袋子中总的球数,再用红球的个数除以总的球数即可.【解答】解:∵袋子中装有3个白球和5个红球,共有8个球,从中随机摸出一个球是红球的可能结果有5种,∴从袋子中随机摸出一个球是红球的可能性,即概率是,故选:A.【点评】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.如图,在Rt△ABC中,∠C=90°,点D为AB边中点,DE⊥AB,并与AC边交于点E.如果∠A=15°,BC=1,那么AC等于()A.2B.C.D.【分析】根据线段垂直平分线的性质得到AE=BE,根据等腰三角形的性质得到∠ABE=∠A=15°,根据直角三角形的性质即可得到结论.【解答】解:∵点D为AB边中点,DE⊥AB,∴DE垂直平分AB,∴AE=BE,∴∠ABE=∠A=15°,∴∠BEC=∠A+∠ABE=30°,∵∠C=90°,∴BE=AE=2BC=2,CE=BC=,∴AC=AE+CE=2+,故选:C.【点评】本题考查了线段垂直平分线的性质,等腰三角形的性质,直角三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键.二、填空题(共8小题,每小题2分,满分16分)9.使有意义的的取值范围是≥1.【分析】先根据二次根式有意义的条件列出关于的不等式组,求出的取值范围即可.【解答】解:∵有意义,∴﹣1≥0,解得≥1.故答案为:≥1.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.10.等腰三角形的两边长为3,7,则其腰长为7.【分析】分两种情况:①腰是7时,②腰是3时,根据三角形的三边关系定理判断能否组成三角形后,即可求出答案.【解答】解:①当腰是7时,三边是7、7、3,腰是7;②当腰是3时,三边是7、3、3,但3+3<7,根据三角形三边关系定理不能组成三角形.故答案为:7.【点评】本题主要考查对等腰三角形的性质,三角形的三边关系定理等知识点的理解和掌握,能求出所有情况是解此题的关键.11.如图,用两个边长分别为1的小正方形,拼成一个大正方形,则该大正方形的边长为.【分析】由小正方形的边长可求出小正方形的面积,因为剪拼成一个大正方形后面积等于两个小正方形的面积和即为2,进而求出大正方形的边长.【解答】解:∵两个正方形的边长都是1,∴两个小正方形的面积都为1,∴剪拼成一个大正方形后面积等于两个小正方形的面积和即为2,∴此大正方形的边长为,故答案为:.【点评】本题主要考查算术平方根,解题的关键是掌握剪拼成一个大正方形后面积等于两个小正方形的面积和.12.计算:=﹣.【分析】分式的乘方等于分子分母分别乘方,计算即可得到结果.【解答】解:原式==﹣.故答案为:﹣.【点评】此题考查了分式的乘方,熟练掌握乘方法则是解本题的关键.13.如图,线段AE,BD交于点C,AB=DE,请你添加一个条件∠A=∠E(或∠B=∠D),使得△ABC≌△DEC.【分析】依据AB=DE,∠ACB=∠ECD,可得当∠A=∠E(或∠B=∠D)时,△ABC≌△DEC.【解答】解:∵AB=DE,∠ACB=∠ECD,∴当∠A=∠E(或∠B=∠D)时,依据AAS可得,△ABC≌△DEC.故答案为:∠A=∠E(或∠B=∠D).【点评】本题主要考查了全等三角形的判定,两角及其中一个角的对边对应相等的两个三角形全等.14.若分式的值为0,则=2.【分析】根据分式的值为0的条件列出关于的不等式组,求出的值即可.【解答】解:∵分式的值为0,∴,解得=2.故答案为:2.【点评】本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.15.如图,△A1OM是腰长为1的等腰直角三角形,以A1M为一边,作A1A2⊥A1M,且A1A2=1,连接A2M,再以A2M为一边,作A2A3⊥A2M,且A2A3=1,则A1M=,照此规律操作下去…则A n M=.【分析】根据勾股定理,探究规律,利用规律即可解决问题.【解答】解:根据勾股定理可得:A1M==,A2M==,A3M==,A4M==,…,A n M=故答案为;【点评】本题考查等腰直角三角形的性质、规律型图形变化类问题,解题的关键是学会从特殊到一般的探究方法,学会探究规律、利用规律解决问题.16.阅读下面材料:数学活动课上,老师出了一道作图问题:“如图,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”小艾的作法如下:(1)在直线l上任取点A,以A为圆心,AP长为半径画弧.(2)在直线l上任取点B,以B为圆心,BP长为半径画弧.(3)两弧分别交于点P和点M(4)连接PM,与直线l交于点Q,直线PQ即为所求.老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是到线段两端距离相等的点在线段的垂直平分线上或两点确定一条直线或sss或全等三角形对应角相等或等腰三角形的三线合一.【分析】根据SSS可以证明△ABP≌△ABM,利用等腰三角形的三线合一即可判断.(理由不唯一)【解答】解:∵AP=AM,BP=BM,AB=AB,∴△ABP≌△ABM,∴∠BAP=∠BAM,∵AP=AM,∴AQ⊥PM.故答案为:到线段两端距离相等的点在线段的垂直平分线上或两点确定一条直线或sss或全等三角形对应角相等或等腰三角形的三线合一【点评】本题考查作图﹣复杂作图,全等三角形的判定和性质、等腰三角形的性质、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,本题用到的知识点比较多,答案不唯一.三、解答题(共10个题,共50分,每小题5分)17.计算:﹣(+2).【分析】先进行二次根式的乘法运算,然后化简后合并即可.【解答】解:原式=2﹣2﹣2=﹣2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.计算:﹣(π﹣2017)0+|1﹣|+.【分析】直接利用算术平方根的定义以及立方根的定义和零指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:原式=3﹣1+﹣1+3=4+1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.计算:.【分析】根据分式的运算法则即可求出答案.【解答】解:原式======【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.20.已知:如图,B,A,E在同一直线上,AC∥BD,AB=BD,∠ABC=∠D.求证:AC=BE.【分析】根据平行线的性质和全等三角形的判定和性质证明即可.【解答】证明:∵AC∥BD∴∠BAC=∠DBE,在△ABC和△BDE中,∴△ABC≌△BDE(ASA)∴AC=BE.【点评】此题考查全等三角形的判定及性质的运用,解答时证明三角形全等是关键.21.计算:.【分析】先利用平方差公式和完全平方公式计算,然后合并即可.【解答】解:原式=5﹣2+3﹣2+1=7﹣2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.解分式方程:﹣=1.【分析】根据解分式方程的步骤解出方程.【解答】解:方程两边同乘(+2)(﹣2),得,(+2)﹣1=(+2)(﹣2)整理得,2+2﹣1=2﹣4,解得,经检验:是原方程的根,∴原方程的根是.【点评】本题考查的是分式方程的解法,解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.23.已知:a2+3a﹣2=0,求代数的值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再由题意得出a2+3a=2,代入即可得.【解答】解:原式====;∵a2+3a﹣2=0,∴a2+3a=2,∴原式=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.24.若,求的值.【分析】变形已知为a+b=n的形式,然后整体代入得结果【解答】解:∵∴=3,即b+a=3ab因为===【点评】本题考查了分式的化简求值,解决本题的关键是利用整体代入.25.随着几何部分的学习,小鹏对几何产生了浓厚的兴趣,他最喜欢利用手中的工具画图了.如图,作一个∠AOB,以O为圆心任意长为半径画弧分别交OA,OB于点C和点D,将一副三角板如图所示摆放,两个直角三角板的直角顶点分别落在点C和点D,直角边中分别有一边与角的两边重合,另两条直角边相交于点P,连接OP.小鹏通过观察和推理,得出结论:OP平分∠AOB.你同意小鹏的观点吗?如果你同意小鹏的观点,试结合题意写出已知和求证,并证明.已知:∠AOB中,OC=OD,PC⊥OA,PD⊥OB.求证:OP平分∠AOB.【分析】由尺规作图和直角三角板的摆放可补全已知部分,再根据直角三角形的判定求解可得.【解答】解:已知:∠AOB中,OC=OD,PC⊥OA,PD⊥OB.求证:OP平分∠AOB.证明:∵PC⊥OA,PD⊥OB,∴∠PCO=∠PDO=90°,在Rt△PCO和Rt△PDO中,∵∴Rt△PCO≌Rt△PDO(HL),∴∠COP=∠POD,∴OP平分∠AOB.故答案为:OC,OD,PC,OA,PD,OB.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握尺规作图和全等三角形的判定与性质.26.列方程解应用题:为了提升阅读速度,某中学开设了“高效阅读”课.小敏经过一段时间的训练,发现自己现在每分钟阅读的字数比原的2倍还多300字,现在读9100字的文章与原读3500字的文章所用的时间相同.求小敏原每分钟阅读的字数.【分析】设小敏原每分钟阅读的字数是字,根据现在读9100字的文章与原读3500字的文章所用的时间相同,可列方程求解.【解答】解:设小敏原每分钟阅读的字数是字,可得:=,解得:=500,经检验,是原方程的解,且符合题意.答:小敏原每分钟阅读500个字.【点评】本题考查分式方程的应用,关键根据现在读9100字的文章与原读3500字的文章所用的时间相同.以时间做为等量关系列方程求解.四、解答题(本题共18分,其中第27题6分,28题5分,29题7分)27.边长为1的小正方形网格中,点A,B,C均落在格点上.(1)猜想△ABC的形状等腰直角三角形,并证明;(2)直接写出△ABC的面积=5;(3)画出△ABC关于直线l的轴对称图形△A1B1C1.【分析】(1)根据勾股定理逆定理及等腰三角形的判定即可得;(2)利用直角三角形的面积公式可得;(3)分别作出点A、B、C关于直线l的对称点,再顺次连接可得.【解答】解:(1)等腰直角三角形,由图可求:AB=,AC=,BC=,∵AB2+AC2=BC2,∴△ABC是直角三角形,∵AB=BC,∴△ABC是等腰直角三角形,故答案为:等腰直角三角形;(2)△ABC的面积=AB•AC=××=5,故答案为:5;(3)如图所示,△A1B1C1即为所求;【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握勾股定理逆定理、等腰三角形的判定及轴对称的定义和性质.28.对于实数a,我们规定:用符号表示不大于的最大整数,称为a的根整数,例如:,.(1)仿照以上方法计算:=2;=5.(2)若,写出满足题意的的整数值1,2,3.如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次,这时候结果为1.(3)对100连续求根整数,3次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是255.【分析】(1)先估算和的大小,再由并新定义可得结果;(2)根据定义可知<4,可得满足题意的的整数值;(3)根据定义对100进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【解答】解:(1)∵22=4,52=25,62=36,∴5<<6,∴=[2]=2,[]=5,故答案为:2,5;(2)∵12=1,22=4,且,∴=1,2,3,故答案为:1,2,3;(3)第一次:[]=10,第二次:[]=3,第三次:[]=1,故答案为:3;(4)最大的正整数是255,理由是:∵[]=15,[]=3,[]=1,∴对255只需进行3次操作后变为1,∵[]=16,[]=4,[]=2,[]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点评】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.29.在△ABC中,AB=AC,以BC为边作等边△BDC,连接AD.(1)如图1,直接写出∠ADB的度数150°;(2)如图2,作∠ABM=60°在BM上截取BE,使BE=BA,连接CE,判断CE与AD的数量关系,请补全图形,并加以证明;(3)在(2)的条件下,连接DE,AE.若∠DEC=60°,DE=2,求AE的长.【分析】(1)只要证明△ADB≌△ADC,可得∠ADB=∠ADC,由此即可解决问题;(2)结论:CE=AD.只要证明△ABD≌△EBC即可解决问题;(3)只要证明△BDE是直角三角形,△ABE是等边三角形即可解决问题;【解答】解:(1)如图1中,∵△BDC是等边三角形,∴BD=DC,∠BDC=60°,在△ADB和△ADC中,,∴△ADB≌△ADC,∴∠ADB=∠ADC,∵∠ADB+∠ADC=360°﹣60°,∴∠ADB=150°,故答案为150°.(2)结论:CE=AD.理由:∵∠ABE=∠DBC=60°∴∠ABE﹣∠DBM=∠DBC﹣∠DBM ∴∠1=∠2,∵AB=BE,BD=DC∴△ABD≌△EBC∴CE=AD.(3)解:∵△ABD≌△EBC∴∠BCE=∠BDA=150°∵∠DCE=90°,∠DEC=60°∴∠CDE=30°∵DE=2∴CE=1,DC=BC=,∵∠BDE=60°+30°=90°DE=2,BD=由勾股BE=,∵∠ABE=60°AB=BE∴△ABE是等边三角形∴AE=BE=.【点评】本题考查三角形综合题、等边三角形的性质、等腰三角形的性质、勾股定理、全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,学会理由数形结合的思想解决问题,属于中考压轴题.。

【平谷区】2017—2018学年度第一学期期末质量监控试卷

【平谷区】2017—2018学年度第一学期期末质量监控试卷
∴AB∥CD.······················································································ 1 ∴∠A=∠ACD.··················································································2 ∴△ABO∽△CDO.············································································ 3
= 6 2 2 .················································································ 5
18.解:(1)∵抛物线经过点 A(﹣1,0),B(0,3),
1 b c 0,
∴பைடு நூலகம்

c

3.
.···································································2
图1
备用图
更多考试资料请关注子川教育微信公众号
28.在平面直角坐标系中,将某点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到
的点叫这个点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”.
(1)以 O 为圆心,半径为 5 的圆上有无数对“互换点”,请写出一对符合条件的“互换
点”

(2)点 M,N 是一对“互换点”,点 M 的坐标为(m,n),且(m>n),⊙P 经过点 M,N.
数是

更多考试资料请关注子川教育微信公众号

2017-2018学年第一学期期末检测八年级数学试题及参考答案

2017-2018学年第一学期期末检测八年级数学试题及参考答案

2017—2018学年度第一学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。

一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,42.在下列运算中,计算正确的是A.(x5)2=x7B.(x-y)2=x2-y2C.x12÷x3=x9D.x3+x3=x63.数学课上,同学们在练习本上画钝角三角形ABC的高BE时,有一部分学生画出下列四种图形,其中错误的个数为A.1个B.2个C.3个D.4个4.下列轴对称图形中,对称轴条数是四条的图形是A.B.C.D.5.下列关于分式的判断,正确的是A.当x=2时,12xx+-的值为零B.无论x为何值,231x+的值总为正数C .无论x 为何值,31x +不可能得整数值 D .当x≠3时,3x x -有意义6.如图,已知AB=AC ,AD=AE ,若要得到“△ABD ≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是A .BD=CEB .∠ABD=∠ACEC .∠BAD=∠CAED .∠BAC=∠DAE 7.若把分式2x yxy+中的x 和y 都扩大3倍,且x+y≠0,那么分式的值 A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍 8.若x=-2,y=12,则y (x+y )+(x+y )(x -y )-x 2的值等于 A .-2 B .12C .1D .-19.如图,在△ABC 中,DE 是AC 的垂直平分线,AC=6cm ,且△ABD 的周长为13cm ,则△ABC 的周长为A .13cmB .19cmC .10cmD .16cm10.观察等式(2a ﹣1)a+2=1,其中a 的取值可能是A .﹣2B .1或﹣2C .0或1D .1或﹣2或0 11.下列计算中正确的是A .22155b a a b ab -⨯=-- B .32x y x y ya b a b a b+--=+++ C .m m n m n n m n ÷⨯= D .1224171649xy xy a xy a -⎛⎫⎛⎫÷=⎪ ⎪⎝⎭⎝⎭12.如图,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F=40°,∠C=20°,则∠FBA 的度数为A .50°B .60°C .70°D .80°13.若y -x=-1,xy=2,则代数式-12x 3y+x 2y 2-12xy 3的值是 A .2 B .-2 C .1 D .-114.图1是一个长为 2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是A .a 2-b 2B .(a -b )2C .(a+b )2D .ab15.如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是A.(0,3)B.(1,2)C.(0,2)D.(4,1)16.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是A.①②④B.①②③C.②③④D.①②二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.一个多边形的每一个外角都为36°,则这个多边形是边形.18.若x2+2(m-3)x+16是一个完全平方式,那么m应为.19.对于实数a、,b,定义运算⊗如下:a⊗b=()(),0,0bba ab aa ab a-⎧>≠⎪⎨≤≠⎪⎩,例如:2⊗4=2-4=116,计算[4⊗2] =,[2⊗2]×[3⊗2]=.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题满分8分)如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.21.(本题满分9分)先化简,再求值:2214411a aa a a-+⎛⎫-÷⎪--⎝⎭,其中-2<a≤2,请选择一个a的合适整数代入求值.22.(本题满分9分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予证明(结论中不得含有未标识的字母);(2)求证:DC⊥BE.23.(本题满分9分)先阅读以下材料,然后解答问题.将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+b(x+y)=(x+y)(a+b)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2-y2-x-y;(2)分解因式:9m2-4x2+4xy-y2;24.(本题满分10分)如图,已知BD平分∠ABC,AB=AD,DE⊥AB,垂足为E.(1)求证:AD∥BC;(2)若DE=6cm,求点D到BC的距离;(3)当∠ABD=35°,∠DAC=2∠ABD时,①求∠BAC的度数;②证明:AC=AD.25.(本题满分11分)随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?26.(本题满分12分)如图1,△ABC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的是速度都为1厘米/秒.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(秒).(1)当运动时间为t秒时,BQ的长为厘米,BP的长为厘米;(用含t 的式子表示)(2)当t为何值时,△PBQ是直角三角形;(3)如图2,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.参考答案及评分标准说明:1.在阅卷过程中,如果考生还有其它正确解法,可参照评分参考酌情给分;2.填空题缺少必有的单位或答案不完整不得分;3.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;4.解答右端所注分数,表示正确做到这一步应得的累积分数.一、(本大题有16小题,共43分.1~10每小题各3分,11~16每小题各2分)二、(本大题有3个小题,共10分.17~18小题个3分;19小题有2个空,每空2分) 17.十;18.-1或7;19.16,.三、(本大题有7小题,共68分)20.解:(1)如图所示:△A1B1C1为所求作的三角形;……………………….……4分(2)如图,……………………………………………………………………..…..……7分点P的坐标为:(0,1).………………………………………………………...………8分21.解:原式=……………………………………………………….2分=……………………………………………………………………………4分=,………………………………………………………………………………………6分当a=-1时,…………………………………………………………………….…………8分原式=.……………………………………………..……………………………9分22.(1)解:△BAE≌△CAD,证明如下:……………………………………………1分∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.……………………………..……………2分∠BAE=∠DAC=90°+∠CAE,………………………………………………………...…4分在△BAE和△DAC中∴△BAE≌△CAD(SAS).………………………………………………………………6分(2)证明:∵△ABC,△DAE是等腰直角三角形,∴∠B=45°,∠BCA=45°,……………………………………………………………..…7分∵△BAE≌△CAD.∴∠DCA=∠B=45°.………………………………………………………………………8分∴∠BCD=∠BCA+∠DCA=90°,∴DC⊥BE.…………………………………………………………………………………9分23.解:(1)原式=(x2-y2)-(x+y)…………………………………………………2分=(x+y)(x-y)-(x+y)…………………………….……………………………….…3分=(x+y)(x-y-1);……………………………………………….………………………4分(2)原式=9m2-(4x2-4xy+y2)……………………………………………………….6分=(3m)2-(2x-y)2…………………………………………………………………….8分=(3m+2x-y)(3m-2x+y). ……………………………………………………….……9分24.(1)证明:∵AB=AD,∴∠ADB=∠ABD…………………………………………………….………..……………1分又∵BD平分∠ABC,即∠ABD=∠DBC,∴∠ADB =∠DBC,…………………………………………………………..……………2分∴AD∥BC;…………………………………………………………………………………3分(2)解:作DF⊥BC交BC的延长线于F.∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DF=DE=6cm;即点D到BC的距离为6cm. ……………………………………………………..……5分(3)①解:∵BD平分∠ABC,∴∠ABC=2∠ABD=70°,…………………………………………………………..….…6分∵AD∥BC,∴∠ACB=∠DAC=70°,……………………………………………………………….…7分∴∠BAC=180°-∠ABC-∠ACB=180°-70°-70°=40°.……………………………8分②证明:∵∠ABC=70°,∠ACB=70°,∴∠ABC=∠ACB,∴AB=AC,…………………………………………………………………………………9分又∵AB=AD,∴AC=AD.………………………………………………………………………………..10分25.解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意得,……………..……………………………………………………..…………1分-=8,…………………………………………..………………….……4分解得:x=96,……………..………………5分经检验,x=96是原分式方程的解,且符合题意,……………..………………………6分则2.5x=240,答:高铁列车的平均时速为240千米/小时;………………………………..…………7分(2)780÷240=3.25,则坐车共需要3.25+1=4.25(小时),……………………………………..…………..…9分从9:20到13:40,共计4小时,………………………………...…………………10分因为4小时>4.25小时,所以王先生能在开会之前到达.………………………………………………..………11分26.解:(1)t;(5-t);………………………..………………….…………..………2分(2)∵△ABC是等边三角形,∴∠B=60°.①当∠PQB=90°时,∵∠B=60°,∴∠BPQ=30°,∴PB=2BQ,得5-t=2t,解得,t=,………………………………………………………………………………4分②当∠BPQ=90°时,∵∠B=60°,∴∠BQP=30°,∴BQ=2BP,得t=2(5-t),解得,t=,………………………………………………………………...…………6分∴当t的值为或时,△PBQ为直角三角形;…………………………..………7分(3)∠CMQ不变,∠CMQ=60°理由如下:………………………………….……8分∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=60°,由题意可知:AP=BQ,在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS),…………………………………………………..………10分∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°,∴∠CMQ不会变化,总为60°.………………………..……………………………12分。

03平谷区八上期末数学答案(201801)

03平谷区八上期末数学答案(201801)

平谷区2017—2018学年度第一学期期末质量监控试卷初二数学答案及评分参考 2018.1一、选择题(本题共16分,每小题2分)二、填空(本题共16分,每小题2分)9. 1≥x ; 10. 7 ; 11.2; 13.E A ∠=∠(或D B ∠=∠,或DE ∥AB );14.2; 15.2. 到线段两端距离相等的点在线段的垂直平分线上; 两点确定一条直线;(或sss ;全等三角形对应角相等;等腰三角形的三线合一)三、解答题(本题共50分,每小题5分) 17.)22(28+-22222--= (3)2-= (5)18.解:()32721201718+-+--π312123+-+-= (4)124+= (5).19.解:原式()()31332---+=x x x x (1)()()()()333332+-+--+=x x x x x x (2)()()()3332-++-=x x x x()()3332-+--=x x x x (3)()()333-+-=x x x (4)31+=x (5)20.证明:∵AC ∥ BD∴DBE BAC ∠=∠…………………………………....……1 在△ABC 和△BDE 中⎪⎩⎪⎨⎧∠=∠=∠=∠D ABC BDAB DBE BAC ...............................................3 ∴ABC ∆≌BDE ∆)(ASA .......................................4 ∴BE AC = (5)21.计算:()()()2132525-++-解:原式132325+-+-= (4)327-= (5)22.解分式方程:14122=---x x x . 解: ()()()2212-+=-+x x x x ………………..1分22214x x x +-=- (2)解得32x =- (4)经检验:32x =-是原方程的根 (5)DAECB∴原方程的根是32x =-.23.已知:0232=-+a a ,求代数⎪⎪⎭⎫⎝⎛--+÷--252232a a a a a 的值. 解:原式()()⎥⎦⎤⎢⎣⎡----+÷--=25222232a a a a a a a …………………………………………..1 2542322---÷--=a a aa a .......................... (2)()()()33223-+-⋅--=a a a a a a … …………………………………………3 ()31+=a a (4)0232=-+a a 232=+∴a a∴原式21312=+=aa ……………………………………………………………………5 24.若311=+b a ,求b ab a b a 22+-+的值. 311=+ba ab a b 3=+∴ (2)bab a ba 22+-+abb a ba -++=)(2 ...................................... (3)abab ab-=63 (4)53= (5)25.已知:∠AOB 中,OC =OD PC ⊥OA, PD ⊥OB (2)求证:OP 平分∠AOB. 证明: PC ⊥OA ,PD ⊥OB∴∠PCO=∠PDO=90°………………………………………………………..3 在Rt △PCO 和Rt △PDO 中⎩⎨⎧==OP OP ODOC∴Rt △PCO ≌Rt △PDO(HL)……………………………………………………..4 ∴∠COP=∠POD∴OP 平分∠AOB (5)26.解:设小敏原来每分钟阅读x 个字. (1)由题意,得300291003500+=x x . ………………………3 解得 500=x . ………………………4 经检验,500=x 是原方程的解,且符合题意.答:小敏原来每分钟阅读500个字. (5)四.解答题(本题共18分,其中第26题6分,27题5分,28题7分) 27. (1)等腰直角三角形 ......................................................... 1 证明:由图可求:AB=10,AC=10,BC=52 (2)222BC AC AB =+ ABC ∆∴是直角三角形BC AB = (3)ABC ∆∴是等腰直角三角形(可以用全等也可以用勾股定理的逆定理。

2017-2018第一学期京改版八年级期末复习数学试卷一

2017-2018第一学期京改版八年级期末复习数学试卷一

………外……内…………○………绝密★启用前2017-2018第一学期京改版八年级期末复习数学试卷一温馨提示:亲爱的同学们,考试只是检查我们对知识的掌握情况,希望你不要慌张,平心静气,不要急于下结论;下笔时,把字写得规矩些,让自己和老师都看得舒服,祝你成功!1.(本题3分)在下列各数:-0.333…, 4, 5, π-, 14.3-π, 3.1415,2.10101…(相邻两个1之间有1个0),76.0123456…(小数部分由相继的自然数组成).其中是无理数的有( )A.3个B.4个C. 5个D. 6个 2.(本题3分)若2m -4与3m -1是同一个数的平方根,则这个数的值是( )A. 4或100 B. 100 C. 4 D. -3或13.(本题3分)下列叙述中:如图,五角星的顶点为A 、B 、C 、D 、E ,∠A+∠B+∠C+∠D+∠E 的度数为( )A. 90°B. 180°C. 270°D. 360° 4.(本题3分)△ABC中,AB =13cm ,AC =15cm ,高AD =12,则BC 的长……………订…………线※※内※※答※※题※※…○………为()A. 14B. 4C. 14或4D. 以上都不对5.(本题3分)在平面直角坐标系中,点P关于y轴的对称点为P1(-3,6),则点P的坐标为()A. (-3、-6)B. (3、6)C. (3、-6)D. (6、-3)6.(本题3分)已知△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是60 和38,则△ABC的腰和底边长分别为( )A.24 和12 B.16 和22 C.20 和16 D.22 和167.(本题3分)9的算术平方根是()A. 3B. −3C. 3D. ±38.(本题3分)如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD=()A. 36°B. 54°C. 18°D. 64°9.(本题3分)某气象局预报称:“明天本市的降水概率为70%”.这句话指的是()A. 明天本市70%的时间下雨,30%的时间不下雨B. 明天本市70%的地方下雨,30%的地方不下雨C. 明天本市一定下雨D. 明天本市下雨的可能性是70%10.(本题3分)实数a、b在数轴上的位置如下图所示,那么化简|a-b|结果是()A. 2a-bB. bC. -bD. -2a +b二、填空题(计32分)装…………线………_姓名:__________…………○……………○…………装12.(本题4分)已知:∣b-1∣=0,那么(a+b)2017的值为________ 13.(本题4分)Rt △ABC 中,∠B=90°,AD 平分∠BAC ,DE ⊥AC 于E ,若BC=8,DE=3,则CD 的长度是________.14.(本题4分)如图,已知△ABC 中,∠ABC=90°,以△ABC 的各边为边,在△ABC 外作三个正方形,S1,S2,S3分别表示这三个正方形的面积,若S 1=81,S 2=225,则S 3=_____.15.(本题4分)等腰三角形的一条边长为6cm ,周长为14cm ,它的底边长为_________. 16.(本题4分)已知、b 为两个连续的整数,且,则=.17.(本题4分)将 18.(本题4分)如图,已知AD 为△ABC 的中线,AB=10cm ,AC=7cm ,△ACD 的周长为19cm ,则△ABD 的周长为_____________________.三、解答题(计58分)12,0, −83.−16,0.25,-π3,0.3030030003…(相邻两个3之间0的个数逐次加1).(1)正实数集合{ … …} (2)负实数集合{…} (3)有理数集合{…} (4)无理数集合{…}.20.(本题8分)计算:(﹣3)2﹣20170×|﹣4|+(16)﹣1.21.(本题8分)如图,一架25米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端沿墙垂直下滑4米至E,那么梯子的底部在水平方向也滑动了4米吗?(3)如果梯子与地面的夹角小于30°时,梯子就会滑倒,那么在第(2)问中,梯子会滑倒吗?请说明理由.22.(本题8分)如图,在矩形ABCD中,E,F为BC上两点,且BE=CF,连接AF,DE交于点O.求证:(1)△ABF≌△DCE;(2)△AOD是等腰三角形.…○………○…………线……___班级:______……线……………………内…………○………… 23.(本题8分)如图,在直角三角形ABC 中,∠ACB=90°,CD 是AB 边上的高,AB=13cm ,BC=12cm ,AC=5cm ,求(1)△ABC 的面积;(2)CD 的长。

《试卷3份集锦》北京市2017-2018年八年级上学期数学期末学业质量监测试题

《试卷3份集锦》北京市2017-2018年八年级上学期数学期末学业质量监测试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.某中学八(1)班45名同学参加市“精准扶贫”捐款助学活动,共捐款400元,捐款情况记录表如下:表格中捐款5元和8元的人数不小心被墨水污染看不清楚.若设捐款5元的有x 名同学,捐款8元的有y 名同学,根据题意可得方程组( )A .125884x y x y +=⎧⎨+=⎩B .1258400x y x y +=⎧⎨+=⎩C .455884x y x y +=⎧⎨+=⎩D .4558400x y x y +=⎧⎨+=⎩【答案】A 【分析】设捐款5元的有x 名同学,捐款8元的有y 名同学,利用八(1)班学生人数为45得出一个方程,然后利用共捐款400元得出另外一个方程,再组成方程组即可.【详解】解:设捐款5元的有x 名同学,捐款8元的有y 名同学,根据题意可得:453323*********x y x y +=-⎧⎨⨯+++⨯=⎩,即125884x y x y +=⎧⎨+=⎩. 故选:A .【点睛】本题考查二元一次方程组的应用,关键是利用总人数和总钱数作为等量关系列方程组.2.使分式x 2x-4有意义的x 的取值范围是( ) A .x=2B .x≠2且x≠0C .x=0D .x≠2【答案】D【解析】根据分母不等于零列式求解即可.【详解】由题意得2x-4≠0,∴x≠2.故选D.【点睛】本题考查了分式有意义的条件,当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.3.下列图形中,有且只有三条对称轴的是( )A.B.C.D.【答案】A【分析】根据轴对称图形的定义逐项分析即可,一个图形的一部分,沿着一条直线对折后两部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.【详解】A.有3条对称轴;B.有1条对称轴;C.不是轴对称图形;D.不是轴对称图形.故选:A.【点睛】本题考查了轴对称图形的定义,熟练掌握轴对称图形的定义是解答本题的关键.4.如图,ABC 中,∠C=90°,AC=3,AB = 5,点D 是边BC 上一点,若沿将ACD翻折,点C刚好落在边上点E处,则BD等于()A.2 B.52C.3 D.103【答案】B【分析】根据勾股定理,求出BC的长度,设BD=x,则DC= 4-x,由折叠可知:DE= 4-x,BE=1,在Rt BDE 中,222BD=BE DE+,根据勾股定理即可求出x的值,即BD的长度.【详解】∵∠C= 90°,AC=3,AB=5∴BC= 22AB-AC,设BD=x ,则DC= 4-x ,由折叠可知:DE=DC=4-x ,AE=AC=3,∠AED= ∠C=90°,∴ BE= AB -AE = 1.在 Rt BDE 中,222BD =BE DE +,即:222x =2(4-x)+,解得:x=52, 即BD=52, 故选:B .【点睛】本题主要考查了折叠的性质、勾股定理,解题的关键在于写出直角三角形BDE 三边的关系式,即可求出答案.5.已知线段 a =2cm ,b =4cm ,则下列长度的线段中,能与 a ,b 组成三角形的是( )A .2cmB .4cmC .6cmD .8cm 【答案】B【分析】利用三角形三边关系判断即可,两边之和>第三边>两边之差.【详解】解:2a cm =,4b cm =,2cm ∴<第三边6cm <∴能与a ,b 能组成三角形的是4cm ,故选B .【点睛】考查了三角形三边关系,利用三边关系判断时,常用两个较小边的和与较大的边比较大小.两个较小边的和>较大的边,则能组成三角形,否则,不可以.6.如图,在△ABC 中,∠C=90°,AB 的垂直平分线MN 分别交AC ,AB 于点D ,E ,若∠CBD :∠DBA=2:1,则∠A 为( )A .20°B .25°C .22.5°D .30°【答案】C 【解析】试题分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AD=DB ,再根据等边对等角可得∠A=∠DBA ,然后在Rt △ABC 中,根据三角形的内角和列出方程求解即可.解:∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠DBA,∵∠CBD:∠DBA=2:1,∴在△ABC中,∠A+∠ABC=∠A+∠A+2∠A=90°,解得∠A=22.5°.故选C.考点:线段垂直平分线的性质.7.如图,AD是等边三角形ABC的中线,AE=AD,则∠EDC=()度.A.30B.20C.25D.15 【答案】D【详解】∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°,∵AD是△ABC的中线,∴∠DAC=12∠BAC=30°,AD⊥BC,∴∠ADC=90°,∵AE=AD,∴∠ADE=∠AED=1802BAC︒∠-=280013︒-︒=75°,∴∠EDC=∠ADC−∠ADE=90°−75°=15°.故选D.【点睛】此题考查了等边三角形的性质、等腰三角形的性质及三角形的内角和定理的应用.解题的关键是注意三线合一与等边对等角的性质的应用,注意数形结合思想的应用.8.下列各分式中,是最简分式的是().A.22x yx y++B.22x yx y-+C.2x xxy+D.2xyy【答案】A【分析】根据定义进行判断即可.【详解】解:A、22 x y x y ++分子、分母不含公因式,是最简分式;B、22x yx y-+=()()x y x yx y+-+=x-y,能约分,不是最简分式;C、2x xxy+=(1)x xxy+=1xy+,能约分,不是最简分式;D、2xyy=xy,能约分,不是最简分式.故选A.【点睛】本题考查分式的化简,最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.9.如图,在△ABC与△EMN中,BC MN a==,AC EM b==,∠C=∠M=54°,若∠A=66°,则下列结论正确的是( )A.EN c=B.EN=a C.∠E=60°D.∠N=66°【答案】A【分析】利用BC MN a==,AC EM b==,∠C=∠M=54°证明ABC∆与ENM∆全等,利用全等三角形的性质可得到答案.【详解】解:在ABC∆与ENM∆中,54BC NM aC MAC EM b==⎧⎪∠=∠=︒⎨⎪==⎩ABC∆≅ENM∆所以:,66,60AB EN c A E B N==∠=∠=︒∠=∠=︒所以B,C,D,都错误,A正确.故选A.【点睛】本题考查三角形全等的判定,掌握三角形全等的判定方法是关键.10.下列命题中为假命题的是( )A .无限不循环小数是无理数B .代数式 1C .若22x y a a >,则x > yD .有三个角和两条边分别相等的两个三角形一定全等【答案】D【分析】根据无理数的定义、二次根式有意义的条件、不等式的基本性质和全等三角形的判定定理逐一分析即可.【详解】解:A . 无限不循环小数是无理数,故本选项是真命题;B . 代数式 中根据二次根式有意义的条件可得1020x x -≥⎧⎨-≥⎩解得:2x ≥x 的增大而增大∴当x=21,故本选项是真命题; C . 若22x y a a>,将不等式的两边同时乘a 2,则x y >,故本选项是真命题; D . 有三个角和两条边分别相等的两个三角形不一定全等(两边必须是对应边),故本选项是假命题; 故选D .【点睛】此题考查的是真假命题的判断,掌握无理数的定义、二次根式有意义的条件、不等式的基本性质和全等三角形的判定定理是解决此题的关键.二、填空题11_________.【答案】±8=,然后根据平方根的定义求出8的平方根.【详解】解:8=,8∴的平方根为=±故答案为±【点睛】本题考查了平方根的定义:若一个数的平方等于a ,那么这个数叫a 的平方根,记作0)a .12有意义,则实数x 的取值范围是__________. 【答案】3x ≥【分析】根据二次根式有意义的条件,即可求出x的取值范围.【详解】解:∵代数式34x-有意义,∴30x-≥,∴3x≥.故答案为:3x≥.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练掌握被开方数大于或等于0.13.如图,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是-1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是_______【答案】5—1【解析】首先根据勾股定理计算出AC的长,进而得到AE的长,再根据A点表示-1,可得E点表示的数.【详解】∵AD长为2,AB长为1,∴AC=22215+=,∵A点表示-1,∴E点表示的数为:5-1,故答案为5-1.【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.14.如图,圆柱形容器中,高为1m,底面周长为4m,在容器内壁离容器底部0.4m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为______m(容器厚度忽略不计).234【分析】将容器侧面展开,建立A关于EC的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离.∵高为1m,底面周长为4m,在容器内壁离容器底部0.4m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A处,∴A′D=42=2(m),BD=1+0.6-0.4=1.2(m),∴在直角△A′DB中,2222234A'D BD2 1.2+=+=(m),234.【点睛】本题考查了平面展开-最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.15.已知:1232724839x x--⎛⎫⎛⎫•=⎪ ⎪⎝⎭⎝⎭,则x=_______________【答案】-2【分析】根据幂的乘方、负指数幂及同底数幂的运算公式即可求解.【详解】∵123 2724 839x x--⎛⎫⎛⎫•= ⎪ ⎪⎝⎭⎝⎭∴33232 322 233x x--⎛⎫⎛⎫⎛⎫•=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故33232 222 333x x--⎛⎫⎛⎫⎛⎫•=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴3-3x+2x-3=2,解得x=-2,故填:-2.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式及运用.16.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .【答案】5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5. 17.已知:如图,45AOB ∠=︒,点P 为AOB ∠内部一点,点P 关于OA OB ,的对称点12P P ,的连线交OA OB ,于M N ,两点,连接PM PN ,,若2OP =,则PMN ∆的周长=__________.【答案】2【分析】连接OP 1,OP 2,利用对称的性质得出OP= OP 1= OP 2=2,再证明△OP 1 P 2是等腰直角三角形,则△PMN 的周长转化成P 1 P 2的长即可.【详解】解:如图,连接OP 1,OP 2,∵OP=2,根据轴对称的性质可得:OP= OP 1= OP 2=2,PN= P 2N ,PM= P 1M , ∠BOP=∠BOP 2,∠AOP=∠AOP 1,∵∠AOB=45°,∴∠P 1O P 2=90°,即△OP 1 P 2是等腰直角三角形,∵PN= P 2N ,PM= P 1M ,∴△PMN 的周长= P 1M+ P 2N+MN= P 1 P 2,∵P 1 P 22OP 1=22故答案为:2.【点睛】本题考查轴对称的性质、等腰直角三角形的判定和性质等知识,解题的关键是灵活运用对称的性质将三角形周长转化成线段的长度.三、解答题18.某高速公路有300km的路段需要维修,拟安排甲、乙两个工程队合作完成,规定工期不得超过一个月(30天) ,已知甲队每天维修公路的长度是乙队每天维修公路长度的2倍,并且在各自独立完成长度为48km公路的维修时,甲队比乙队少用6天(1)求甲乙两工程队每天能完成维修公路的长度分别是多少km(2)若甲队的工程费用为每天2万元,乙队每天的工程费用为1.2万元,15 天后乙队另有任务,余下工程由甲队完成,请你判断能否在规定的工期完成且总费用不超过80万元【答案】(1)甲、乙工程队每天能完成维修公路的长度分别是8km和4km;(2)能在规定工期完成且总费用不超过80万,见解析【分析】(1) 设乙工程队每天能完成维修公路的长度是x km,根据题意找到等量关系列出分式方程即可求解;(2)根据题意求出工程完成需要的天数,再求出总费用即可求解.【详解】解:(1) 设乙工程队每天能完成维修公路的长度是x km.依题意得484862x x-=解得:4x=经检验:4x=是原方程的解.则甲工程队每天能完成维修公路的长度是248⨯=(km).答:甲、乙工程队每天能完成维修公路的长度分别是8km和4km.(2) 15(48)180km⨯+=,300180120km-=,120815÷=天,所以能在规定工期内完成;15(2 1.2)48⨯+=万,15230⨯=万,483078+=<80,所以能在规定工期完成且总费用不超过80万.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系列方程求解.19.如图,在四边形ABCD 中,AB DC =,点E 是AB 边上一点,,180CE AB A ADC =∠+∠=︒,DF BC ⊥,垂足为点F ,交CE 于点G ,连接,DE EF .(1)四边形ABCD 是平行四边形吗?说明理由;(2)求证:1902AED DCE ∠=︒-∠; (3)若点E 是AB 边的中点,求证:2DEF EFB ∠=∠.【答案】(1)四边形ABCD 是平行四边形,理由见解析;(2)见解析;(3)见解析【分析】(1)由180A ADC ∠+∠=︒可得AB ∥DC ,再由AB=DC 即可判定四边形ABCD 为平行四边形; (2)由AB ∥DC 可得∠AED=∠CDE ,然后根据CE=AB=DC 可得∠CDE=∠CED ,再利用三角形内角和定理即可推出∠AED 与∠DCE 的关系;(3)延长DA ,FE 交于点M ,由“AAS”可证△AEM ≌△BEF ,可得ME=EF ,由直角三角形的性质可得DE=EF=ME ,由等腰三角形的性质和外角性质可得结论.【详解】(1)四边形ABCD 是平行四边形,理由如下:∵180A ADC ∠+∠=︒∴AB ∥DC又∵AB=DC∴四边形ABCD 是平行四边形.(2)∵AB ∥DC∴∠AED=∠CDE又∵AB=DC ,CE=AB∴DC=CE∴∠CDE=∠CED∴在△CDE 中,2∠CDE+∠DCE=180°∴∠CDE=90°-12∠DCE ∴1902AED DCE ∠=︒-∠ (3)如图,延长DA ,FE 交于点M ,∵四边形ABCD 为平行四边形∴DM ∥BC ,DF ⊥BC∴∠M=∠EFB ,DF ⊥DM∵E 为AB 的中点∴AE=BE在△AEM 和△BEF 中,∵∠M=∠EFB ,∠AEM=∠BEF ,AE=BE∴△AEM ≌△BEF (AAS )∴ME=EF∴在Rt △DMF 中,DE 为斜边MF 上的中线∴DE=ME=EF∴∠M=∠MDE ,∴∠DEF=∠M+∠MDE=2∠M=2∠EFB .【点睛】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,等腰三角形和直角三角形的性质,熟练掌握平行四边形的判定定理,利用“中线倍长法”构造全等三角形是解题的关键.20.(1)如图,已知ABC ∆的顶点在正方形方格点上每个小正方形的边长为1.写出ABC ∆各顶点的坐标(2)画出ABC ∆关于y 轴的对称图形111A B C ∆【答案】(1)A (-2,2),B (-3,-1),C (-1,1);(2)见解析【分析】(1)利用坐标可得A 、B 、C 三点坐标;(2)首先确定A 、B 、C 三点关于y 轴的对称点,然后再连接即可.【详解】解:(1)由图可知:A (-2,2),B (-3,-1),C (-1,1);(2)如图,△A 1B 1C 1即为所画图形.【点睛】此题主要考查了作图—轴对称变换,关键是正确确定组成图形的关键点关于y 轴的对称点位置. 21.已知ABC ∆在平面直角坐标系中的位置如图所示.(1)画出ABC ∆关于y 轴对称的11AB C ∆;(2)每个小方格都是边长为1个单位的正方形,求多边形11ABCC B 的面积.【答案】(1)见解析(2)13【分析】(1)依次找到各顶点关于y 轴的对称点,再顺次连接即可;(2)根据割补法即可求解.【详解】(1)如图,11AB C ∆为所求;(2)多边形11ABCC B 的面积=6×4-2×12×3×3-2×12×2×1=24-9-2=13【点睛】此题主要考查坐标与图形,解题的关键是熟知关于y 轴的坐标特点.22.如图,一块四边形的土地,其中90BAD ∠=,4AB cm =,12BC cm =,13CD cm =,3AD cm =,求这块土地的面积.【答案】36cm 2【分析】根据勾股定理逆定理证BD ⊥BC ,再根据四边形ABCD 的面积=△ABD 的面积+△BCD 的面积.【详解】解:∵AD=3cm ,AB=4cm ,∠BAD=90°,∴BD=5cm.又∵BC=12cm ,CD=13cm ,∴BD 2+BC 2=CD 2.∴BD ⊥BC.∴四边形ABCD 的面积=△ABD 的面积+△BCD 的面积=113451222⨯⨯+⨯⨯=6+30=36(cm 2). 故这块土地的面积是36m 2.【点睛】考核知识点:勾股定理逆定理应用.推出直角三角形,再求三角形面积是关键.23.2018中国重庆开州汉丰湖国际摩托艇公开赛第二年举办.邻近区县一旅行社去年组团观看比赛,全团共花费9600元.今年赛事宣传工作得力,该旅行社继续组团前来观看比赛,人数比去年增加了50%,总费用增加了3900元,人均费用反而下降了20元.(1)求该旅行社今年有多少人前来观看赛事?(2)今年该旅行社本次费用中,其它费用不低于交通费的2倍,求人均交通费最多为多少元?【答案】(1)该旅行社今年的有45人前来观看赛事;(2)故人均交通费最多为100元.【分析】(1)设该旅行社去年有x 人前来观看赛事,根据“人数比去年增加了50%,总费用增加了3900元,人均费用反而下降了20元”列方程,求解即可;(2)设今年该旅行社本次费用中,人均交通费为x 元,根据“其它费用不低于交通费的2倍”,列不等式求解即可.【详解】(1)设该旅行社去年有x 人前来观看赛事,根据题意,得: 96009600390020(150%)x x+-=+ 解得:30x =.经检验:30x =是原方程的解.所以,原方程的解为30x =,故:()150%45x +=.答:该旅行社今年的有45人前来观看赛事;(2)设今年该旅行社本次费用中,人均交通费为x 元,由题意得:9600390045245x x +-≥⨯解得:100x ≤.故人均交通费最多为100元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用.找准相等关系或不等关系是解答本题的关键. 24.2019年5月20日是第30个中国学生营养日.某营养餐公司为学生提供的300克早餐食品中,蛋白质总含量为8%,包括一份牛奶,一份谷物食品和一个鸡蛋(一个鸡蛋的质量约为60g ,蛋白质含量占15%;谷物食品和牛奶的部分营养成分下表所示).(1)设该份早餐中谷物食品为x 克,牛奶为y 克,请写出谷物食品中所含的蛋白质为 克,牛奶中所含的蛋白质为 克.(用含有x ,y 的式子表示)(2)求出x ,y 的值.(3)该公司为学校提供的午餐有A ,B 两种套餐(每天只提供一种):为了膳食平衡,建议合理控制学生的主食摄入量.如果在一周里,学生午餐主食摄入总量不超过830克,那么该校在一周里可以选择A ,B 套餐各几天?写出所有的方案.(说明:一周按5天计算)【答案】(1)9%,3%x y ;(2)130,110x y ==;(3)见解析【分析】(1)根据统计表列出算式即可求解;(2)根据等量关系:蛋白质总含量为8%;300克早餐食品;列出方程组求解即可;(3)设该学校一周里共有a 天选择A 套餐,则有(5-a )天选择B 套餐,根据学生午餐主食摄入总量不超过830克列出不等式求解即可.【详解】(1)谷物食品中所含的蛋白质为9%x 克,牛奶中所含的蛋白质为 3%y 克;故答案为:9%x ,3%y ;(2)依题意,列方程组为9%3%6015%3008%60300x y x y ++⨯=⨯⎧⎨++=⎩, 解得 130110x y =⎧⎨=⎩; (3)设该学校一周里共有a 天选择A 套餐,则有(5a -)天选择B 套餐,依题意,得:150a +180(5-a)≤830,解得 7a ≥.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系和不等关系.25.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=+.请根据阅读材料解决下列问题: (1)填空:分解因式244a a -+=_____;(2)若2|1|690a b b ++-+=,求+a b 的值;(3)若a 、b 、c 分别是ABC ∆的三边,且222426240a b c ab b c ++---+=,试判断ABC ∆的形状,并说明理由.【答案】(1)()22a -;(2)2;(3)等边三角形.【分析】(1)根据完全平方公式即可因式分解;(2)根据非负性即可求解;(3)把原式化成几个平方和的形式,根据非负性即可求解.【详解】(1)244a a -+=()22a -.故答案为:()22a -;(2)21690a b b ++-+=()2∴++-=a b130∴+=-=a b10,30∴=-=a b1,3∴+=-+=a b132(3)∵a2+4b2+c2﹣2ab﹣6b﹣2c+4=0,∴(a2-2ab+b2)+(c2﹣2c+1)+(3b2﹣6b+3)=0即(a2-2ab+b2)+(c2﹣2c+1)+3(b2﹣2b+1)=0,∴(a-b)2+(c-1)2+3(b-1)2=0,∴a-b=0,c-1=0,b-1=0,∴a=b,c=1,b=1,∴a=b=c∵a、b、c分别是△ABC的三边,∴△ABC是等边三角形.【点睛】此题主要考查完全平方公式的应用,解题的关键是熟知完全平方公式的特点与非负性的应用.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.内角和等于外角和的2倍的多边形是()A.三角形B.四边形C.五边形D.六边形【答案】D【分析】设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180°(n-2)=360°×2,再解方程即可.【详解】解:设多边形有n条边,由题意得:180°(n-2)=360°×2,解得:n=6,故选:D.【点睛】此题主要考查了多边形的内角和和外角和,关键是掌握内角和为180°(n-2).2.下列命题是假命题的是().A.同旁内角互补,两直线平行B.线段垂直平分线上的点到线段两个端点的距离相等C.相等的角是对顶角D.角是轴对称图形【答案】C【分析】根据平行线、垂直平分线、对顶角、轴对称图形的性质,逐个分析,即可得到答案.【详解】同旁内角互补,则两直线平行,故A正确;线段垂直平分线上的点到线段两个端点的距离相等,故B正确;由对顶角可得是相等的角;相等的角无法证明是对等角,故C错误;角是关于角的角平分线对称的图形,是轴对称图形,故D正确故选:C.【点睛】本题考查了平行线、垂直平分线、对顶角、轴对称图形、角平分线、命题的知识;解题的关键是熟练掌握平行线、垂直平分线、对顶角、轴对称图形、角平分线的性质,从而完成求解.3.下列边长相等的正多边形能完成镶嵌的是()A.2个正八边形和1个正三角形B.3个正方形和2个正三角形C.1个正五边形和1个正十边形D.2个正六边形和2个正三角形【答案】D【分析】只需要明确几个几何图形在一点进行平铺就是几个图形与这一点相邻的所有内角之和等于360°即可。

北师大版2017-2018学年度上学期期末考试八年级数学试卷(含答案)(K12教育文档)

北师大版2017-2018学年度上学期期末考试八年级数学试卷(含答案)(K12教育文档)

北师大版2017-2018学年度上学期期末考试八年级数学试卷(含答案)(word 版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版2017-2018学年度上学期期末考试八年级数学试卷(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北师大版2017-2018学年度上学期期末考试八年级数学试卷(含答案)(word版可编辑修改)的全部内容。

FB CE第9题图北师大版2017-2018学年度上学期期末考试八年级数学试一、选择题(每小题3分,共30分) 1.下列图形中轴对称图形是( )A B C D2,。

已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有( )A 。

6个 B.5个 C.4个 D 。

3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A 。

15或16B 。

16或17C 。

15或17 D.15。

16或174。

如图,△ACB ≌△A ’CB',∠BCB ’=30°,则∠ACA'的度数为( )A。

20° B.30° C.35° D.40°5, 等腰三角形的两边长分别为5cm 和 10cm,则此三角形的周长是( )A.15cmB. 20cmC. 25cm D 。

20cm 或25cm6。

如图,已知∠CAB =∠DAB,则添加下列一个条件不能使△ABC ≌△ABD 的是( ) A.AC =AD B.BC =BD C 。

∠C =∠D D.∠ABC =∠ABD7。

北京市平谷区八年级(上)期末数学试卷

北京市平谷区八年级(上)期末数学试卷
【解析】
第 9 页,共 15 页
解:若分式 的值为 0,则 x-1=0,且 x+1≠0,
故选:D. 按最简二次根式的定义,逐个选择支判断即可. 本题考查了最简二次根式的定义.最简二次根式需符合两条:(一)被开方数不 含分母,(二)被开方数中不含能开得尽方的因数或因式. 7.【答案】B
【解析】
解:∵等腰三角形的一个角 100°, ∴100°的角是顶角,
∴另两个底角都是 (180°-100°)=40°,
8. 下列实数中,在 2 和 3 之间的是( )
A. π
B. 15
C. 7
D. π+1
9. 下列命题的逆命题是真命题的是( )
A. 如果两个角是直角,那么它们相等
B. 全等三角形的对应角相等
C. 两直线平行,内错角相等
D. 对顶角相等
10. 如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均
第 5 页,共 15 页
第 6 页,共 15 页
答案和解析
1.【答案】A
【解析】
解:A、是轴对称图形,故此选项正确;
B、不是轴对称图形,故此选项错误;
C、不是轴对称图形,故此选项错误;
D、不是轴对称图形,故此选项错误;
故选:A.
如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫
做轴对称图形,据此进行分析即可.
第 7 页,共 15 页
此题考查了概率公式,如果一个事件有 n 种可能,而且这些事件的可能性相
同,其中事件 A 出现 m 种结果,那么事件 A 的概率 P(A)= .
6.【答案】D
【解析】
解:因为 =2 ,
=3 ,故 A、C 不是最简二次根式;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平谷区2017—2018学年度第一学期期末初二数学试题 2018.1一、选择题(本题共16分,每小题2分) 1.9的算术平方根( )A .-3B .3C .3±D .81 2.下列图形中,不是..轴对称图形的是 ( )3.用直角三角板,作△ABC 的高,下列作法正确的是( )4.下列各式中,正确的是 ( )A .326x x x = B .n m n x m x =++ C .1112-=+-x x x D .1-=-+y x y x5.如图,△ABC 中,AB =AC ,BE 平分∠ABC ,CD 平分∠ACB ,则下图中共有几对全等三角形( )A .2 B.3 C .4 D .56.是同类二次根式的是( )A C 7.一个不透明的盒子中装有3个白球,5个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是( )A .85B .13C .15D .838.如图,在Rt △ABC 中,∠C =90︒,点D 为AB 边中点,DE ⊥AB ,并与AC 边交于点E . 如果∠A=15︒,BC =1,那么AC 等于( ).A. 2B. 31+C. 32+D.3二、填空题(本题共16分,每小题题2分)9.若1-x 有意义,则x 的取值范围是___________.10.等腰三角形的两边长为3,7,则其腰长为_____________.11.如图,用两个边长分别为1的小正方形,拼成一个大正方形,则该大正方形的边长为________.1213.如图,线段AE ,BD 交于点C ,AB =DE ,请你添加一个条件____________,使得△ABC ≌△DEC .14.若分式12+-x x 值为0,则x 的值是________.15.如图,△A 1OM 是腰长为1的等腰直角三角形,以A 1M 为一边,作A 1A 2⊥A 1M ,且A 1A 2=1,连接A 2M ,再以A 2M 为一边,作A 2A 3⊥A 2M ,且A 2A 3=1,则A 1M =_________,照此规律操作下去.. .则A nM =___________.16.阅读下面材料:数学活动课上,老师出了一道作图问题:“如图,已知直线l 和直线l 外一点P ,用直尺和圆规作直线PQ ,使PQ ⊥l 于点Q .”小艾的做法如下:(1)在直线l 上任取点A ,以A 为圆心,AP 长为半径画弧. (2)在直线l 上任取点B ,以B 为圆心,BP 长为半径画弧. (3)两弧分别交于点P 和点M(4)连接PM ,与直线l 交于点Q ,直线PQ 即为所求. 老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是____________________________________________________________.三、解答题(共10个题,共50分,每小题5分) 17.计算:)(2228+-18.计算:()32721201718+-+--π.19.计算:xx x -+-3192220.已知:如图,B ,A ,E 在同一直线上, AC ∥ BD ,AB BD =,ABC D ∠=∠.求证:AC =BE .DAECB21.计算:()()()2132525-++-.22.解分式方程:14122=---x x x .23.已知:0232=-+a a ,求代数⎪⎪⎭⎫⎝⎛--+÷--252232a a a a a 的值. 24.若311=+b a ,求bab a ba 22+-+的值.25.随着几何部分的学习,小鹏对几何产生了浓厚的兴趣,他最喜欢利用手中的工具画图了.如图,作一个∠AOB,以O为圆心任意长为半径画弧分别交OA,OB于点C和点D,将一副三角板如图所示摆放,两个直角三角板的直角顶点分别落在点C和点D,直角边中分别有一边与角的两边重合,另两条直角边相交于点P,连接OP.小鹏通过观察和推理,得出结论:OP平分∠AOB.你同意小鹏的观点吗?如果你同意小鹏的观点,试结合题意写出已知和求证,并证明。

已知:∠AOB中,___=___,___⊥___,___⊥___.求证:OP平分∠AOB.26.列方程解应用题:为了提升阅读速度,某中学开设了“高效阅读”课.小敏经过一段时间的训练,发现自己现在每分钟阅读的字数比原来的2倍还多300字,现在读9100字的文章与原来读3500字的文章所用的时间相同.求小敏原来每分钟阅读的字数.四、解答题(本题共18分,其中第27题6分,28题5分,29题7分)27.边长为1的小正方形网格中,点A,B,C均落在格点上.(1)猜想△ABC的形状____________,并证明;(2)直接写出△ABC的面积=______;(3)画出△ABC关于直线l的轴对称图形△A1B1C128.对于实数a ,我们规定:用符号[]a 表示不大于a 的最大整数,称[]a 为a 的根整数,例如:[]39=,[]310=.(1)仿照以上方法计算:[]=4_______;[]=26________.(2)若[]1=x ,写出满足题意的x 的整数值______________.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次 [][]13310=→=,这时候结果为1.(3)对100连续求根整数,______次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是________.29.在△ABC 中,AB =AC , 以BC 为边作等边△BDC ,连接AD . (1)如图1,直接写出 ∠ADB 的度数_____________;(2)如图2,作∠ABM =60 °在BM 上截取BE ,使BE =BA ,连接C E ,判断C E 与AD 的数量关系,请补全图形,并加以证明;(3)在(2)的条件下,连接DE ,AE 。

若∠ DEC =60°,DE =2,求AE 的长.平谷区2017—2018学年度第一学期期末质量监控试卷初二数学答案及评分参考 2018.1二、填空(本题共16分,每小题2分)9. 1≥x ; 10. 7 ; 11.2; 12 13.E A ∠=∠(或D B ∠=∠,或DE ∥AB );14.2;15.2;1+n 16. 到线段两端距离相等的点在线段的垂直平分线上; 两点确定一条直线;(或sss ;全等三角形对应角相等;等腰三角形的三线合一) 三、解答题(本题共50分,每小题5分) 17.)22(28+-22222--= (3)2-= (5)18.解:()32721201718+-+--π312123+-+-= (4)124+= (5).19.解:原式()()31332---+=x x x x (1)()()()()333332+-+--+=x x x x x x …………………………………2 ()()()3332-++-=x x x x ()()3332-+--=x x x x (3)()()333-+-=x x x ………………………………………………………4 31+=x (5)20.证明:∵AC ∥ BD∴DBE BAC ∠=∠…………………………………....……1 在△ABC 和△BDE 中⎪⎩⎪⎨⎧∠=∠=∠=∠D ABC BDAB DBE BAC ...............................................3 ∴ABC ∆≌BDE ∆)(ASA .......................................4 ∴BE AC = (5)DAECB21.计算:()()()2132525-++-解:原式132325+-+-= (4)327-= (5)22.解分式方程:14122=---x x x . 解: ()()()2212-+=-+x x x x ………………..1分22214x x x +-=- (2)解得32x =- (4)经检验:32x =-是原方程的根 (5)∴原方程的根是32x =-.23.已知:0232=-+a a ,求代数⎪⎪⎭⎫⎝⎛--+÷--252232a a a a a 的值. 解:原式()()⎥⎦⎤⎢⎣⎡----+÷--=25222232a a a a a a a …………………………………………..1 2542322---÷--=a a aa a .......................... (2)()()()33223-+-⋅--=a a a a a a … …………………………………………3 ()31+=a a (4)0232=-+a a232=+∴a a∴原式21312=+=aa (5)24.若311=+b a ,求b ab a ba 22+-+的值. 311=+ba ab a b 3=+∴ (2)bab a ba 22+-+abb a b a -++=)(2 ...................................... (3)abab ab-=63 (4)53= (5)25.已知:∠AOB 中,OC =OD PC ⊥OA, PD ⊥OB (2)求证:OP 平分∠AOB.证明: PC ⊥OA ,PD ⊥OB∴∠PCO=∠PDO=90°………………………………………………………..3 在Rt △PCO 和Rt △PDO 中⎩⎨⎧==OPOP ODOC∴Rt △PCO ≌Rt △PDO(HL)……………………………………………………..4 ∴∠COP=∠POD∴OP 平分∠AOB (5)26.解:设小敏原来每分钟阅读x 个字. (1)由题意,得300291003500+=x x . ………………………3 解得 500=x . ………………………4 经检验,500=x 是原方程的解,且符合题意.答:小敏原来每分钟阅读500个字. (5)四.解答题(本题共18分,其中第26题6分,27题5分,28题7分) 27. (1)等腰直角三角形 (1)证明:由图可求:AB=10,AC=10,BC=52 (2)222BC AC AB =+ ABC ∆∴是直角三角形BC AB = ……………… 3 ABC ∆∴是等腰直角三角形(可以用全等也可以用勾股定理的逆定理。

如果用全等,证出全等即给到2分)(如果学生只猜出它是等腰三角形或直角三角形之一且证明正确酌情给1分)(2) 5 ……………………………… 4分(3) 画图 ………………………… 6分 28.(1)2, 5 (2)(2)1,2,3 (3)(3) 3·············································································································· 4 (4)255 (5)29.解:解:(1)150° (1)(2)CE=AD (补全图形,写出结证明:∵∠ABE=∠DBC=60°∴∠ABE-∠DBM=∠DBC-∠DBM∴∠1=∠2 (3)∵AB=BE,BD=DC∴△ABD≌△EBC∴CE=AD (4)(3)解:∵△ABD≌△BCE∴∠BCE=∠3=150°∵∠DCE=90°,∠DEC=60°∴∠CDE=30°∵DE=2∴CE=1,DC=BC=3 (5)∵∠BDE=60°+30°=90°DE=2,BD=3由勾股BE=7…………………………………6∵∠ABE=60°AB=BE∴△ABE是等边三角形∴AE= BE=7 (7)。

相关文档
最新文档