二十三章反比例函数单元测试卷.doc
第一章《反比例函数》(基础卷)(原卷版)

2022-2023学年湘教版九年级上册期末真题单元冲关测卷(基础卷)第一章反比例函数一、选择题(每小题4分,共40分)1.(2021-2022·湖南·期末试卷)下列函数中,是反比例函数的是()A.y=5xB.y=x2C.y=2x+1D.2y=x2.(2021-2022·广东·单元测试)若函数y=(m2−1)x m2−m−3是反比例函数,则m的值是()A.±1B.2C.−1或2D.−13.(2021-2022·河南·月考试卷)下列关于反比例函数y=−3x的结论中正确的是()A.图象过点(1,3)B.图象在一、三象限内C.当x<0时,y随x的增大而增大D.当x>−1时,y>34.(2021-2022·河南·月考试卷)已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为I=UR,当电压为定值时,关于R的函数图象是()A. B. C. D.5.(2021-2022·广东·单元测试)已知反比例函数y=kx的图象经过点P(3,−4),则这个反比例函数的解析式为()A.y=12x B.y=−12xC.y=3xD.y=4x6.(2021-2022·安徽·期末试卷)若点A(−3,2)关于x轴的对称点A′恰好在反比例函数y=kx(k≠0)的图象上,则k的值为()A.−5B.−1C.6D.−67.(2021-2022·广东·同步练习)如图,点P在反比例函数y=k(k≠0)的图象上,PA⊥x轴于点A,x△PAO的面积为2,则k的值为()A.1B.2C.4D.68.(2021-2022·广东·月考试卷)若点A(−3,y1),B(−1,y2),C(3,y3)都在反比例函数y=k(k>0)的x图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y1>y2C.y2>y1>y3D.y1>y3>y29.(2021-2022·安徽·月考试卷)已知正比例函数y=k1x和反比例函数y=k2,在同一直角坐标x系下的图象如图所示,其中符合k1⋅k2>0的是()A.①②B.①④C.②③D.③④10.(2021-2022·广东·单元测试)如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(4a,a)是反比例函数y=k(k>0)的图象上与正方形的一个交点,若x图中阴影部分的面积等于16,则k的值为( )A.16B.1C.4D.−16二、填空题(本题共计6小题,每题4分,共计24分)11.(2021-2022·广东·期末试卷)若函数y=mx m2+3m−1是反比例函数,则m=________.12.(2020-2021·湖南·期中试卷)已知反比例函数y=(m−2)x m2−10的图象,在每一象限内y随x 的增大而减小,则反比例函数的解析式为________.13.(2021-2022·全国·中考复习)计划修建铁路1200km,那么铺轨天数y(d)是每日铺轨量x的________比例函数解,其表达式为________.14.(2021-2022·河南·中考复习)已知函数y=−1,当自变量的取值为−1<x<0或x≥2时,x函数值y的取值为________.15.(2021-2022·河南·月考试卷)已知(−3, y1),(−2, y2),(1, y3)是抛物线y=3x2+12x+m上的点,则y1,y2,y3的大小关系为________.A.y2<y3<y1B.y1<y2=y3C.y2<y1<y3D.y3<y2<y116.(2021-2022·河南·中考复习)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半的图象经过菱形OB-CD对角线的交点A,若点D的坐标为(6,8),则k 轴上,反比例函数y=kx的值为________.三、解答题(本题共计8小题,每题10分,共计86分)17.(2021-2022·广东·单元测试)已知函数y=(m2+2m)x m2−m−1.(1)如果y是x的正比例函数,求m的值;(2)如果y是x的反比例函数,求出m的值,并写出此时y与x的函数关系式.18.(2020·广东·单元测试)已知函数y=(k−2)x k2−5为反比例函数.(1)求k的值;(2)它的图象在第________象限内,在各象限内,y随x增大而________;(填变化情况)时,y的取值范围.(3)求出−2≤x≤−1219.(2021-2022·吉林·月考试卷)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象与在第一象限内的图象交于点C,连接CO x轴交于点A(−4,0),与y轴交于点B,与反比例函数y=kx.(1)求b的值;(2)若S△OBC=2,则k的值是________.20.(2021-2022·甘肃·月考试卷)如图,一次函数y=kx+b与反比例函数y=m的图象相交于xA(−1, 4),B(2, n)两点,直线AB交x轴于点D.(1)求一次函数与反比例函数的表达式;(2)过点B作BC⊥y轴,垂足为C,连接AC交x轴于点E,求△AED的面积S· .21.(2021-2022·山东·月考试卷)Rt△OAB在直角坐标系内的位置如图所示,BA⊥OA,反比例函数y=k(k≠0)在第一象限内的图像与AB交于点C(8,1)与OB交于点D(4,m).x(1)求该反比例函数的解析式及图像为直线OB的正比例函数解析式;(2)求BC的长.22.(2021-2022·河南·月考试卷)如图,平行四边形OABC的边OA在x轴上,点D是对角线OB 的中点,反比例函数y=k(x>0)的图象经过点D.点B的坐标为(10,4),点C的坐标为(3,4)x(1)求反比例函数的解析式;(2)求平行四边形OABC的周长.23.(2021-2022·山东·月考试卷)如图,在平面直角坐标系中,直线y=x+2与双曲线y=k交x 于A,B两点,已知点A的横坐标为1.(1)求k的值;(2)求△OAB的面积;的解集.(3)直接写出关于x的不等式x+2>kx24.(2021-2022·安徽·月考试卷)校园里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10∘C,加热到100∘C停止加热,水温开始下降,此时水温y(∘C)与开机后用时x(min)成反比例关系,直至水温降至40∘C,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为40∘C时接通电源,水温y(∘C)与时间x(min)的关系如图所示:(1)分别写出图中水温上升和下降阶段y与x之间的函数关系式;(2)小明同学想喝高于50∘C的水,请问他最多需要等待多长时间?。
反比例函数单元测试卷

.已知反比例函数y =xk的图象经过点(m ,3m ),则此反比例函数的图象(.第一、二象限 B .第一、三象限 .C .第二、四象限 D .第三、四象限P (kPa)例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球发将爆炸.为了安全起见,气球的体积应 ( )A .不小于54m 3 B .小于54m 3 C .不小于45m 3 D .小于45m 37.如果点P 为反比例函数xy 4=的图象上一点,PQ ⊥x 轴,垂足为Q ,那么△POQ 的面积为( )A .2B . 4C .6D . 8 8.已知:反比例函数xmy 21-=的图象上两点A (x 1,y 1),B (x 2, y 2)当x 1<0<x 2时,y 1<y 2,则m 的取值范围 ( ) A .m <0 B .m >0 C .m <21 D .m >21二、填空题.(共10小题,每小题3分,共30分)9.有m 台完全相同的机器一起工作,需m 小时完成一项工作,当由x 台机器(x 为不大于m 的正整数)完成同一项工作时,所需的时间y 与机器台数x 的函数关系式是___ _.10.已知y 与x 成反比例,且当x 32=-时,y =5,则y 与x 的函数关系式为__________.11.反比例函数xy 3=的图象在第一象限与第 象限.12.某食堂现有煤炭500吨,这些煤炭能烧的天数y 与平均每天烧煤的吨数x 之间的函数关系式是 .13.若n x m y ++=2)5(是反比例函数,则m 、n 的取值是 .14.两位同学在描述同一反比例函数的图象时,甲同学说:这个反比例函数图象上任意一点到两坐标轴的距离的积都是3;乙同学说:这个反比例函数的图象与直线y =x 有两个交点,你认为这两位同学所描述的反比例函数的解析式是 . 15.在ABC △的三个顶点A (2,-3)、B (-4,-5)、C (-3,2)中,可能在反比例函数(0)ky k x=>的图象上的点是 . 16.如果反比例函数4ny x-=的图象位于第二、四象限,则n 的取值范围是_______;如果图象在每个象限内,y 随x 的增大而减小,则n 的取值范围是 .17.如图,△P 1OA 1、△P 2A 1 A 2是等腰直角三角形,点P 1、P 2在函数4(0)y x x=>的图象上,斜边OA 1、A 1 A 2都在x 轴上,则点A 2的坐标是 . 18.两个反比例函数k y x =和1y x=在第一象限内的图象如图所示,点P 在k y x=的图象上,PC ⊥x 轴于点C ,交1y x=的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P 在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点. 其中一定正确的是 (把你认为正确结论的序号都填上,少填或错填不给分).三、解答题(7小题,共46分)19.(6分)反比例函数xky =的图象经过点A (2 ,3).(1)求这个函数的解析式;(2)请判断点B (1 ,6)是否在这个反比例函数的图象上,并说明理由.20.(6分)已知三角形的一边为x ,这条边上的高为y ,三角形的面积为3,写出y 与x 的函数表达式,并画出函数的图象.21.(10分)某蓄水池的排水管每时排水8 m 3,6h 可将满池水全部排空. (1)蓄水池的容积是多少?(2)如果增加排水管,使每时排水量达到Q (m 3),那么将满池水排空所需的时间t (h )将如何变化?(3)写出t 与Q 之间的函数关系式.12第17题(4)如果准备在5小时之内将满水池排空,那么每时的排水量至少为多少? (5)已知排水管的最大排水量为每时12m 3,那么最少多长时间可将满池水全部排空?22.(8分)近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知800度近视眼镜镜片的焦距为0.125米, (1)求y 与x 的函数关系;(2)若张华同学近视眼镜镜片的焦距为0.25米,你知道他的眼睛近视多少度吗?23.(9分)对于取消市场上使用的杆秤的呼声越来越高,原因在于一些不法商贩在卖货时将秤砣挖空,或更换较小称砣,使砣较轻,从而欺骗顾客.(1)如图,对于同一物体,哪个图用的是标准秤砣,哪个用的是较轻的秤砣?(2)在称同一物体时,所称得的物体质量y (千克)与所用秤砣质量x (千克)之间满足 关系.(3)当砣较轻时,称得的物体变重,这正好符合哪个函数的哪些性质?24.6分)联想电脑公司新春期间搞活动,规定每台电脑0.7万元,交首付后剩余的钱数y 与时间t 的关系如图所示:(1)根据图象写出y 与t 的函数关系式. (2)求出首付的钱数.(3)如果要求每月支付的钱数不少于400元,那么还至少几个才能将所有的钱全部还清? (4)图1图2月)y ()新人教八年级(下)第17章《反比例函数》答案一、选择题1.B ;2. A ;3. B ;4. A ;5. B ;6. C ;7.A ;8. C . 二、填空题9.y =x m 2 10.152y x=- 11.三 12.y =x 50013.m ≠-5 n =-3 14.y =x 3 15.B16.n >4,n <4 17.(0) 18.①②④ 三、解答题 19.(1)y =x 6;(2)在 20. y =6x ,图像略 21.(1)348m ;(2)t 将减小;(3)48t Q=;(4)4859.6Q Q ==,;(5)48412t ==22. 23. 24.(1)12--=x y ;(2)略 25.(1)100y x =,(2)400度 26.(1)图②是用与秤配套的秤砣,图①则使用较轻的秤砣.(2)反比例. (3)函数y =x k(k >0),当x 变小时,y 增大 27.(1)y =t 6000 ;(2)7000-6000=1000(元);(3)400=t6000,t =15。
反比例函数全章测试卷

《反比例函数》单元测试题班级_____________姓名____________得分______________一、选择题(30分)1、若反比例函数22)12(--=mx m y 的图像在第二、四象限,则m 的值是( ) (A )-1或1 (B )小于21 的任意实数 (C ) -1 (D) 不能确定 2、在反比例函数1k y x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( ) A .1- B .0 C .1 D .23、已知点(-1,y 1)、(2,y 2)、(π,y 3)在双曲线xk y 12+-=上,则下列关系式正确的是( )(A )y 1>y 2>y 3 (B )y 1>y 3>y 2 (C )y 2>y 1>y 3 (D )y 3>y 1>y 24、已知反比例函数y=2x,下列结论中,不正确...的是( )A .图象必经过点(1,2)B .y 随x 的增大而减少C .图象在第一、三象限内D .若x >1,则0<y <25、如图是三个反比例函数312,,k k k y y y x x x===,在x 轴 上方的图像,由此观察得到k l 、k 2、k 3的大小关系为( )(A ) k 1>k 2>k 3 (B ) k 3>k 1>k 2 (C ) k 2>k 3>k 1 (D ) k 3>k 2>k 16、反比例函数k y x=在第一象限的图象如图所示,则k 的值可能是( ) A .1 B .2 C .3 D .47、如图,直线l 和双曲线k y x=(0k >)交于A 、B 两点,P 是线段 AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积为1S 、△BOD的面积为2S 、△POE 的面积为3S ,则有( ) A .123S S S << B .123S S S >> C . 123S S S =< D .123S S S =>8、如图,直线y=mx 与双曲线y=xk 交于A 、B 两点,过点A 作AM ⊥x 轴, 垂足为M ,连结BM,若ABM S ∆=2,则k 的值是( )A .2B 、m-2C 、mD 、49、已知甲、乙两地相s (千米),汽车从甲地匀速行驶到达乙地,如果汽车每小时耗油量为a(升),那么从甲地到乙地汽车的总耗油量y(升)与汽车的行驶速度v(千米/时)的函数图象大致是()10.如图,已知关于x的函数y=k(x-1)和y=-kx(k≠0), 它们在同一坐标系内的图象大致是( )11、两位同学在描述同一反比例函数的图象时,甲同学说:“从这个反比例函数图象上任意一点向x轴、y轴作垂线,与两坐标轴所围成的矩形的面积为6.”乙同学说:“这个反比例函数图象与直线y=-x有两个交点.”你认为这两位同学所描述的反比例函数的表达式为.12、已知:点A(m,m)在反比例函数1yx=的图象上,点B与点A关于坐标轴对称,以AB为边作等边△ABC,则满足条件的点C有个.13、若反比例函数的表达式为3yx=,则当1x<-时,y的取值范围是14、反比例函数1kyx=与一次函数2y x b=-+的图象交于点(23)A,和点(2)B m,.若12y y>,则x的取值范围是______ ________.15、如图,正方形OABC的面积是4,点B在反比例函数(00)ky k xx=><,的图象上.若点R是该反比例函数图象上异于点B的任意一点,过点R分别作x轴、y轴的垂线,垂足为M、N,从矩形OMRN的面积中减去其与正方形OABC重合部分的面积,记剩余部分的面积为S.则当S=m(m为常数,且0<m<4)时,点R的坐标是_______________ (用含m的代数式表示)16、两个反比例函数k y x =和1y x=在第一象限内的图象如图所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P 在k y x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点. 其中一定正确的是 (把你认为正确结论的序号都填上,少填或错填不给分).三、解答题17(10分)、已知y=y 1+y 2 ,y 1与x+1成正比例,y2与x+1成反比例,当x=0时,y=-5;当x=2时,y=-7. (1)求y与x的函数关系式; (2)当2y x =-时,求x的值。
(名师整理)数学九年级下册《第26章 反比例函数》单元检测试题(含答案解析)

第26章《反比例函数》单元测试卷一.选择题1.下列函数中,y是x的反比例函数的是()A.=﹣1 B.xy=﹣C.y=x﹣p D.y=﹣52.若y=(m﹣1)x|m|﹣2是反比例函数,则m的值为()A.m=2 B.m=﹣1 C.m=1 D.m=03.在同一坐标系中(水平方向是x轴),函数y=和y=kx+3的图象大致是()A.B.C.D.4.一次函数y=kx+2k与反比例函数y=(k≠0)在同一直角坐标系内的图象可能是()A.B.C.D.5.若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是(2,3),则另一个交点的坐标是()A.(2,3)B.(3,2)C.(﹣2,3)D.(﹣2,﹣3)6.关于双曲线的对称性叙述错误的是()A.关于原点对称B.关于直线y=x对称C.关于x轴对称D.关于直线y=﹣x对称7.若一元二次方程x2﹣2x﹣m=0无实数根,则反比例函数y=的图象所在的象限是()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限8.反比例函数y=的图象位于()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限9.在反比例函数y=的图象的每一个象限内,y都随x的增大而减小,则k的取值范围是()A.k>3 B.k>0 C.k≥3 D.k<310.对于反比例函数y=,下列说法正确的是()A.图象经过点(2,﹣1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大11.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB 的中线,点B、C在反比例函数y=(x>0)的图象上,则△OAB的面积等于()A.2 B.3 C.4 D.612.如图,在平面直角坐标系中,双曲线y=,y=﹣与⊙O相交,以交点为顶点的八边形ABCDEFGH是正八边形,则此正八边形的面积为()A.32 B.64 C.16D.16+1613.已知点A(2,3)在双曲线y=上,则下列哪个点也在该双曲线上()A.(﹣1,6)B.(6,﹣1)C.(﹣2,﹣3)D.(﹣2,3)14.若反比例函数y=(k≠0)的图象经过点P(2,﹣3),则该函数的图象不经过的点是()A.(3,﹣2)B.(1,﹣6)C.(﹣1,6)D.(﹣1,﹣6)15.如图,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=16.如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=(x>0)的图象△ABC的边有公共点,则k的取值范围是()A.5≤k≤20 B.8≤k≤20 C.5≤k≤8 D.9≤k≤20二.填空题17.下列函数中,哪些是y关于x的反比例函数?A.y=B.y=﹣C.y=D.y=(a为常数)E.y=+1018.函数y=(m+1)x是y关于x的反比例函数,则m=.19.如果直线y=mx与双曲线y=的一个交点A的坐标为(3,2),则它们的另一个交点B的坐标为.20.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣8,6),则△AOC的面积为.21.已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E 分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且=,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为.22.如图,在平面直角坐标系xOy中,点A,B在双曲线y=(k是常数,且k≠0)上,过点A作AD⊥x轴于点D,过点B作BC⊥y轴于点C,已知点A的坐标为(4,),四边形ABCD的面积为4,则点B的坐标为.23.已知一菱形的面积为12cm2,对角线长分别为xcm和ycm,则y与x的函数关系式为三.解答题(共1小题)24.已知反比例函数y=(k≠0)的图象经过点A(﹣3,﹣6).(1)求这个函数的表达式;(2)点B(4,),C(2,﹣5)是否在这个函数的图象上?(3)这个函数的图象位于哪些象限?函数值y随自变量x的增大如何变化?参考答案一.选择题1.解:A、该函数是一次函数,故本选项错误;B、该函数符合反比例函数的定义,故本选项正确;C、该函数不符合反比例函数的定义,故本选项错误;D、该函数不符合反比例函数的定义,故本选项错误.故选:B.2.解:依题意得:|m|﹣2=﹣1且m﹣1≠0,解得m=﹣1.故选:B.3.解:A、由函数y=的图象可知k>0与y=kx+3的图象k>0一致,故A 选项正确;B、因为y=kx+3的图象交y轴于正半轴,故B选项错误;C、因为y=kx+3的图象交y轴于正半轴,故C选项错误;D、由函数y=的图象可知k>0与y=kx+3的图象k<0矛盾,故D选项错误.故选:A.4.解:①当k>0时,y=kx+2k过一、二、三象限;y=过一、三象限;②当k<0时,y=kx+2k二、三、四象象限;y=过二、四象限.观察图形可知只有D符合②.故选:D.5.解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,3)关于原点对称,∴该点的坐标为(﹣2,﹣3).故选:D.6.解:∵双曲线的两个分支分别在二、四象限,∴两个分支关于原点对称,关于直线y=x对称,故A、B选项正确;此双曲线的每一个分支关于直线y=﹣x对称,故D选项正确;故选:C.7.解:∵一元二次方程x2﹣2x﹣m=0无实数根,∴△=4+4m<0,解得m<﹣1,∴m+1<0,∴反比例函数y=的图象所在的象限是第二、四象限.故选:C.8.解:∵反比例函数y=中,k=3>0,∴反比例函数y=的图象在一、三象限.故选:B.9.解:∵在反比例函数y=的图象的每一个象限内,y都随x的增大而减小,∴3﹣k>0,即k<3,故选:D.10.解:∵当x=2时,可得y=1≠﹣1,∴图象不经过点(2,﹣1),故A不正确;∵在y=中,k=2>0,∴图象位于第一、三象限,且在每个象限内y随x的增大而减小,故B、D不正确;又双曲线为中心对称图形,故C正确,故选:C.11.解:如图,过点B、点C作x轴的垂线,垂足为D,E,则BD∥CE,∴==,∵OC是△OAB的中线,∴===,设CE=x,则BD=2x,∴C的横坐标为,B的横坐标为,∴OD=,OE=,∴DE=OE﹣OD=,∴AE=DE=,∴OA=OE+AE=,∴S△OAB=OA•BD=××2x=3.故选:B.12.解:连接AO,HO,∵点A在双曲线y=﹣上,∴S△AOM=×|﹣4|=2,∵点H在双曲线y=上,∴S△HOM=×4=2,∴S△AOH=4,∴此正八边形的面积=8×4=32,故选:A.13.解:∵点A(2,3)在双曲线y=上,∴k=xy=2×3=6,∴只需把各点横纵坐标相乘,结果为6的点在函数图象上.A、因为﹣1×6=﹣6≠6,所以该点不在双曲线y=上.故A选项错误;B、因为6×(﹣1)=﹣6≠6,所以该点不在双曲线y=上.故B选项错误;C、因为﹣2×(﹣3)=6,所以该点在双曲线y=上.故C选项正确;D、因为﹣2×3=﹣6≠6,所以该点不在双曲线y=上.故D选项错误.故选:C.14.解:∵反比例函数y=(k≠0)的图象经过点P(2,﹣3),∴k=2×(﹣3)=﹣6∴解析式y=当x=3时,y=﹣2当x=1时,y=﹣6当x=﹣1时,y=6∴图象不经过点(﹣1,﹣6)故选:D.15.【解答】解:设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π解得:r=2.∵点P(a,b)是反比例函y=(k>0)与⊙O的一个交点.∴ab=k且=r∴a2=×(2)2=4.∴k=3×4=12,则反比例函数的解析式是:y=.故选:C.16.解:∵过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,∴点B的纵坐标为5,点C的横坐标为4,将y=5代入y=﹣x+6,得x=1;将x=4代入y=﹣x+6得,y=2,∴点B的坐标为(1,5),点C的坐标为(4,2),∵函数y=(x>0)的图象与△ABC的边有公共点,点A(4,5),点B(1,5),∴1×5≤k≤4×5即5≤k≤20,故选:A.二.填空题(共7小题)17.解:A、该函数是关于(x+1)的反函数,故本选项错误;B、该函数是y关于x的反函数,故本选项正确;C、y=不是反比例函数,故本选项错误;D、符合反比例函数的定义,故本选项正确;E、该函数是y﹣10关于x的反函数,故本选项错误;故答案为:B、E18.解:∵函数y=(m+1)x是y关于x的反比例函数,∴m2﹣2m﹣4=﹣1且m+1≠0,解得m=3.故答案是:3.19.解:因为直线y=mx与双曲线y=的交点均关于原点对称,所以另一个交点坐标为(﹣3,﹣2).20.解:∵点D为线段OA的中点,且点A的坐标为(﹣8,6),∴点D的坐标为(﹣4,3).将点D(﹣4,3)代入到y=中得:3=,解得:k=﹣12.∴双曲线的解析式为y=﹣.令x=﹣8,则有y=﹣=,即点C的坐标为(﹣8,).∵AB⊥BO,∴点B(﹣8,0),AC=6﹣=,OB=0﹣(﹣8)=8,∴△AOC的面积S=AC•OB=××8=18.故答案为:18.21.解:连结AD,过D点作DG∥CM.∵=,△AOC的面积是15,∴CD: CO=1:3,OG:OM=2:3,∴△ACD的面积是5,△ODF的面积是15×=,∴四边形AMGF的面积=,∴△BOE的面积=△AOM的面积=×=12,∴△ADC与△BOE的面积和为5+12=17.故答案为:17.22.解:连接BO、BD,∵点A在双曲线y=(k是常数,且k≠0)上,点A的坐标为(4,),∴k=4×=6,又∵BC⊥y轴于点C,∴BC∥OD,∴△BOC的面积=△BCD的面积=3,又∵四边形ABCD的面积为4,∴△ABD的面积=4﹣3=1,设B(a,),∵AD⊥x轴于点D,A的坐标为(4,),∴AD=,∵××(4﹣a)=1,解得a=,∴=,∴点B的坐标为(,).故答案为:(,).23.解:由题意得:y与x的函数关系式为y==.故本题答案为:y=.三.解答题(共1小题)24.解:(1)∵反比例函数y=(k≠0)的图象经过点A(﹣3,﹣6).∴﹣6=,解得,k=18则反比例函数解析式为y=;(2)点B(4,),C(2,﹣5),∴4×=18,2×(﹣5)=10,∴点B(4,)在这个函数的图象上,点C(2,﹣5)不在这个函数的图象上;(3)∵k=18>0,∴这个函数的图象位于一、三象限,在每一个象限内,函数值y随自变量x的增大而减小.。
反比例函数单元测试题(含答案)

反比例函数练习题一. 选择题1. 函数y m x m m =+--()2229是反比例函数,则m 的值是( )A. m =4或m =-2B. m =4C. m =-2D. m =-1 2. 下列函数中,是反比例函数的是( ) A. y x =-2 B. y x =-12 C. y x =-11 D. y x =123. 函数y kx =-与y k x=(k ≠0)的图象的交点个数是( ) A. 0 B. 1 C. 2 D. 不确定 4. 函数y kx b =+与y k x kb =≠()0的图象可能是( )A B C D5. 若y 与x 成正比,y 与z 的倒数成反比,则z 是x 的( )A. 正比例函数B. 反比例函数C. 二次函数D. z 随x 增大而增大6. 下列函数中y 既不是x 的正比例函数,也不是反比例函数的是( )A. y x =-19B. 105=-x y :C. y x =412 D.152xy =- 二. 填空题7. 一般地,函数__________是反比例函数,其图象是__________,当k <0时,图象两支在__________象限内。
8. 已知反比例函数y x=2,当y =6时,x =_________。
9. 反比例函数y a x a a =---()3224的函数值为4时,自变量x 的值是_________。
10. 反比例函数的图象过点(-3,5),则它的解析式为_________11. 若函数y x =4与y x =1的图象有一个交点是(12,2),则另一个交点坐标是_________。
三. 解答题12. 直线y kx b =+过x 轴上的点A (32,0),且与双曲线y k x =相交于B 、C 两点,已知B 点坐标为(-12,4),求直线和双曲线的解析式。
13. 已知一次函数y x =+2与反比例函数y k x =的图象的一个交点为P (a ,b ),且P 到原点的距离是10,求a 、b 的值及反比例函数的解析式。
反比例函数》单元测试题(含答案)-

反比例函数》单元测试题(含答案)-1.给定双曲线经过点(-2,3),求解析式。
解析:双曲线的一般式为y=k/x,代入点(-2,3)可得3=k/(-2),解得k=-6,所以双曲线的解析式为y=-6/x。
2.已知y与x成反比例,且y=1时,x=4,求x=2时的y 值。
解析:由反比例函数的定义可知,y1*x1=y2*x2,代入y=1,x=4可得1*4=y2*2,解得y2=2,所以当x=2时,y=2.3.已知反比例函数和正比例函数的图象都经过点A(-1,-2),求它们的解析式。
解析:正比例函数的图象为直线y=kx,代入点A可得-2=k*(-1),解得k=2,所以正比例函数的解析式为y=2x。
反比例函数的图象为双曲线y=k/x,代入点A可得-2=k/(-1),解得k=2,所以反比例函数的解析式为y=2/x。
4.某厂有1500吨煤,求这些煤能用的天数y与每天用煤的吨数x之间的函数关系式。
解析:假设每天用煤的吨数为x,那么1500吨煤能用的天数为y=1500/x,所以函数关系式为y=1500/x。
5.若点(3,6)在反比例函数y=k/x(k≠0)的图象上,那么下列各点在此图象上的是()解析:由反比例函数的图象可知,其图象为双曲线,因此点(3,6)在图象上,而点(-3,-6)、(2.-9)、(2.9)、(3.-6)不在图象上。
6.已知反比例函数的图象过(2,-2)和(-1,n),求n的值。
解析:反比例函数的图象为双曲线,过点(2,-2)和(-1,n)的双曲线有两个分支,分别为y=k/x和y=-k/x,因此可列出方程组-2=k/2和n=-k/-1,解得k=4,n=4,所以n的值为4.7.反比例函数y=k^3/x的图像经过(-,5)点、(a,-3)及(10,b)点,求k、a、b的值。
解析:代入三个点可得5=k^3/-,-3=k^3/a^3,b=k^3/10,解得k=∛(-50),a=∛(k^3/-3),b=10∛(-50)。
第26章反比例函数单元测试(含答案)2024-2025学年数学人教版九年级下册

第26章反比例函数一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如图是反比例函数的图象,它的函数表达式是( ).A. y=5xB. y=2x C. y=−1xD. y=−2x2.对于反比例函数y=−5x,下列说法错误的是( )A. 图象经过点(1,−5)B. 图象位于第二、四象限C. 当x<0时,y随x的增大而减小D. 当x>0时,y随x的增大而增大3.如图,点A在双曲线y=kx上,B在y轴上,且AO=AB.若△ABO的面积为6,则k的值为 ( )A. 6B. −6C. 12D. −124.如图,直线y1=kx+1与反比例函数y2=2x的图象在第一象限交于点P(1,t),与x轴、y轴分别交于A,B 两点,则下列结论错误的是 ( )A. t=2B. △AOB是等腰直角三角形C. k=1D. 当x>1时,y2>y15.当x<0时,函数y=(k−1)x与y=2−k的y值都随x的增大而增大,则k的取值范围是( ).3xA. k>1B. 1<k<2C. k>2D. k<16.函数y=k和y=−kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是( )xA. B.C. D.7.若点A(−3,y1),B(−1,y2),C(2,y3)都在反比例函数y=k(k<0)的图象上,则y1,y2,y3的大小关系是( )xA. y3<y1<y2B. y2<y1<y3C. y1<y2<y3D. y3<y2<y18.在大棚中栽培新品种的蘑菇,在18℃的条件下生长最快,因此用装有恒温系统的大棚栽培,如图是某天恒温系统从开启升温到保持恒温及关闭,大棚内温度y(℃)随时间x(时)变化的函数图象,其中BC段是函数(k>0)图象的一部分.若该蘑菇适宜生长的温度不低于12℃,则这y=kx天该品种蘑菇适宜生长的时间为( )A. 18小时B. 17.5小时C. 12小时D. 10小时9.设A,B,C,D是反比例函数y=k图象上的任意四点,现有以下结论:x①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是( ).A. ①②B. ①④C. ②③D. ③④10.如图,点P、Q是反比例函数y=k(k≠0)图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥xx轴于点M,QB⊥y轴于点B,连接PB、QM.记SΔABP=S1,SΔQMN=S2,则S1与S2的大小关系为 ( )A. S1>S2B. S1<S2C. S1=S2D. 无法判断二、填空题:本题共6小题,每小题3分,共18分。
反比例函数单元测试题及答案(供参考)

第17章反比例函数综合检测题一、选择题(每小题3分,共30分)1、反比例函数y =x n 5+图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、12、若反比例函数y =xk(k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ). A 、(2,-1) B 、(-21,2) C 、(-2,-1) D 、(21,2) 3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )、若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ). A 、成正比例 B 、成反比例 C 、不成正比例也不成反比例 D 、无法确定、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =x k 满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小 C 、图象分布在第一、三象限 D 、图象分布在第二、四象限6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂 线PQ 交双曲线y =x1于点Q ,连结OQ ,点P 沿x 轴正方向运动时,Rt △QOP 的面积( ).A 、逐渐增大B 、逐渐减小C 、保持不变D 、无法确定7、在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变. ρ与V 在一定范围内满足ρ=Vm ,它的图象如图所示,则该 气体的质量m 为( ).A 、1.4kgB 、5kgC 、6.4kgD 、7kg8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( ).A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 1<y 3<y 29、已知反比例函数y =xm 21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ). A 、m <0 B 、m >0 C 、m <21 D 、m >21 10、如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( ).A 、x <-1B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2Q p xy o t /h O t /h O t /hO t /h v /(km/h) OA .B .C .D .二、填空题(每小题3分,共30分)11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 . 12、已知反比例函数x k y =的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”).13、若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = .14、反比例函数y =(m +2)x m 2-10的图象分布在第二、四象限内,则m 的值为 .15、有一面积为S 的梯形,其上底是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是 .16、如图,点M 是反比例函数y =xa (a ≠0)的图象上一点, 过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析式为 .17、使函数y =(2m 2-7m -9)x m 2-9m +19是反比例函数,且图象在每个象限内y 随x 的增大而减小,则可列方程(不等式组)为 .18、过双曲线y =x k (k ≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______.19. 如图,直线y =kx(k >0)与双曲线xy 4=交于A (x 1,y 1), B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.20、如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (-320,5),D 是AB 边上的一点, 将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析式是 .三、解答题(共60分)21、(8分)如图,P 是反比例函数图象上的一点,且点P 到x轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式.22、(9分)请你举出一个生活中能用反比例函数关系描述的实例,写出其函数表达式,并画出函数图象.举例:函数表达式:23、(10分)如图,已知A (x 1,y 1),B (x 2,y 2)是双曲线y =xk 在第一象限内的分支上的两点,连结OA 、OB .(1)试说明y 1<OA <y 1+1y k ; (2)过B 作BC ⊥x 轴于C ,当m =4时,求△BOC 的面积.24、(10分)如图,已知反比例函数y =-x8与一次函数 y =kx +b 的图象交于A 、B 两点,且点A 的横坐标和点B 的纵坐标都是-2.求:(1)一次函数的解析式;(2)△AOB 的面积.25、(11分)如图,一次函数y =ax +b 的图象与反比例函数y =xk的图象交于M 、N 两点.(1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.26、(12分)如图, 已知反比例函数y =xk 的图象与一次函 数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点.(1)求这两个函数的解析式;(2)求△MON 的面积;(3)请判断点P (4,1)是否在这个反比例函数的图象上,并说明理由.参考答案:一、选择题1、D ;2、A ;3、C ;4、B ;5、D ;6、C7、D ;8、B ;9、D ; 10、D .二、填空题11、y =x 1000; 12、减小; 13、5 ; 14、-3 ;15、y =xs 23 ; 16、y =-x 5; 17、⎩⎨⎧---=+-0972119922>m m m m ; 18、|k|; 19、 20; 20、y =-x 12. 三、解答题21、y =-x6. 22、举例:要编织一块面积为2米2的矩形地毯,地毯的长x (米)与宽y (米)之间的函数关系式为y =x2(x >0). x… 1 2 …y … 4 2 1 …(只要是生活中符合反比例函数关系的实例均可)画函数图象如右图所示.23、(1)过点A 作AD ⊥x 轴于D ,则OD =x 1,AD =y 1,因为点A (x 1,y 1)在双曲线y =xk 上,故x 1=1y k ,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+1y k ; (2)△BOC 的面积为2.24、(1)由已知易得A (-2,4),B (4,-2),代入y =kx +b 中,求得y =-x +2;(2)当y =0时,x =2,则y =-x +2与x 轴的交点M (2,0),即|OM|=2,于是S △AOB=S △AOM +S △BOM =21|OM|·|y A |+21|OM|·|y B |=21×2×4+21×2×2=6. 25、(1)将N (-1,-4)代入y =x k ,得k =4.∴反比例函数的解析式为y =x 4.将M (2,m )代入y =x 4,得m =2.将M (2,2),N (-1,-4)代入y =ax +b ,得⎩⎨⎧-=+-=+.b a ,b a 422解得⎩⎨⎧-==.b ,a 22∴一次函数的解析式为y =2x -2. (2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值. 26、解(1)由已知,得-4=1-k ,k =4,∴y =x 4.又∵图象过M (2,m )点,∴m =24=2,∵y =a x +b 图象经过M 、N 两点,∴,422⎩⎨⎧-=+-=+b a b a 解之得,22⎩⎨⎧-==b a ∴y =2x -2. (2)如图,对于y =2x -2,y =0时,x =1,∴A (1,0),OA =1,∴S △MON =S △MOA +S △NOA =21OA ·MC +21OA ·ND =21×1×2+21×1×4=3. (3)将点P (4,1)的坐标代入y =x 4,知两边相等,∴P 点在反比例函数图象上.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二十三章反比例函数单元测试卷
一、填空题:
2
1.反比例函数y =--的图像的两个分支在象
限,y随x的增大而o
2.已知反比例函数y=-(x> 0)的图像如图所示,则k=
k一I
3.已知反比例函数),=J 的图像的每一分支上,y都随x的
增大而减小,则k的取值范围是。
4.三角形的面积是12,它的底边a (单位:cm)与这个底边上的高h(单位:cm)的函
数关系是o
5.在同一坐标系中,反比例函数),= &与正比例函数y = k2x没有交点,则两个常数
象限,并且的乘积kik2的取伯.范围是。
6.宜线y=kx+b过第一、三、四象限,则函数y =—的图象在___
kx
在每个象限内y随x的增大而。
k
7.已知反比例函数y=-的图像上两点A (xi,yD、B (x2, y2),
x
若xi<0<x2, yi>y2,则k的取值范围是。
k
8.直线 > =心与双曲线y =-交于A、B两点。
过点A作AM±x轴
x
垂足为点M,连接BMo若S MBM=1,则k的值是。
9.如图所示是三个反比例函数y = n =的图象,V
XXX
由此观察k” k2, k3的大小关系是(用“V”连接)
二、选择题:
1.下列函数中,y是x的反比例函数的是()
D y = l-~
X
2. 如果反比例函数y=-的图像经过点(-3, -4),那么函数的图像应在( )
A 第一、三象限
B 第一、二象限
C 第二、四象限
D 第三、四象限 2 函数y = --的图象与x 轴的交点个数是( )
Ay = —
B )‘ = v
C y =—-—
2x
JC
X + 1
k
A 1个
B 2个
C
没有交点
D 不能确定
4. 当乂〈0时,,y =-的图像在(
)
A 第一象限
B 第二象限
C 第三象限
D 第四象限
5. 双曲线y =—与直线y = mx 相交于两点,其中一个交点坐
x
标为(・2, -1),则它的另一个交点坐标是( ) A (2, 1) B (-2, 1) C (・2,-l ) D (2,-l )
如图所示,P 是反比例函数的图像上一点,过点P 分别向x 轴、y 轴作垂线,所得
到的图形的阴影面积为6,则这个反比例函数的解析式为(
)
3
3
C y = —
D y =— x x
之间的函数关系的图象大致应为(
如图,在同一坐标系中,函数),=灯"1)与),,=4的图象只能是图中的( )
A”/ B
),M
)
9.已知反比例函数y = —(SO)的图像上有两点A (工],力),8(工2,力)其工^工2,则yi-y2
的值是()
A正数B负数C非正数D不能确定
三、解答题:
1.已知变量y与(x+1)成反比例,且当x=2时,y=—1,求y与x之间的函数关系。
2.某空调厂的装配车间计划组装9000台空调:
(1)从组装空调开始,每天组装的台数m (单位:台/天)与生产的时间t (单位:天)
之间有怎样的函数关系?
⑵原计划用2个月时间(每月以30天计算)完成,由于气温升高,厂家决定这批空
调提前十天上市,那么装配车间每天至少要比原来多组装多少台空调?
3.市政府计划建设一项水利工程,工程需要运送土石方总量为1.5X1()6立方米,某运
输公司承办了该项工程运送土石方的任务。
(1)匀速公司平均每天的工作量u (单位:立方米/)与完成运输任务所需时间t (单位:
天)之间具有怎样德函数关系?
(2)这个运输公司共有100辆卡车,每天一共可运送土石方IO"立方米,则公司运完
全部运输任务需要多长时间?
(3)当公司以问题⑵中的速度工作了80天后,由丁•工程进度的需要,剩下的所有
运输任务必须在50天内完成,公司至少需要再增加多少量卡车才能按时完成任务?
4.一次函数y=kx+b的图象与反比例函数y =竺的图像交于A、B两点,且已知点A
X
的横坐标与点B的纵坐标都是2,点C ( — 1,8)在反比例函数,y=-的图象上。
⑴求一次函数和反比例函数的解析式。
(2)求左AOB的面积。
5.如图所示,正方形OABC的面积为9,点0为坐标原点,点B在函数y=- (k>0,
X x>0)的图象上。
点P (m,n)是函数图象上任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F,并设矩形OEPF和正方形OABC不重合部分的面积为S。
(提示考虑点P在点B的左侧或右侧两种情况)
(1)求点B的坐标和k值。
Q
(2)当S=—时,求点P的坐标。
(3)写出S关于m的函数关系式。