风力发电并网对电网的影响概述

合集下载

风电场并网对电网的影响有哪些

风电场并网对电网的影响有哪些

风电场并网对电网的影响有哪些在当今能源转型的大背景下,风力发电作为一种清洁、可再生的能源形式,得到了快速发展。

风电场的规模不断扩大,其与电网的并网运行也成为了电力系统中的一个重要环节。

然而,风电场的并网并非一帆风顺,它给电网带来了一系列的影响,需要我们深入了解和研究。

风电场的输出功率具有间歇性和波动性。

这是由于风能的随机性和不确定性所决定的。

风速的变化会直接导致风电机组输出功率的波动,而且这种波动在短时间内可能会相当剧烈。

当大量的风电机组并网时,这种功率波动会在电网中叠加和传播,给电网的频率稳定带来挑战。

电网频率是衡量电力系统运行稳定性的重要指标,如果频率偏差过大,可能会导致电网中的设备故障,甚至引发停电事故。

风电场的无功功率特性也对电网产生重要影响。

风电机组在运行过程中需要从电网吸收或向电网注入无功功率,以维持自身的电压稳定。

然而,不同类型的风电机组在无功功率的控制和调节能力上存在差异。

一些早期的风电机组可能无法有效地进行无功调节,这就可能导致电网局部电压的波动和偏差。

电压的不稳定不仅会影响电力设备的正常运行,还可能降低电能质量,给用户带来不良影响。

风电场的接入还会改变电网的潮流分布。

传统电网的潮流分布是基于固定的电源和负荷分布计算的。

但风电场的接入位置和出力大小是不确定的,这就使得电网中的潮流不再是固定不变的。

新的潮流分布可能会导致某些线路过载,而另一些线路则轻载,从而影响电网的输电效率和经济性。

为了应对这种变化,电网需要加强规划和改造,增加输电线路的容量或者调整电网的结构。

另外,风电场的故障穿越能力也关系到电网的安全稳定运行。

当电网发生故障时,风电机组需要具备一定的故障穿越能力,即在短时间内保持不脱网,并向电网提供一定的无功支持,以帮助电网恢复正常运行。

如果风电机组的故障穿越能力不足,大量风电机组在故障时脱网,将进一步加剧电网的故障程度,甚至可能引发连锁故障,导致大面积停电。

风电场的并网还对电网的电能质量产生影响。

浅析风电并网对电网影响

浅析风电并网对电网影响

浅析风电并网对电网影响风电并网是指将风能转换成电能后,通过电网输送到用户端使用的过程。

风电并网的发展对电网运行和电力系统产生了诸多影响,本文将对其影响进行浅析。

首先,风电并网对电网结构和运行方式产生了影响。

传统的电力系统主要由大型火电、水电等发电厂构成,而风电发电机组通常较小,数量众多。

因此,在风电并网后,电网结构发生了变化,由传统的中心集中式电源向分布式电源转变,相应地也改变了电网的运行方式。

风电的并网使得电网的安全性和可靠性进一步增强,可以更好地应对单个电厂发生故障的情况。

其次,风电并网对电网供电能力和负荷均衡产生了影响。

风电的发电能力与风速相关,受自然因素的限制,风电的发电能力存在不稳定性和不可预测性。

这使得电网供电能力变得更为复杂,需要进行合理规划和管理。

同时,风电的并网也会对电网的负荷均衡产生影响。

风电的不稳定性和波动性使得电网容易出现频繁的负荷波动,需要通过电网调度来保持负荷均衡,提高电网的稳定性。

第三,风电并网对电网电压和频率稳定性产生了影响。

风电并网后,由于其产生的风能转换为电能的过程中存在一定的变频和变压,可能导致电网的电压和频率波动。

这对电网的电压和频率稳定性造成了一定的影响。

因此,需要在电网中引入相应的控制策略,如有功功率控制、无功功率控制等,来保持电网的电压和频率稳定。

最后,风电并网对电网的电力质量产生了影响。

由于风电的输出功率具有波动性和不稳定性,其并网可能导致电网的电压波动和谐波问题。

这对电网的电力质量造成一定的影响,可能引起电器设备的损坏或故障。

因此,需要采取相应的措施和技术手段来改善电网的电力质量,如采用STATCOM(静止补偿装置)等有源功率过滤技术来控制电压和谐波。

总的来说,风电并网对电网的影响是多方面的,涉及到电网结构、运行方式、供电能力、负荷均衡、电压稳定性、频率稳定性和电力质量等方面。

为了更好地适应风电并网的影响,需要加强对电网的规划和管理,引入相应的技术手段和控制策略,以提高电网的可靠性、稳定性和经济性。

风电机组并网对电网稳定性的影响研究

风电机组并网对电网稳定性的影响研究

风电机组并网对电网稳定性的影响研究随着清洁能源的应用不断推广和普及,风电场的规模越来越大,风电机组并网对电网稳定性的研究也成为人们关注的焦点。

目前,风力发电已经成为国内外清洁能源发电领域的重要组成部分,具有环保、可再生、资源丰富等特点,但同时也存在一定的问题,如与电网的接口问题、电压和频率调节问题等。

本文将从风电机组并网对电网稳定性的影响角度,探讨这些问题及对策。

风电机组并网后,将会对电网的频率稳定性产生一定的影响,这是因为风力发电具有不可控的随机性,容易影响电网的频率。

在风电机组并网过程中,要协调风力发电与电网的负荷之间的关系,合理地调控风电机组的出力,以保持电网的稳定运行。

因此,对于风电机组并网的电站来说,首先需要对电网的频率稳定性进行认真分析,从而采取恰当的措施来维护电网的稳定性。

风电机组和电网在并网过程中,容易造成电压波动和电压失控等问题。

这是由于风电机组的出力不稳定,会对电网的电压产生影响,导致电压波动频繁发生。

因此,为了保证电网的电压稳定性,风电机组并网时需要通过检测电压的变化,并及时调整风电机组的出力,以使电网处于良好的电压稳定状态。

短路电流是指在电网故障的情况下,电流通过短路路径流经电压源之间的最大值。

风电机组并网后,由于其直接并入电网,会对电网的短路电流产生影响。

在风电机组并网时,需要进行充足的短路电流计算,以确定风电机组的并网能力,同时采取相应的措施来保证电网的短路电流及安全运行。

为了保证风电机组并网后不对电网造成不良影响,需要采取以下措施:1、严格执行风电机组与电网相互作用的标准和规范,监测和维护机组的技术参数,确保风电机组能够安全地并入电网。

2、采取适当的优化控制算法,协调风电机组输出功率与电网负荷需求之间的关系,实现稳定的电力输出,保持电网的稳定运行。

3、对于新建的风电场,应对其电源电缆、配电设备及通信系统进行规划和设计,保证电能的可靠供应、运行的安全性和监测系统的有效性。

浅谈风力发电并网对电网系统的影响

浅谈风力发电并网对电网系统的影响

浅谈风力发电并网对电网系统的影响风力发电是一种绿色能源,能够有效改善我国的能源结构,同时有助于我国环保经济的发展,风电将成为未来电力发展的一个重要趋势,然而在风力发电过程中还有着众多需要解决的问题。

本篇文章将从风力发电对电力系统产生的相关影响入手,对风电网并入电网产生的相关技术问题进行阐述,同时提出了相关的解决途径。

标签:风力发电,电能质量,稳定性,解决方案随着社会和经济的快速发展,环境问题,资源问题成为人们不得不面对的问题。

风力发电能够有效满足环保以及节能的客观要求,因而得到了广泛的推广与使用。

与其他相应可再生能源发电形式之中,风电有着相应的技术优势和成本优势,是一种最具有规模化商业开发前景的新能源发电模式。

然而在风能发电产业的发展过程中,也暴露出大量的问题,特别是“并网难”问题,已经严重制约着新能源的大力推广。

1 我国风力发电及并网发展情况至今,我国并网风电建设已经有20多年的历史。

风力电网的建设在的发展初期较为缓慢,项目规模也较小,相应的装机容量也较小,一些主要的生产设备都需要进口,建设成本较高,市场竞争力也较弱。

近年来,随着我国风电技术的进步,同时加之有国家相关产业政策的扶持,风电在我国得到了快速发展。

然而,与此同时,我国的大多数风电基地都么有建设完备的并网输出工程,面临着“车多路少”的尴尬。

近些年来,我国风电装机容量高速增长,同时风电并网容量也保持者较快的增长速度,然而相应的建设速度已经远远超出了风力电网进行规划和建设的速度,致使国内并网容量远远落后于风电装机容量。

2 风力发电及其并网运行具有的相关特点2.1 风力发电的运行原理总结起来,风力发电其实是一个能量转换的过程。

具体能量转换过程为:风能→机械能→电能。

当风速小于Vcut-in时,则产生的功率为零;当风速大于Vcut-in时,功率随着风速增大而增加;而当风速达到Vr时,功率达到最大,而且在一定范围内保持恒定状态。

而当风速大于Vcut-out时,风机将处于停机状态。

风电并网对电网影响

风电并网对电网影响

风电并网对电网影响1.1电压闪变风力发电机组大多采用软并网方式,但是在启动时仍然会产生较大的冲击电流。

当风速超过切出风速时,风机会从额定出力状态自动退出运行。

如果整个风电场所有风机几乎同时动作,这种冲击对配电网的影响十分明显。

不但如此,风速的变化和风机的塔影效应都会导致风机出力的波动,而其波动正好处在能够产生电压闪变的频率范围之内(低于25Hz),因此,风机在正常运行时也会给电网带来闪变问题,影响电能质量。

已有的研究成果表明,闪变对并网点的短路电流水平和电网的阻抗比(也有说是阻抗角)十分敏感。

1.2谐波污染风电给系统带来谐波的途径主要有两种:一种是风力发电机本身配备的电力电子装置,可能带来谐波问题。

对于直接和电网相连的恒速风力发电机,软启动阶段要通过电力电子装置与对我的相连,因此会产生一定的谐波,不过因为过程很短,发生的次数也不多,通常可以忽略。

但是对于变速风力发电机则不然,因为变速风力发电机通过整流和逆变装置接入系统,如果电力电子装置的切换频率恰好在产生谐波的范围内,则会产生很严重的谐波问题,不过随着电力电子器件的不断改进,这一问题也在逐步得到解决。

另一种是风力发电机的并联补偿电容器可能和线路电抗发生谐振,在实际运行中,曾经观测到在风电场出口变压器的低压侧产生大量谐波的现象。

与电压闪变问题相比,风电并网带来的谐波问题不是很严重。

1.3电压稳定性大型风电场及其周围地区,常常会有电压波动大的情况。

主要是因为以下三种情况。

风力发电机组启动时仍然会产生较大的冲击电流。

单台风力发电机组并网对电网电压的冲击相对较小,但并网过程至少持续一段时间后(约为几十秒)才基本消失,多台风力发电机组同时直接并网会造成电网电压骤降。

因此多台风力发电机组的并网需分组进行,且要有一定的间隔时间。

当风速超过切出风速或发生故障时,风力发电机会从额定出力状态自动退出并网状态,风力发电机组的脱网会产生电网电压的突降,而机端较多的电容补偿由于抬高了脱网前风电场的运行电压,从而引起了更大的电网电压的下降。

浅谈风力并网对电力系统的影响

浅谈风力并网对电力系统的影响

浅谈风力并网对电力系统的影响摘要:近年来,随着人们环保意识的增强,绿色新能源如雨后春笋蓬勃发展,风电作为一种可永久续用的清洁能源也随之发展起来,越来越多的风电场接入电网。

但是因为风度的不可控性和难预测性,大规模的风电接入给电力系统正常运行带来巨大压力和诸多问题。

因此,本文探询研究了风电并网对电网的影响,并提出几点解决方法。

关键词:风电并网;电能质量;电网安全1 风电对电网的影响1.1影响电网稳定性一是风电并网影响电网电压稳定性较为明显。

风力发电的特点是有随机性,发电量大小随风速大小变化,同时因为风能资源丰富的位置大多比较偏僻,在电网末端,网架结构都比较薄弱,风电并网运行时势必影响电网电压稳定性。

二是大型风电厂的风力发电机大都是异步发电机,并网运行时要从电网中吸收大量的无功功率,增加电网的无功消耗,可能会导致小型电网电压失去稳定。

三是原来的电网规划和设计时,大都都不考虑风电并网后配电网功率、潮流的改变,所以随着的风电越来越多地注入,风电场周围小电网的电压和联络线功率会越过安全运行范围,将对系统的稳定性造成影响。

各个地方风力发电发展迅速,风力发电规模越来越大,风电装机容量在系统中比重一直增加,风电输出的不稳定性对电网的冲击也一直增大,对系统稳定性的影响就变得更加明显。

情1.2影响系统运行成本风力发电的运行成本同火电机组对比来说,低到可以忽略不计。

然而风力发电时的波动和间歇导致风电场的功率输出具有很大的不确定性,目前,风电的功率输出预报水平满足不了电力系统的运行要求。

为保证风电并网后电力系统能够可靠运行,电力系统除了确保原有运行方式基础,还需要额外安排一定容量的旋转备用,以确保功率能够平衡。

所以风电并网对整个电力系统运行成本的影响表现在两个方面:一方面,风电承担了一部分负荷,降低了电力系统的燃料成本,另一方面却需要增加整个系统的备用容量,加大了可靠性成本。

1.3 影响电网频率随着风速的变化,风电机组的出力也会变化,当风速比切入风速大时,风电机组启动然后挂网运行;当风速比切入风速小时时,风电机组停将机,并与电网解列运行;当风速比切出风速大时,考虑安全,风电机将停机。

论风电并网对电网的影响及应对措施

论风电并网对电网的影响及应对措施

论风电并网对电网的影响及应对措施近些年来,由于风力发电十分环保,因此风力发电受到了全世界各国的重视。

由于我国经济的快速发展,对电力的需求与应用也越来越大,致使电能的超负荷使用,电力能源的短缺,提升了电力行业对可再生能源的重视。

风能作为一种可再生的清洁能源,是指把风的动能转化为电能,因此越来越多的国家开始着手开发应用风力发电。

标签:风电并网;电网影响;应对策略风力发电是利用风来带动风车叶片的转动,通过旋转的速度提升产生的机械动能转化为电能,从而来促进发电机的发电。

由于风能是一种无公害能源,风力发电不需要燃料,不会造成空气的污染。

因此受到许多国家的广泛应用。

将发电机并入电网运行称为风电并网,但由于风力存在着不可控性,大规模的运用风电并网也对电力系统产生着越来越大的影响。

因此本文主要对风电并网对电网产生的影响以及所要采取的措施进行分析讨论。

1什么是风电并网由于风速具有随机性,不稳定性,为了保证电网的正常供电,要对风进行充分的利用,则需要风力发电机及相应的储能装置,来保障电网供电正常运行。

除此之外,风速的大小也影响着风力发电的状态及对电能输送的功率大小,采用风电并网的形式则会有效地提高电网运行的稳定。

风电并网是指将几十台甚至上千台的风力机同时并网运行,对风能源进行充分的开发利用,统一的对产生的强大电力进行配送。

由于风电并网存在着许多优点,不仅在能源利用以及环境保护方面,而且在工程建造,工作管理方面也十分的方便。

所以在全世界范围内得到了快速的发展。

2风力发电机的类型风力发电机是将风能转化为机械功,从而使电力输出的设备。

但由于风电并网的不同,发电机的类型也存在着差异。

2.1异步型发电机异步型发电机,由于它的结构简单,操作方便。

是我国现今采用的主力发电机。

它可以由定子直接向电网输送交流电,再由变频器控制转子,向电网间接输送功率。

从而满足用电需求。

2.2同步型发电机我国还有采用同步型发电机。

相较于异步风力发电机来说,它可以在额定的风速下进行运转。

风电场并网运行及其电网影响分析

风电场并网运行及其电网影响分析

风电场并网运行及其电网影响分析第一章风电场并网运行及其电网影响概述风电场并网运行是指将风能转化为电能,并将电能送入电网进行输送和利用的过程。

风电场的并网运行不仅可以满足社会对清洁能源的需求,还可以提高电网的可靠性和稳定性。

然而,风电场的并网运行也会对电网产生一定的影响,包括对电网稳定性、电压质量和电能质量的影响。

第二章风电场并网运行的关键技术风电场并网运行的关键技术包括风机与电网的匹配、风电场电能质量控制、风电场频率响应以及风电场电网保护等。

首先,风电场的风机与电网需要匹配,才能确保风电场正常并网运行。

其次,风电场需要控制电能的质量,包括电压波动、谐波和闪变等参数的控制。

另外,风电场还需要具备一定的频率响应能力,以使风电厂能够参与电网频率调节。

最后,为了保护风电场和电网的安全运行,风电场还需要建立起完善的电网保护系统。

第三章风电场并网对电网稳定性的影响分析风电场并网对电网稳定性的影响主要体现在以下几个方面。

首先,风电场的接入会改变电网的供需关系,可能导致电网的不平衡,进而影响电网的稳定性。

其次,风电场的发电功率具有间断性和波动性,这也会对电网的频率和电压稳定性产生影响。

此外,大规模风电场并网还可能引起电网的电磁振荡问题,进一步影响电网的稳定性。

因此,风电场并网运行需要合理地考虑电网稳定性,并采取相应的措施进行调整和优化。

第四章风电场并网对电压质量的影响分析风电场并网对电压质量的影响主要表现在电压波动和电压谐波两个方面。

风电场的并网运行会引起电压波动,这是因为风电场的发电功率具有间断性和波动性,而电网需要根据负荷的需求进行调整,从而导致电压的波动。

此外,风电场的并网运行还会引入电压谐波,这是因为风机的电子器件和电力电子器件会引入谐波电流,从而对电网电压质量产生影响。

因此,风电场并网运行时需要做好电压质量控制,以防止对电网产生不利影响。

第五章风电场并网对电能质量的影响分析风电场并网对电能质量的影响主要包括功率因数、谐波和闪变等方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风力发电并网对电网的影响概述
摘要:风能作为一种清洁能源,越来越受到各个国家的重视。

世界范围内风电装机容量一直在增加。

随着装机容量的增加,风力发电对电网的影响也越来越明显。

介绍风力发电的并网条件及并网特点,不同风力发电机与电网的并入方式;介绍风电并入电网对电网的影响和我国的电网结构及内蒙古地区电网的大概结构。

关键词:风力发电并网风电场
中图分类号:tm614 文献标识码:a 文章编号:1007-3973(2013)002-076-02
1 风力发电概述
1.1 风力发电形式
风力发电有两种:一是离网发电;二是并网发电。

目前中国的风力发电还处于试点阶段,并网发电的技术不够成熟。

比较成熟的是北欧和美国。

并网并不是一件很简单的事情,能够并网的电流具备正弦波交流50hz,另外还有电压和功率等。

风机的离网应用有多种多样,主要可以分为以下几类:
(1)为蓄电池充电:这种应用大多是指单一家庭住宅使用的小型风力发电机。

(2)为边缘地区提供可靠的电力,包括小型和无人值守的风力机。

风力发电机通常与蓄电池相连,而且也可以与光电池或柴油发电机等其他电源联机,为海上导航和远距离通信设备供电。

(3)给水加热:这种系统多用于私人住宅。

典型的用法是将风力发电机直接与浸没式加热器或电辐射加热器相连。

(4)边远地区的其他使用:包括为乡村供电、为小型电网系统供电,以及为商业性冷藏系统和海水淡化设备供电。

在离网风力发电系统的应用中,占主导地位的是利用风力发电机为蓄电池充电。

这类风力发电机的转子直径通常小于5m,而且其额定功率低于1000w。

独立的风电系统主要建造在电网不易到达的边远地区。

1.2 风力发电的特点
风力发电与火力发电相比,有其自身的缺点和优点,主要有:(1)装机规模灵活,可根据资金情况而决定一次装机的规模。

(2)它是一种不污染环境,也不消耗资源的清洁能源,所需的动力只是自然界中的风。

(3)投入资金少,有一台风力机的资金就可以安装一台,投产一台。

(4)建设周期短,比如说建设一个万瓦级的风电场周期不到一年。

2 不同类型风力发电机组的并网方式
在风力发电上应用到同步发电机有两种机械联结方式:(1)取消变速齿轮箱,把风轮轴与发电机直联,并且把发电机做成低速同步发电机。

同步发电机的并网比较复杂,需要一整套并网措施;(2)通过变速齿轮箱,做成高速同步发电机。

2.1 异步风力发电机并入电网的方法
调整负荷是靠异步发电机并入电网时滑差率来调整的,对机组
的调速要求不像同步发电机那么严格精确,因为其输出的功率与转速几乎成线性关系,异步并网只是需要电机转速靠近发电机同步转速时就可以并入预定电网,并没有调步的操作和同步的设备。

目前国内使用的异步发电机并入电网的方式有直接并网、降压并网和通过晶闸管软并网。

2.1.1 直接并网方式
并网时发电机的相序与电网的相序相同是这种并网方法的要求,完成自动并网是当风力驱动的异步发电机转速接近同步转速时即可,系统中的测速装置在一定的条件下发出一个信号,系统接收到信号后空气开关自动合闸,由此自动并入预定的电网。

虽然,直接并网方式相比于同步风力发电机的准同步并网是容易些,简单点,但这种并网方式只适用于异步发电机容量在百千瓦级以下。

之所以这种并网方式只适用于异步发电机容量在百千瓦级以下,是因为直接并网时会出现较大的冲击电流及电网电压下降。

2.1.2 降压并网方式
为了降低并网时候合闸瞬间冲击电流的大小,同时为了不使这时的并网的电网电压下降的幅度不要过大,这种并网方式在并网电网和异步风力发电机中间串联了或者是电抗器或者是电阻。

这种并网方法是适用于百千瓦级以上的大容量机组,因为电阻、电抗器等元件要消耗功率,在发电机进入稳态运行后将其迅速切除。

2.1.3 通过晶闸管软并网方式
要想使风电并入电网时不会对电网产生很大的冲击,就需要使并网瞬时的电网的冲击电流限制在一个很小的区间内,而通过晶闸管软并网这种并网方式可以得到一个相对平滑的并网过程,其独特之处就是严格控制晶闸管的导通角,从而实现平滑稳定的并网,不致于对电网产生很大的冲击。

让晶闸管器件的特性要一致、稳定以及触发电路可靠,这是它也对晶闸管触发电路提出了严格的要求。

要想保证可控硅导通角在0到180度范围内同步逐渐增大,要想保证发电机三相电流平衡,只有发电机主回路中的每项的双向晶闸管特性一致,并且控制极触发电压、触发电流一致,全开通后压降相同,否则会对发电机不利。

2.2 自同步并网方式
同步发电机在转子未加励磁就是自同步并网,励磁绕组经限流电阻短路的情况下,由原动机拖动将同步发电机转子转速升高到接近同步转速(约80%-90%同步转速)时,将发电机投入电网,再立即投入励磁,靠定子与转子之间的电磁力作用将发电机自动牵入同步发行。

这种并网方式尅从问题的根源排除非同步合闸的这种可能,因为同步风力发电机在并入电网时并没有加励磁电流。

这种并网操作简单,是不需要复杂的并网装置,并且并网过程迅速。

2.3 准同步并网方式
在同步风力发电中,风力发电机的转速、频率及极对数有确定的关系,这个关系式:f=pn/60。

式中:f-发电机产生的交流电频
率;n-风力发电机的转速;p-发电机的极对数。

准同步并网方式将风电并到并网电网中,需要满足几个条件:(1)发电机的电压相序与电网的电压相序相同;(2)发电机的电压等于电网电压,并且电压波形相同;(3)要求并网风力发电机的频率和并网电网的频率相同;(4)在合闸那会儿,电网电压的相角和风力发电机所发电压的相角一致;
3 风能并到电网里时对并网电网的的影响
3.1 风力发电对电能的稳定性及质量的影响
随着各地风电场的陆续上马和投产,大家广泛的关注风力发电对电网电能质量的影响。

风力发电对电网的影响主要表现为:电压波动、电压闪变、电压跌落及谐波等。

这是由于上述风电场并网运行的特点,特别是风能的随机性和并网风组的运行特性,可能影响电网的电能质量。

据研究可知并网风电机组输出的功率波动是风力发电引起的电压波动和闪变的根本原因。

由相关的知识知道,空气的密度、风速v、桨距角和叶轮转速的变化会影响机组的功率的输出。

其实,桨距角和叶轮转速,减小风电机组的波动是可以通过现代的先进的风电机组能够进行很好地控制。

由于风的随机性和波动性以及不可预知性,风电的出力是随机波动的,此时电网的的有功功率和无功功率也会发生大的波动性,这样就导致了并网电网的闪变和不稳定性。

由此,风电机组的出力变化主要是由于风速的变化而引起的。

另外,已经并入电网的风机在持续的运行中,会使
风电机组输出功率存在周期性的波动的原因有:湍流、塔影效应、偏航误差、风力机尾流效应以及风电机组的频繁启停。

随着风机电机容量的增加,风的随机波动性对风力发电的影响阅历啊月明显,当风电出力波动较大时,从而会引起较大的电压波动。

3.2 对电网稳定性的影响
由于风力发电场接入电网时会有很多问题,所以就目前风电并网的情况来看,风力发电场一般都是建在电网比较薄弱的地区,并网时是在电网末端进行并网。

并网后会对系统稳定性产生影响是由于风力发电的接入,使电网单向流动的特点被改变,电网单向流动被改变之后又导致系统潮流分子发生改变。

3.3 对电力调度与日常发电计划的影响
由于风电的不可预测性,所以并不能像我们以前使用的电源一样,对风电进行准确而又可靠地出力预测。

更不能指定出一个合理的发电计划,并将这个计划实施,这一切主要是由于自然界中的风是不可控制的,是随机的,且很难根据实际进行准确评估。

若我们把一个风力发电场看作是一个的负荷,因为风能的波动性,对于这个负的负荷我们并不能进行准确的评估;若我们把风力发电场看作是一个日常使用的电源,而它的有效性又无法得到保证。

一般一个地区,并入该地区的风力发电不能超过该地区总电力的5%~10%,否则会给整个电网带来很大的影响。

4 结论
现在全球都面临一个严重的问题——能源短缺,各国政府及自己所能在开发新能源,而风力发电则是各国争先发展的新能源产业。

风力发电没有任何污染,建设周期短,相比火力发电其成本低,对于我国来说,由于大型风力发电设备主要是进口,成本相对偏高,但随着我国大型风力发电设备国产化,将逐步降低风力发电成本。

随着科技的进步,风力发电技术越来越成熟,这也将进一步促进风电的发展,从而为新能源发展,低碳生活作出更多的贡献。

相关文档
最新文档