初中数学第一册知识点总结:平面直角坐标系_知识点总结

合集下载

初中数学平面直角坐标系知识总结

初中数学平面直角坐标系知识总结

初中数学平面直角坐标系知识总结平面直角坐标系是数学中最常用的工具之一,它为我们分析平面上的点与图形提供了便利。

在初中数学中,我们需要掌握平面直角坐标系的基本概念、坐标的表示方法、两点间的距离和斜率等知识。

接下来,我将对这些内容进行详细的总结。

一、基本概念平面直角坐标系是由两条相互垂直的数轴组成,水平的一条称为 x 轴,竖直的一条称为 y 轴。

两个轴的交点被称为坐标原点 O,x 轴正方向与 y 轴正方向分别为正方向。

根据这样的定义,我们可以确定平面上任意一点的坐标。

二、坐标的表示方法在平面直角坐标系中,我们用一个有序数对 (x,y) 来表示一个点的坐标,其中 x 表示点在 x 轴上的位置,y 表示点在 y 轴上的位置。

x 和 y 的值可以是正数、负数或零,代表点相对原点的位置关系。

三、两点间的距离在平面直角坐标系中,我们可以利用勾股定理计算两点间的距离。

设两点分别为 A(x₁,y₁) 和 B(x₂,y₂),那么点 A 到点 B 的距离可以表示为d=√[(x₂-x₁)²+(y₂-y₁)²]。

其中,d 表示两点间的距离。

四、斜率斜率是直线的一个重要特征,可以帮助我们分析直线的倾斜程度和方向。

斜率的计算公式为 k=(y₂-y₁)/(x₂-x₁)。

其中,k 表示斜率,(x₁,y₁) 和 (x₂,y₂) 分别是直线上两个点的坐标。

五、坐标系与图形平面直角坐标系可以帮助我们更好地理解和分析平面上的图形。

例如,点的坐标可以帮助我们确定图形的位置,两点间的距离可以帮助我们比较不同图形的大小,斜率可以帮助我们判断直线的倾斜程度等等。

六、例题为了更好地理解平面直角坐标系的知识,我们可以通过解题来巩固学习成果。

例题1:在平面直角坐标系内,点 A 的坐标为 (2,3),点 B 的坐标为 (5,-1),求点 A 到点 B 的距离。

解:根据两点间的距离公式,可以得到点 A 到点 B 的距离d=√[(5-2)²+(-1-3)²]=√[3²+(-4)²]=√[9+16]=√25=5。

七年级平面直角坐标系知识点大全

七年级平面直角坐标系知识点大全

一、基本概念:1.点和坐标:直角坐标系中,一个点的位置可以用一个有序数对(x,y)来表示,其中x代表横坐标,y代表纵坐标。

2.原点:直角坐标系中的坐标原点是(0,0)。

3.横坐标轴和纵坐标轴:直角坐标系中的横坐标轴又称x轴,纵坐标轴又称y轴。

二、表示和定位点:1.定点和命名方式:可以使用一个大写字母如A来表示一个定点。

2.平面上的位置:可以使用点与点之间的距离和方向表达两点的相对位置。

如:点A在点B的上方、下方、左方或右方。

3.移动和定位:可以使用平移、旋转和镜像等变换来移动和定位点。

三、线段和线的表示:1.线段:两个点A和B可以用线段AB来表示。

线段的长度是从A到B的距离,可以使用勾股定理来计算。

2.直线:可以使用两个点来确定一条直线,直线上的点有无数个。

3.垂直和水平线:垂直线与纵坐标轴相交,水平线与横坐标轴相交。

四、四个象限:1.分割方式:直角坐标系将平面分成四个部分,称为四个象限。

第一象限是(x,y)均为正数,第二象限是(x为负数,y为正数,第三象限是(x,y)均为负数,第四象限是(x为正数,y为负数)。

2.符号关系:在第一象限,x和y的符号都是正的;在第二象限,x的符号为负,y的符号为正;在第三象限,x和y的符号都为负;在第四象限,x的符号为正,y的符号为负。

五、对称和坐标轴:1.原点对称:一个点关于原点对称的点的坐标满足x'=-x,y'=-y。

2.x轴对称:一个点关于x轴对称的点的坐标满足x'=x,y'=-y。

3.y轴对称:一个点关于y轴对称的点的坐标满足x'=-x,y'=y。

六、直角坐标系中的图形:1.点:一个点可以看作是一个坐标(x,y)。

2.线段:直线两个端点的坐标可以确定一条线段。

3.直线:直线可以通过两个点或一个点和方向来确定。

4.封闭图形:一个封闭图形可以由若干条线段连接而成的图形。

七、函数和坐标:1.函数概念:函数是指一种关系,其中每个输入只对应一个输出。

初中数学平面直角坐标知识点总结

初中数学平面直角坐标知识点总结

初中数学平面直角坐标知识点总结平面直角坐标系是平面中最常见的坐标系,也是我们研究平面几何问题的重要工具。

下面是初中数学平面直角坐标系的知识点总结:1.平面直角坐标系的建立在平面上取一条水平线作为x轴,取一条垂直线作为y轴,它们交于一点O,O点称为原点。

这样就建立了平面直角坐标系。

x轴和y轴的正方向可以任意选取。

2.平面直角坐标系的象限平面直角坐标系将平面分成四个象限。

第一象限是x轴和y轴都为正数的象限,第二象限是x轴为负数,y轴为正数的象限,第三象限是x轴和y轴都为负数的象限,第四象限是x轴为正数,y轴为负数的象限。

3.平面上点的坐标在平面直角坐标系中,每个点都有唯一的坐标表示。

坐标的表示形式为(x,y),其中x表示点在x轴上的投影长度,y表示点在y轴上的投影长度。

4.平面上点的对称性对称轴是过点O的直线,对于平面上任意一点P,若P关于对称轴对称得到的点为P',则有P'的坐标是(-x,y)或者(x,-y)。

5.平面上的距离平面上两点的距离可以通过勾股定理计算。

设点A坐标为(x1,y1),点B坐标为(x2,y2),则AB的距离为√((x2-x1)²+(y2-y1)²)。

6.平面上的中点平面上两点的中点坐标为两点横纵坐标的平均值。

设点A坐标为(x1,y1),点B坐标为(x2,y2),中点坐标为((x1+x2)/2,(y1+y2)/2)。

7.平面上直线的方程平面上的直线可以用一般式方程表示,形如Ax+By+C=0,其中A、B、C为常数。

这里的A和B分别是直线在x轴和y轴上的斜率,C是直线与y轴的交点(当x=0时,方程化简后获得)。

8.平面上直线的斜率直线的斜率可以用两点坐标表示,设点A坐标为(x1,y1),点B坐标为(x2,y2),直线的斜率为(k=(y2-y1)/(x2-x1))。

斜率表示了直线在x轴上的变动与y轴上的变动的比例关系。

9.平面上两条直线的关系两条直线可能有以下几种关系:-平行:两条直线的斜率相等,但截距不一定相等。

初一数学平面直角坐标系知识点

初一数学平面直角坐标系知识点

初一数学平面直角坐标系知识点初一数学平面直角坐标系的知识点包括:1. 平面直角坐标系的构建:通过选择一个原点和两个互相垂直的坐标轴(通常为x轴和y轴),可以构建一个平面直角坐标系。

2. 坐标的表示:在平面直角坐标系中,每个点P都可以用一个有序数对(x,y)来表示,其中x表示点P在x轴上的坐标,y表示点P在y轴上的坐标。

3. 坐标的正负:原点为(0,0),x轴向右为正方向,y轴向上为正方向。

在x轴上,右侧的点的x坐标是正数,左侧的点的x坐标是负数。

在y轴上,上方的点的y坐标是正数,下方的点的y坐标是负数。

4. 轴与坐标轴的关系:x轴与y轴的交点是原点O。

x轴上的点的y坐标都为0,y轴上的点的x坐标都为0。

坐标轴划分了整个平面直角坐标系成为四个象限,分别为第一象限、第二象限、第三象限和第四象限。

5. 点的位置关系:对于两个点P(x1,y1)和Q(x2,y2),如果x1>x2且y1>y2,则点P在点Q的右上方;如果x1<x2且y1<y2,则点P在点Q的左下方;如果x1>x2且y1<y2,则点P在点Q的右下方;如果x1<x2且y1>y2,则点P在点Q的左上方;如果x1=x2,则点P和点Q在同一垂直线上;如果y1=y2,则点P和点Q在同一水平线上。

6. 距离的计算:在平面直角坐标系中,点P(x1,y1)与点Q(x2,y2)之间的距离可以用欧氏距离公式来计算:d = √[(x2-x1)²+(y2-y1)²]。

7. 中点的计算:对于线段AB上的点A(x1,y1)和B(x2,y2),点M(x,y)是线段AB的中点,可以通过求x坐标和y坐标的平均值来计算:x = (x1+x2)/2,y = (y1+y2)/2。

8. 坐标变换:平面直角坐标系中可以进行一些坐标变换,例如平移、旋转和缩放。

平移是通过增加或减少x轴和y轴上的值来改变点的位置。

旋转是围绕原点进行的,可以将点绕原点旋转一定角度。

初中数学知识点归纳平面直角坐标系

初中数学知识点归纳平面直角坐标系

初中数学知识点归纳平面直角坐标系平面直角坐标系是数学中非常重要的概念,它由平面上的两条相互垂直的直线组成。

下面我们来归纳一下初中数学中关于平面直角坐标系的知识点。

1.平面直角坐标系的建立:平面直角坐标系一般由两条相互垂直的直线组成,其中一条称为x轴,另一条称为y轴。

通过将这两条直线固定在平面上,并以相交点为原点,可以确定其他点的坐标,从而建立平面直角坐标系。

2.坐标的表示和性质:在平面直角坐标系中,每个点都可以用一个有序数对(x,y)来表示,其中x表示横坐标,y表示纵坐标。

例如,点A的坐标为(2,3),表示A点在x轴上的坐标为2,在y轴上的坐标为3性质:对于平面上的任意两点A(x1,y1)和B(x2,y2),有以下性质:-若x1=x2且y1=y2,则A=B,即两点相等;-若x1≠x2或y1≠y2,则A≠B,即两点不等;-若x1=x2且y1=y2,则AB=0,即两点重合;-若x1≠x2或y1≠y2,则AB≠0,即两点不重合。

3.平面上点的四象限和坐标轴上的点:平面直角坐标系将平面划分为四个部分,称为四个象限。

x轴和y轴分别将平面分成两半,可形成4个象限:第一象限,该象限中x坐标和y坐标均为正;第二象限,该象限中x坐标为负,y坐标为正;第三象限,该象限中x坐标和y坐标均为负;第四象限,该象限中x坐标为正,y坐标为负。

此外,坐标轴上的点有特殊的性质:x轴上的点坐标形式为(x,0),y 轴上的点坐标形式为(0,y)。

4.两点间的距离和中点:在平面直角坐标系中,两点间的距离可以通过勾股定理求得。

设A(x1, y1)和B(x2, y2)是平面上的两点,其距离为AB=sqrt((x2-x1)^2+(y2-y1)^2)。

中点公式:在平面直角坐标系中,连接线段AB的中点M(xm, ym)的坐标可以通过以下公式得到:xm=(x1+x2)/2,ym=(y1+y2)/25.点的对称性和平移性:关于原点对称:对于平面直角坐标系中的点A(x,y),关于原点O对称的点A'的坐标为A'(-x,-y)。

平面直角坐标系的13个知识点

平面直角坐标系的13个知识点

平面直角坐标系的13个核心知识点哎,说起平面直角坐标系,那可是数学里头相当重要的一个板块儿。

咱们今天就来摆一摆它的13个核心知识点。

首先呢,平面直角坐标系就是由两条互相垂直的数轴组成,水平方向的叫x轴,垂直方向的叫y轴,它们交在一块儿的那个点叫原点。

然后啊,平面上的每个点都可以用一对有序实数来表示,比如(x,y),x就是横坐标,y就是纵坐标。

再说说象限,根据点的坐标的正负,平面被分成了四个部分,叫象限。

第一象限的点坐标都是正数,第二象限的x坐标为负,y坐标为正,第三象限的点坐标都是负数,第四象限的x坐标为正,y坐标为负。

还有啊,关于x轴、y轴、原点对称的点的坐标,都是有规律的。

比如关于x轴对称的点,横坐标不变,纵坐标变相反数。

另外,平面直角坐标系里头还可以搞平移、缩放这些变换。

平移的时候,点的坐标会跟着变,比如向右平移,横坐标就变大,向左平移,横坐标就变小。

缩放的时候,比如横坐标变为原来的k倍,那图形就跟着放大或缩小了。

再来说说直线、圆这些图形,它们都可以用方程来表示。

比如直线y=2x+3,圆的方程是(x-h)^2+(y-k)^2=r^2。

最后啊,还有中点公式、斜率公式、距离公式这些工具,它们可以用来求线段的中点、直线的斜率和两点间的距离。

总之啊,平面直角坐标系的知识点虽然多,但只要掌握了规律,学起来也就不那么难了。

平面直角坐标系知识点汇总

平面直角坐标系知识点汇总

平面直角坐标系知识点汇总平面直角坐标系知识点汇总知识点一确定位置1.平面内确定一个物体的位置需要2个数据。

2.平面内确定位置的几种方法:(1)行列定位法:在这种方法中常把平面分成若干行、列,然后利用行号和列号表示平面上点的位置,在此方法中,要牢记某点的位置需要两个互相独立的数据,两者缺一不可。

(2)方位角距离定位法:方位角和距离。

(3)经纬定位法:它也需要两个数据:经度和纬度。

(4)区域定位法:只描述某点所在的大致位置。

如“解放路22号”。

知识点二平面直角坐标系1.定义在平面内,两条互相(垂直)且具有公共(焦点)的数轴组成平面直角坐标系.其中水平方向的数轴叫(X轴)或(横轴),向(右)为正方向;竖直方向的数轴叫(Y轴)或(纵轴),向(上)为正方向;两条数轴交点叫平面直角坐标系的(原点)。

.2.平面内点的坐标对于平面内任意一点P,过P分别向x轴、y 轴作垂线,x轴上的垂足对应的数a叫P的(横)坐标,y轴上的垂足对应的数b叫P的(纵)坐标。

有序数对(a,b),叫点P的坐标。

若P的坐标为(a,b),则P到x轴距离为(|b|),到y轴距离为(|a|) 注意:平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标.3.平面直角坐标系内点的坐标特征:(1)坐标轴把平面分隔成四个象限。

根据点所在位置填表点的位置横坐标符号纵坐标符号第一象限+ +第二象限_ +第三象限_ _第四象限+ _(2)坐标轴上的点不属于任何象限,它们的坐标特征①在x轴上的点(纵)坐标为0;②在y轴上的点(横)坐标为0;(3)P(a,b)关于x轴、y轴、原点的对称点坐标特征①点P(a,b)关于x轴对称点P1(a,-b);②点 P(a,b)关于y轴对称点P2(-a,b);③点P(a,b)关于原点对称点P3(-a,-b);④若点P(a,b)关于一三象限角平分线对称点P4(b,a);⑤若点P(a,b)关于二四象限角平分线对称点P5(-b,a);4.平行于x轴的直线上的点(纵)坐标相同;平行于y轴的直线上的点(横)坐标相同。

(完整版)平面直角坐标系知识点总结

(完整版)平面直角坐标系知识点总结

平面直角坐标系二、知识要点梳理知识点一:有序数对比如教室中座位的位置,常用“几排几列”来表示,而排数和列数的先后顺序影响座位的位置,因此用有顺序的两个数a与b组成有序数时,记作(a,b),表示一个物体的位置。

我们把这种有顺序的两个数a与b组成的数对叫做有序数对,记作: (a,b).要点诠释:对“有序”要准确理解,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,表示不同位置。

知识点二:平面直角坐标系以及坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系。

水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1)。

注:我们在画直角坐标系时,要注意两坐标轴是互相垂直的,且有公共原点,通常取向右与向上的方向分别为两坐标轴的正方向。

平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。

2.点的坐标点的坐标是在平面直角坐标系中确定点的位置的主要表示方法,是今后研究函数的基础。

在平面直角坐标系中,要想表示一个点的具体位置,就要用它的坐标来表示,要想写出一个点的坐标,应过这个点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是a,垂足N在y轴上的坐标是b,我们说点A的横坐标是a,纵坐标是b,那么有序数对(a,b)叫做点A的坐标.记作:A(a,b).用(a,b)来表示,需要注意的是必须把横坐标写在纵坐标前面,所以这是一对有序数。

注:①写点的坐标时,横坐标写在前面,纵坐标写在后面。

横、纵坐标的位置不能颠倒。

②由点的坐标的意义可知:点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离。

知识点三:点坐标的特征l.四个象限内点坐标的特征:两条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别叫做第一、二、三、四象限,如图2.这四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-).2.数轴上点坐标的特征:x轴上的点的纵坐标为0,可表示为(a,0);y轴上的点的横坐标为0,可表示为(0,b).注意:x轴,y轴上的点不在任何一个象限内,对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学第一册知识点总结:平面直角坐标系_知识点总结
1、有序数对
有顺序的两个数a与b组成的数对,叫做有序数对。

2、平面直角坐标系
平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

平面上的任意一点都可以用一个有序数对来表示。

建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅰ、Ⅰ、Ⅰ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。

坐标轴上的点不属于任何象限。

3、坐标方法的简单应用
用坐标表示地理位置
利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:
Ⅰ建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;
Ⅰ根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
Ⅰ在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

4、用坐标表示平移
在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。

在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。

相关文档
最新文档