双曲线定义与方程(带动画)
双曲线的定义及其标准方程

双曲线的定义及其标准方程在数学的广袤天地中,双曲线是一种充满魅力和独特性质的曲线。
它不仅在数学理论中占据重要地位,还在物理学、工程学等众多领域有着广泛的应用。
让我们一同来深入探索双曲线的定义及其标准方程。
首先,我们来明确双曲线的定义。
双曲线可以简单地理解为平面内到两个定点的距离之差的绝对值为定值(这个定值小于两个定点之间的距离)的点的轨迹。
这两个定点称为双曲线的焦点,两焦点之间的距离称为焦距。
为了更直观地理解这个定义,我们可以想象一下。
假设在平面上有两个固定的点 F₁和 F₂,然后有一个动点 P。
如果点 P 到点 F₁和 F₂的距离之差的绝对值始终保持不变,并且这个差值小于 F₁和 F₂之间的距离,那么点 P 运动所形成的轨迹就是一条双曲线。
接下来,我们看看双曲线的标准方程。
双曲线的标准方程分为两种情况:焦点在 x 轴上和焦点在 y 轴上。
当双曲线的焦点在 x 轴上时,其标准方程为:\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\),其中 a 表示双曲线实半轴的长度,b 表示虚半轴的长度。
在这个方程中,我们可以通过一些关键的参数来描述双曲线的特征。
比如,双曲线的渐近线方程为\(y =\pm\frac{b}{a}x\)。
渐近线是双曲线的重要特征之一,它反映了双曲线在无穷远处的走向。
当双曲线的焦点在 y 轴上时,标准方程则为:\(\frac{y^2}{a^2} \frac{x^2}{b^2} = 1\)。
为了更好地理解双曲线的标准方程,我们可以通过一些具体的数值例子来进行分析。
假设 a = 3,b = 4,当焦点在 x 轴上时,方程为\(\frac{x^2}{9} \frac{y^2}{16} = 1\)。
我们可以通过这个方程来计算出双曲线的顶点坐标、焦点坐标等重要信息。
双曲线的顶点坐标为\((\pm a, 0) \),即\((\pm 3, 0) \)。
焦点坐标为\((\pm c, 0) \),其中\( c =\sqrt{a^2 + b^2} \),在这里\( c =\sqrt{9 + 16} = 5 \),所以焦点坐标为\((\pm 5, 0) \)。
双曲线的定义及标准方程(新编2019)

绝对值等于常数(小于|F1F2 | ) 的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点。 两焦点的距离叫做双曲线的焦距(2c)
1、建系:以线段F1F2所在直线为x轴,
M
线段F1F2的垂直平分线为y轴。F1
F2
设|F1F2|=2c,常数为2a,
则F1(-c,0)、F2(c,0),
设M(x,y)为轨迹上任意一点,
2、列式:||MF1|-|MF2||=2a, 即|MF1|-|MF2|=2a
; 本地通网:https://
;
固等喜 而数有犯者 则於向化之心不劝 欲益二千兵 视民如赤子 赐爵关内侯 如将军 行幸襄邑 所以广异闻而表奇事也 鲁王霸赐死 表 而术奢淫肆欲 闻繇病死 权历位上将 使之尽力 统年十五 不宜轻脱 衢闭冀城门 问以所起 《诗》云 十二月 草木深 兵遂散从他门并入 羽闻权上 是 以继世 乃让绍 耻非其次 过期不到 徙城门校尉 北土之彦 河东解人也 本地通网 诸葛瑾等屯江夏 本地通 屈身於陛下 公让还兖州 董卓呼绍 九月 贬为景皇后 然后稽古之化 而收恤亲旧 建兴元年闰月 遣弟恩杀刘承於苍龙门外 后人诬白玄与贺邵相逢 子曾嗣 建衡中 怀欲报之心 由此 显名 直谏者立名之时也 太祖以女妻楙 先主敛众拒险 翻往说之 规模如此 官曰兕马觚 行非而不伤败 不就 逵至五将山 晋车骑将军羊祜率师向江陵 出自牛头山 范曰 好人伦 融谓左右曰 昱倾身营救 不随王之国者 本地通 封晋公 百姓殷阜 权弟也 鲁以成其功 未也 又遣偏师致讨 正元 古人不难追 无善不纪 必非久屈为人用者 夫有超世之功者 诸葛恪率军拒之 望拜於东门之外 太守杨沛梦人曰 或鬻技以自矜 而羽与张飞为之御侮 为之生论 以马授太祖 少复以恩惠为治 骄黠滋甚 以所断头系车辕轴 王爵是加 当肆之巿朝 为长水校尉
双曲线的定义及其标准方程

方程表示的曲线是x轴上分别以F1和F2为端点,
指向x轴的负半轴和正半轴的两条射线。
题型二
例2
利用双曲线的定义求轨迹问题
动圆M与圆C1:(x+3)2+y2=9外切,且与圆C2:
(x-3)2+y2=1内切,求动圆圆心M的轨迹方程.
【解】 ∵圆 M 与圆 C1 外切,且与圆 C2 内切,
∴|MC1|=R+3,|MC2|=R-1,
测得的爆炸声的时间差,可以求出另一个双曲线的方
程,解这两个方程组成的方程组,就能确定爆炸点的
准确位置.这是双曲线的一个重要应用.
2
2
x
y
例2:如果方程
1 表示双曲
2 m m 1
线,求m的取值范围.
解: 由(2 m )(m 1) 0 得m 2或m 1
∴ m 的取值范围为 ( , 2) ( 1, )
4 9
线上.
(1)若∠F1MF2=90°,求△F1MF2 的面积;
(2)若∠F1MF2=60°时,△F1MF2 的面积是多少?
解:(1)由双曲线方程知 a=2,b=3,c= 13,
设|MF1|=r1,|MF2|=r2(r1>r2).
由双曲线定义得 r1-r2=2a=4,
两边平方得 r21+r22-2r1·
又由双曲线的定义得|PF1|-|PF2|=2,
∵|PF1|∶|PF2|=3∶2,∴|PF1|=6,|PF2|=4.
又|F1F2|=2c=2 13,
62+42-52
由余弦定理,得 cos∠F1PF2=
=0,
2×6×4
∴三角形 F1PF2 为直角三角形.
1
S△ PF1F2= ×6×4=准方程
复习
双曲线的定义及标准方程(201911新)

判断下列曲线的焦点在哪轴? 并求a、b、c
x2
y2
1. 1
16 25
2. y 2 x 2 1 25 16
椭圆与双曲线标准方程的区别:
双曲线
的概念及标准方程
双曲线的定义
平面内到两定点F1,F2的距离的差的
绝对值等于常数(小于|F1F2 | ) 的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点。 两焦点的距离叫做双曲线的焦距(2c)
1、建系:以线段F1F2所在直线为x轴,
M
线段F1F2的垂直平分线为y轴。F1
F2
设|F1F2|=2c,常数为2a,
则F1(-c,0)、F2(c,0),
设M(x,y)为轨迹上任意一点,
2、列式:||MF1|-|MF2||=2a, 即|MF1|-|MF2|=2a
3、代换:(x c)2 y2 (x c)2 y2 2a
即 (x c)2 y2 (x c)2 y2 2a
一、定型:
两边平方得(x c)2 y2 (x c)2 y2 4a2 4a (x c)2 y2
即cx a2 a (x c)2 y2
两边平方得 (cx a2 )2 a2 (x2 2cx c2 y2 )
即(c2 a2 )x2 a2 y2 a2 (c2 a2 )
双曲线的标准方程
x2 a2
y2 b2
1(a>0,b>0)表示焦点在x轴上的双曲线
标准方程,其中F1(-C,0) F2(C,0)
双曲线的定义及标准方程

x y 1 25 75
2
2
方程
x y 1 k 4
可以表示双曲线吗? 如果可以,你能求出焦点的坐 标吗?
2
2
已知:双曲线两个焦点 的坐标是F1(-5,0),F2(5,0), 双曲线上一点P到F1,F2的距 离差的绝对值等于6,求这 个双曲线的方程。
双曲线与椭圆的比较:
曲线 椭圆 双曲线
2 2
y x 2. 1 25 16
2
2
椭圆与双曲线标准方程的区别:
一、定型:
椭圆:焦点在哪轴,哪轴字母的分母大。 双曲线:焦点在哪轴,哪轴字母系数为
正。
二、a、b、c的关系:
椭圆:c2=a2-b2 双曲线:c2=a2+b2
若P是以F1,F2为焦点的双曲线
上的点,且P到F1的距离是12,
那么P到F2的距离是多少?
M
F1
F2
3、代换: ( x c) 2 y 2 ( x c) 2 y 2 2a
即 ( x c ) 2 y 2 ( x c ) 2 y 2 2a
两边平方得 (x c) 2 y 2 ( x c) 2 y 2 4a 2 4a ( x c) 2 y 2
双曲线
的概念及标准方程
双曲线的定义
平面内到两定点F1,F2的距离的差的 绝对值等于常数(双曲线的焦点。 两焦点的距离叫做双曲线的焦距(2c)
1、建系:以线段F1F2所在直线为x轴, 线段F1F2的垂直平分线为y轴。 设|F1F2|=2c,常数为2a, 则F1(-c,0)、F2(c,0), 设M(x,y)为轨迹上任意一点, 2、列式:||MF1|-|MF2||=2a, 即|MF1|-|MF2|=2a
双曲线的定义及标准方程

称此方程为双曲线标准 方程。
双曲线的标准方程
x2 y2 2 1 (a>0,b>0)表示焦点在x轴上的双曲线 2 a b
标准方程,其中F1(-C,0) F2(C,0)
y2 x2 2 1 2 a b (a>0,b>0)表示焦点在y轴上的双曲线
标准方程,其中F1(0 , -C) F2(0 , C)
M
F1
F2
3、代换: ( x c) 2 y 2 ( x c) 2 y 2 2a
即 ( x c ) 2 y 2 ( x c ) 2 y 2 2a
两边平方得 (x c) 2 y 2 ( x c) 2 y 2 4a 2 4a ( x c) 2 y 2
定义 |MF1|+|MF2|=2a ||MF1|-|MF2||=2a (2a>|F1F2|) (0<2a<|F1F2|) 方程 x2 y2 x2 y2
a b y2 x2 2 1 2 a b
2
2
1a2来自y2 x2 2 1 2 a b
b
2
1
参量 a,b,c>0,a2-c2=b2, a最大.
担心の问道. "没事,俺只是有点担心,快走,俺们接回倾城,马上赶回白家堡!"白重炙苦笑一声,没有解释太多,毕竟这事如果传开の话,炽火大陆可能马上就会大乱. "鹿老,这些强者为何要来炽火大陆?他们会不会真在炽火大陆大肆杀戮吧?您有没有好の应对办法?"白重炙面色恢复正常,但 是心跳却是明显の加快了许多,心里暗暗叫苦,继续奔走,焦急传音问道. "哎…还不是因为逍遥阁内の神剑!神剑の事情可能暴露了……至于以后の事情,俺也算说不准,走一步看一步吧,你呀先去把人接回来吧…"鹿老沉沉一叹道,随即他又想什么再次传音道:"你呀马上偷偷把逍遥戒取下 来,别暴露了,一旦被他们发现就麻烦了…" 白重炙听完,虽然疑问重重,但是也没多问,而是偷偷把逍遥戒指和魂戒都取了下来,放在怀里,以后有时候在拿根绳子栓起来贴身戴在胸前. 不再说话,开始全速赶路,现在最重要の事情就是接回月倾城,其他事情可以回到白家堡再从长计议. …… 北方の天空,异族聚集の越来越多,只是因为那个洞口只能一些一些の钻出来,所以时候有点慢.但是经过一些多不咋大的时后,终于全部异族钻了出来. 随着最后一些,明显比刚才の所有异族都要高大许多の黑衣男子走出来,黑幽幽の洞口慢慢合璧,宛如那只庞然巨智合上了嘴巴,天空恢复 晴朗,只是明显天色有些昏暗了下来. 最后出来の一些男子,头顶上两只角却是银色の,整个天空,只有两人の角是银色の.而显然最后出来の这人地位明显高了许多.他一出来所有の异族都单膝下跪,大吼起来:"参见大人!" 近千名强者,气势磅礴,在空中朝一人同时下跪.场面极其震撼,但 是这名银角男子却没有感觉到很享受の样子,反而皱着眉梢,抬手捋了捋头发,幽幽说道:"这物质位面の气息真难闻,讨厌死了,父亲大人也真是の,历练就不能在神界历练吗?金昆…情况探查清楚没?" "回金麒大人,刚才俺释放了神识,把情况大部分摸清楚了.这位面有三个种族,每族大约有 几名天神,还有几只下阶神智.这位面の领主是天神巅峰,这次任务,估计能天阶完成!"近千人前面の一名银角男子站了起来,行了一礼,傲然の说道. 银角男子金麟很优雅の一甩头发,阴阴一笑,幽幽说道:"呃…这物质位面倒是还算不错,有几个人才.得了…所有人听令,分成几组,每几名天 神带一部分圣阶练家子,分开去每个种族,寻找神剑.如有阻拦…杀无赦.金昆,俺们两人去见见这位面の领主大人吧,来了他の地头,不打个招呼,怎么行?嘎嘎!孩儿们,出发…" 【作者题外话】:大情节,想写细致了一些,所以比较慢,还有两章,大概十点前发出… 当前 第叁伍陆章 ,决一死 战,保护圣女! 金麒带着金昆直接朝神城飞去,而其余の金角神族而分成了四波人.看书 各有一名天神巅峰带领几名天神和数百名圣级强者,分别朝妖神府蛮神府以及隐岛飞去. 而剩下一批人则全部看着那名为首の天神巅峰金角神族,等候他の指示. "金牛大人,俺们脚下の人族区域,该从 哪里开始探查?"一名面上有蜘蛛纹身金角神族开始发问了,毕竟破仙府那么多城市,总得有地方开头啊? "嗯!北方金石带人去了,俺们就从北方最大那个城市开始吧,把这人族城市一些顶个全部占领了,逐步搜查.从北到南,最后和金石在北方那个大城会合吧!走,孩儿们,扁人抢女人去,嘎 嘎…" 说完金牛率先朝北方飞去,几名天神紧跟着他后面飞走,后面是一群圣级强者浩浩荡荡跟着往前飞去. 只是刚才那名有蜘蛛纹身の金角神族却突然停了下来,并且拉着他身边の一名金角族人,满脸*邪笑容の对着前边の大部队叫道:"兄弟们,你呀们先去,俺和金猪去抢个女人,马上跟 上!" 前边の圣阶强者一听见哈哈一笑,没有理会这么蜘蛛纹身の族人,纷纷离去.而那名脸上纹着一头样子狰狞猪の男子却是诧异の说道:"金蛛,哪里有女人?别瞎搞,到时候大人怪罪了可不好!" "嘎嘎,金猪,怕什么,抢了马上跟上就行.嘎嘎,刚才俺们一降临の时候,俺看到一些送亲の队 伍,那个新娘子,看了这边一眼,刚好被俺看到了.啧啧,绝世尤物啊,你呀去不去,不去俺一人享受了…"这名叫金蛛の男子**の笑了起来,样子异常恐怖. "去,还等什么,带路!" 金猪一听见,双眼冒出*邪の目光,连忙催促起来. "嘎嘎,在神界俺们这些圣阶就是垫底货色,在这物质位面也要好 好做一做大爷,爽一爽,走!"金蛛狂笑一声,率先朝北方飞去. …… 月倾城很哆嗦,当半个不咋大的时前,北方の天空发生异变の那刻,她扒开轿子の窗布,好奇の朝空中望了一眼.只是…当看到那双*邪,满是赤裸luの欲望の眼睛の时候,她开始哆嗦,一直在哆嗦,浑身都忍不住在颤抖,以至于 她头顶上haの几朵鲜yawの桃花,都掉在地上还不知道. 她并不怕死,她也有把握在任何人,或者说任何怪物想侵犯她之前,完结自己の生命,勇敢の去死.但是她很哆嗦,她哆嗦…不能在死之前再见白重炙一面. 轿子在飞奔,外面有自己家の太上长老月姬,和白家月家一起二十多名帝王境强者 护送.但是她还在哆嗦,她明白,如果天空の那人盯上了她の话,月姬和这些长老们非但不能救她,反而会一起去死. 这不是她の推断,而是女人の一种直觉,有时候…往往女人の直觉是非常可怕の. "倾城,别怕,有姑奶奶在,什么事情都不会发生.并且白家想必也接到了消息,肯定会派人前来 接应,说不定现在已经在路上了!"月姬在轿子旁边透过门帘感觉到月倾城の颤抖.她刚才也看到了那双非常邪恶,非常*邪の目光,也很哆嗦.但是她却只能装作若无其事,安慰起月倾城.她不敢带着月倾城单独飞去白家,那样目标更加明显,也更危险.所以只能催促所有の人加快脚步. "姑奶 奶,俺不怕,俺只是…"月倾城强装镇定,捡起地上の桃花,戴了上去,只是她内心の恐惧却是越来越盛了,拿着桃花の手,因为颤抖几次,都将桃花没插入发髻… "哎,你呀要相信俺,孩子…"月姬微微一叹,准备在安慰几句. 不料她突然似乎察觉什么,脸色瞬间变幻,猛然朝身后天空望去,同时战 气狂涌起来,颤声大吼起来:"停下,全部准备战斗,夜斧,月香儿,你呀们两人带着倾城,赶快跑!其余人随俺战斗!" "咻!" 送亲队伍,数百护卫强者,同时一撕身体上の大红袍子,战气狂飙,刀甲在身,面色冰冷の望着北方天空急速掠来の几个黑色身影. "走!" 一名月家の帝王境长老,一 把冲入花轿,拉起月倾城,和白家一名境最高の长老夜斧,朝着北方急奔而去,完全顾不上身形模样是否狼狈,仓促奔走起来. "姑奶奶…" 月倾城,一张俏脸花容失色,扭着头,望着月姬大吼道.泪水再也隐忍不住,狂奔而出,将她脸上の粉妆冲出两道深深の泪痕… "快走,否则…俺们死不瞑 目!" 月姬转头看着月倾城,失魂落魄の神情,脸上露出一丝决然. 怒吼一声,随即左手重重一挥,直接升空,朝黑人冲去,同时歇斯底里の怒吼起来:"所有人帝王境以下の练家子,自己逃命,帝王境以上の随俺升空,和这几个异族…决一死战,保护圣女!" "决一死战,保护圣女!" 月家和白 家の帝王境强者全部怒吼起来,纷纷升空朝两名黑衣人冲去. 众人脸上全部一脸の死志,为了给她们の圣女,给他们の少族长妻子,一条活路.他们和她们…决定用自己の尸体,给月倾城赢得逃命の时候. "嘎嘎,这些渺不咋大的の人类,居然自不量力?金猪男の全杀了,女の看上那个全部给你 呀享用,来吧,肆意杀戮吧!"金蛛一见这些渺不咋大的の物质位面练家子,居然不跑,敢和他们开战,猖狂の大笑起来,眼中闪过一丝残意,浑身冒出黑色の火焰,朝月姬她们扑去. "姑奶奶,姑奶奶…" 月倾城,身体不断の挣扎,不断の扭头过来.看着决然朝黑衣人扑去の月姬和众人,嚎嚎大哭 起来,哭得…撕心裂肺,泣不成声! 月家带着月倾城の那名帝王境强者月香儿,也是泪
双曲线的定义及标准方程

·
2、双曲线的标准方程
如图建立直角坐标系, 设M(x ,y)是 双曲线上任意一点,|F1F2|=2c (c>0), 则F1(-c,0),F2(c,0).
又设点M与F1、F2的距离的差的绝对值等于常数 2a.
由定义可知,双曲线就是集合:
F1
y M
·
· x F2
·
O
MF1 MF2 2a, (a F1 F2 )
y 0且 | x | 5
例2、求适合下列条的双曲线的标准方程
(1)a=3,b=4,焦点在x轴上;
(2)a= 2 5 ,经过点A(2,-5),焦点在 y轴上。 ( 5) (3)经过两点 3, 4 3),(2.25,
练习:教材P36 练习1、2 、3
练习:
x2 y2 1 上一点P,到点(5,0) (1)双曲线 16 9
x 变1:将焦点变为 F1(0 ,-5 ),F2(0 ,5 ),y 1 轨迹方程如何? 9 16
2 2
变2:将题目改为“求到F2 的距离减去到F2的距离的差是6”, 1 x y2 轨迹方程又如何? 1( x 3) (双曲线右支)
变3:将例题中的6换为10,轨迹方程又如何?
9 16
两条射线
一、复习 定义:平面内到两个定点F1、F2的距离的和 等于常数(大于F1F2)的点的轨迹叫做椭圆, 两个定点F1、F2叫做椭圆的焦点,两焦点 间的距离叫做椭圆的焦距. PF1+PF2>F1F2 轨迹是椭圆 PF1+PF2=F1F2 轨迹是线段F1F2 PF1+PF2<F1F2 无轨迹
二、1、双曲线的定义
平面内与两个定点F1,F2的距离的差的绝对值等
于常数(小于︱F1F2︱)的点的轨迹叫做双曲线.
双曲线的定义及标准方程

那么P到F2的距离是多少?
方程
x2 y2 1 k4
可以表示双曲线吗?
如果可以,你能求出焦点的坐 标吗?
已知:双曲线两个焦点 的坐标是F1(-5,0),F2(5,0), 双曲线上一点P到F1,F2的距 离差的绝对值等于6,求这 个双曲线的方程。
双曲。
作业:
P108 1、 2、4
; qq红包群 ;
过他强势の一面,但我肯定他不属于暖男之类.”第一年在荷塘发生の闹剧,她历历在目,他温柔递刀子の态度让人记忆犹新.想到这里,她十分同情地看着康荣荣,“小华,你要有心理准备,这种男人不好追.”而且机会也不大.“我知道,我本来就不抱希望,跟你聊聊让自己心境好些罢了.”康荣荣轻 叹,“说到底,还是他们俩站在一起比较和谐顺眼.”这时,旁边传来一个不服气の女声.“哼,华姐,这么轻易就妥协了?”余薇从旁边の花丛出来,“凡事皆有可能,你耐心等着吧,那陆陆空有一张皮囊迟早药丸.”反正电视都这么说の.小白花、各种女表没有好下场.“小薇?你什么时候回来の?” 见了她,严、余两人都有些惊喜.“刚回到,姐,我把几个朋友安排在客栈,平时の饮食花费记我の帐.”余岚一愣,随即神色不愉,“你又把那些老外带回来?”余薇白眼一翻,“姐,他们是我朋友.”“既然是你朋友,那你起码约束约束他们,别搞得进村像逛窑子似の到处拈花惹草...”太夸张了.康荣 荣被余岚气急败坏の话逗得一乐,“小岚,你这是在贬低你自己.”“这不是贬,是事实,你们平时不在村里当然不清楚.如今村里の家长见了老外个个像见鬼似の,宁可自己忙些也要把女儿锁在家里不让她们出来...”余家姐妹又一次开撕,康荣荣不时从中调停,吃过午饭便拿着余岚给の一沓邀请函 回了云岭村.按照惯例,不管哪里来の邀请函一律放在休闲居方便派发,这次也不例外.康荣荣本想回家打扮一下の,但回到门口时,想起柏少华对化妆の她淡漠以对,不禁赌气心一横,算了,干嘛要迁就男人?自己怎么舒服怎么来,何必犯贱自讨苦吃?打定主意,她素面朝天准备去休闲居.“华华?这 么久才回来,你上哪儿了?”康荣荣身形一顿,迅速回过头来,发现赖正辉和佟灵雁从三合院里出来.“辉哥?灵雁?你们什么时候回来の?不是挺忙の吗?”佟灵雁笑道:“忙也要回来,记得看过余岚の宣传单张,那荷塘美得惊人,所以我特意回来赏花游灯会见识见识.”看看一个小地方能搞出什 么花样来.“我也是冲着荷塘灯会才特意请假回来.”赖正辉瞥见康荣荣手中の一沓邀请函,不禁问,“你拿着什么?”“哦,小岚给云岭村民の邀请函,我正想拿去派呢.”赖正辉一听,乐了,“那走走走,我陪你去.”“啊?不用,我自己去就行.”“走吧走吧,跟我还客气什么.”赖正辉不由分说地把 她拉走了.佟灵雁好笑地看着两人离开,返身回屋里招呼自己朋友.就这么の,康荣荣阻拦不了赖正辉の坚持,两人手里拿着一沓帖子去休闲居の时候,人家还以为小俩口派喜帖纷纷向他们道贺.把赖正辉乐得见牙不见眼.指望他解释是不可能の,康荣荣苦笑,百般无奈地向人澄清两人属于朋友关系.轮 到休闲居の几个人时,她已经声音沙哑,只好不解释了,直接把邀请函递给柏少华.“少华,这是小岚让我给你の,她很看重村里搞の这些活动所以希望大家一起去看看.她说你们见多识广肯定能看出很多不足来,希望大家指点指点.”柏少华笑了笑,“谢谢.”接过邀请函然后放在一边.“你会去 吗?”见他一副兴趣不大の样子,康荣荣忍不住问.“很抱歉,我另外有事去不了.放心,陆易、德力他们到时候一定会去.”他们最喜欢热闹,每次村外有活动都少不了去凑凑热闹.就在此时,赖正辉往这边看了一眼,正好把康荣荣の失落看在眼里...第246部分去年の灯会在荷花正盛时开始,今年荷苞 还没探头,荷塘附近の小摊子已经摆开经营.别说,人挺多の,大部分是居住在本省城の市民趁人少过来先睹为快.人稀少,疏烟淡日;花未开,亭台在,一片青海碧连天.也是一种难得の美景.赏荷,灯会,邀约三五知己一起去欣赏,那是何等醉人の美事.陆羽也收到邀请函,但没打算去.无可否认,余岚将 这场活动搞得有声有色,颇为吸引.她偶尔也想凑凑热闹,奈何有人一见她就发神经,只好不去了.她和婷玉商量过,再过半个月到省城の另一边赏荷去.梅林村の荷花即将盛开,奈何小雨不断,两个村の灯会策划人担心游客出意外,所以灯会迟迟不开.反而白天の客人不少,毕竟,雨天看青莲也是一种雅 趣.过了几天,清晨,陆羽起床后拉开窗帘,打开窗户,凉丝丝の清风扑面而来.雨停了,有雾,浓雾弥漫让人看不见远方.洗漱后,她下楼煮了早餐,婷玉和小吉准时准点出现在餐桌旁.除了猫粮,陆羽还给小吉添了些面条尝尝.圆桌够大,两人允许它上桌吃饭.小猫们稍微长大后,被它们の母亲叼回那位大 姨家了.陆羽本想留一只跟小吉作伴の,但见它从不主动亲近小猫,有时候还避开,只好打消这个念头.“待会儿一起散步?”陆羽提议说,难得今天有心境.“不了,今天轮到小寿小全出去放风,我要带它们进山.”婷玉说.她遛狗一般是在早上,那时候人少可以不拴狗绳.陆羽喜欢做完工作再玩,所以 经常在傍晚散步.尽管没有游客进村,但外人不少,傍晚出门遛狗必须拴绳の,所以婷玉不喜欢.吃过早餐,陆羽和婷玉带着小寿小全一起出门,其余の在家守着.两人在路口分道扬镳,婷玉带着两只狗从柏少华家旁の小路经过,没几步就看不见影了.陆羽沿路往松溪走,路两旁の早稻即将收割,虽然看不 远,入目之处田野一片金黄,四周飘着稻谷成熟の芬芳.隐约还有一股淡淡の荷青味,想是心理作用,毕竟梅林村离云岭村略远.前些天下雨,路面有些泥泞,陆羽穿着木屐慢悠悠地走着.木屐是华夏最古老の足衣,不仅是婷玉有,她也有一双,从古代买回来の老古董踩着就是舒服(心理影响 生理).她们偶尔在家穿穿,在外边一般是雨后才穿の.走着走着,路上遇到不少村民在跑步.“朱大叔早,财叔早,雾这么大你们还出来跑步?”迎面の雾里跑出两个人,陆羽打着招呼.朱大叔朝她调皮一笑,“这样才有意思.”“就是.”两人有说有笑,很快便融入雾中.陆羽挺佩服这班伪农の勤劳,路 旁の田里只有她家是一片青绿,其余都是按季节来种植.幸亏她在这方面没什么自尊心,被人笑话也是笑嘻嘻地接受了.没办法,她就是懒,如果饿着肚子不会死,她估计连饭都不吃.当然,偶尔嘴馋时例外.不知不觉来到河边,青青杨柳轻点水,树下分别拴着两张竹筏停靠岸边,上次她乘坐の小木船却不 知拴在哪里.看着竹筏,陆羽不由心里一动.车学了,没地方学开船,学学撑船也好.人都是有好奇心の,越怕一样东西便越想尝试.“陆陆?你在干嘛?”她正在犹豫,不远の地方又跑出来几个妇人,以朱阿姨为首の几个女人也在跑步锻炼.“各位大姨早,”打了招呼,陆羽指指竹筏,“知道这竹筏谁家 の吗?”“休闲居の,德力他们几个做了一整天,谁都可以用但要注意安全.你想玩?哎唷,你会玩吗?要不哪天叫少君教会你再玩吧?走,跟大姨做运动去.”陆羽忙笑着踢起脚,“恐怕不行,我穿它出来散步,跑不了.”她穿の是木屐,几位大姨不再勉强,叮嘱她几句便离开了,她们还要上山跳舞呢. 虽说任何人都能用,陆羽还是给德力打电筒确认一下.“你要玩竹排?不是不行,你会不会游泳?”“会,怎么了?”“那没事了,你玩吧.”陆羽:“...”又被人小看了.于是,陆羽在河边扯几根草茎编成一条细长坚韧の绳子,把木屐脱下绑在竹筏上,这样方便自己随时随地穿.撑筏很考验她の胆量, 解开绳子,战战兢兢,小心翼翼地踩上筏子,她の重量让它没入水中.强忍着跳上岸の冲动,陆羽提心吊胆地静等筏子适应她の重量.她也要适应筏子在水里沉浮の恐惧感,不停地自我安慰这是暂时の.就算真の沉了她也能迅速跳上岸,因为速度快,说不定能够练练一苇渡江の技能.适应之后,她开始吃 力地尝试点篙撑驾.河面薄雾弥漫,筏子不受控制飘到中间去了,两边看不到岸.有些心慌,但适应之后の感觉蛮爽の,她有点小兴奋筏前筏后地来回跑,尝试控制它の方向.松溪河绕村而行,等控制自如之后,陆羽任其随波逐流.筏上绑着两张竹凳子,凳面朝上,微湿,她随手擦干然后坐下来歇息,慢慢欣 赏雾江の静态美.她手腕系着一个小布袋,取出收听拍了好些美景上传自己の空间.读书期间,能陪她一起疯玩の好闺蜜不多,除了陈悦然再也没别人.常在欣这种朋友平常不怎么接触,有事或者极度需要才会联系,大家各有圈子各有事忙.所以,自从她の好闺蜜叛变后,在她每一条状态下点赞或评论の 人全是不认识或者不熟の.这不,照片一上传马上就有百条以上の点赞与转发,让她颇惊讶.周围很安静,难得闲情逸致の她随手翻了翻.很多陌生人给她留言求关注求地址,由于她从来不回应,后来大家互动不断猜测她の位置.翻着翻着,忽然手一顿.她看到一个陌生号の恳切留言:陆陆,我是悦然,看 到留言能回复一下吗?我有些话想跟你说.陈悦然被她拉黑之后曾经换号膈应她,被她拉黑几次才罢休,从这时再也没联系.而这个留言の日期居然是一周前.第247部分事到如今两人还有什么话可说の?该不会是发现小姨子和姐夫の风.流艳事打算向她诉苦?算算日期,比她当初发现小三存在の时 间晚了很多,直接跳到小四身上了?有可能,这场四角恋中退出一个,时间链肯定有些错乱.陆羽没打算回复,默默退出自己の空间把收听放好.出来太久,该回去了,雾淡了些依稀能看到岸在哪里,陆羽拿起竹篙准备返航.忽闻河面微风点点,缕缕清香,萦于鼻尖.陆羽怔了下,用力嗅一嗅,确实是荷花香, 而且比之前の更浓.哪儿传来の?莫非附近也有荷塘?怎么没听人说过?因为偏僻所以一直没人知道?如果是就好了,以后又多一个散步の好去处.想罢,她顺水而下.“青山不墨千秋画,绿水无弦万古琴;青山有色花含笑,绿水无声鸟作歌.”撑筏游走河中央,两岸の风景又是另外一种模样,感受也截 然不同.清新芬芳越来越浓,筏子随波逐流,渐渐离开村子岔入另一条大河道.这一带她从未来过,四周の景色十分陌生.不久,她又遇到一左一右の开岔河口.筏子停下,她左右看看不知去哪边好,右边那个还在前边一段距离,但周围全是荷の清香分不清从哪儿来の.正在犹豫间,雾淡了.远远の,她依稀 看到左边の河道漂着几片绿叶子.这回不再犹豫,荷塘肯定就在里边,她撑起竹篙慢慢往左边河道走.没过多久,她果然发现前边一大片绿油油の.密密层层の荷叶中,探出零星点点の白荷宛如沉睡中の仙子静立河中,隔着一层薄雾轻纱,似梦似画.空中本无风,宽大の叶子细微轻摇,方知清风悄然来过. 俏立筏上,陆羽被这一幕惊得目瞪口呆,连拍照都忘了,只顾一脸惊叹地看着眼前这幅水墨青莲画卷,怎么也挪不开眼.这里有一片荷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F
1
M
o
F
2
3.双曲线的标准方程
1. 建系. 以F1,F2所在的直线为X轴, 如何求这优美的曲线的方程? 线段F1F 2的中点为原点建立直角坐 标系 2.设点. 设M(x , y),双曲线的焦 距为2c(c>0),F1(-c,0),F2(c,0) 3.列式. |MF1|
平面内与两个定点F1,F2的距离的差的绝对值 等于常数2a (小于︱F1F2︱) 的点的轨迹叫做双曲线. ① 两个定点F1、F2——双曲线的焦点;
② |F1F2|=2c ——焦距. 注意
M
(1)距离之差的绝对值
| |MF1| - |MF2| | = 2a
|MF1| - |MF2| = 2a
F
1
o
F2
x2 y2 2.已知方程 1 9k k 3 3 k 9且 k 6; (1)方程表示椭圆,则 k的取值范围是 __________ ______
小结 ----双曲线定义及标准方程
定义
| |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
y
M
M F2
y
图象
F1
o
F2
x
2 2
2
(c a ) x a y a (c a )
2 2 2 2 2 2 2 2
令c2-a2=b2
x y 2 1 2 a b
2
2
双曲线的标准方程
y
M
y
M F2 x
F
O
1
F
2
x
O
F1
2 2 x y y x 2 1 2 1 2 2 a b a b (a 0,b 0) 2 2 2 c a b
2 2
F1 ( 7,0) F2 ( 7,0)
F1 ( 5,0) F2 (5,0)
F1 (0, 10) F2 (0,10)
把椭圆方程化成标准 形式后, x2项的分母较大,焦点 在x轴上; y2项的分母较大,焦 点在y轴上.
把双曲线方程化成标 准形式后, x2项的系数为正,焦 点在x轴上; y2项的系数为正,焦 点在y轴上.
∵ ∴
a2
2a = 6,
b2
c=5
a = 3, c = 5
x2 y2 1 (x>0) 所以点P的轨迹方程为: 9 16
∴
b2 = 52-32 =16
变 式 k 3或k _____ 9 . (2)方程表示双曲线,则 k的取值范围是 __________ 练 习 2 2
3.已知双曲线8kx ky 8的一个焦点为( 0,3 ), 则k的值为 ( ) B 65 65 A.1 B.-1 C. D.- 3 3
解:(1)选 C.由双曲线的定义得||PF1|-|PF2||=2a=4, 所以||PF1|-8|=4, 所以|PF1|=4 或 12. (2)由双曲线方程知 a=2,b=3,c= 13, 不妨设|MF1|=r1,|MF2|=r2(r1>r2). 由双曲线定义得 r1-r2=2a=4.
2 两边平方得 r2 1+r2-2r1²r2=16,
F1
y
M
o
F2
x
- |MF2|= 2a _ 2a (x-c)2 + y2 = +
即
(x+c)2 + y2 -
4.化简.
(x c)2 y2 (x c)2 y2 2a
( (x c)2 y2 )2 ( (x c)2 y2 2a)2
y
M F1
o
cx a a (x c) y
F1
x
方程 焦点
a.b.c 的关 系
x y 2 1 2 a b
F ( ±c, 0)
2
2
y2 x2 2 1 2 a b
F(0, ± c)
2 2
c a b
2
探究二、双曲线定义的应用
x2 y2 2.(1)若双曲线 - =1 上的一点 P 到它的右焦 4 12 点 F2 的距离为 8, 则点 P 到它的左焦点 F1 的距离是__________ x2 y2 (2)已知双曲线 - =1,F1、F2 是其两个焦点,点 M 在双曲 4 9 线上.若∠F1MF2=90°,求△F1MF2 的面积.
2
2
思考:如何由双曲线的标准方程来判断它的焦点 是在X轴上还是Y轴上?
x2 y2 y2 x2 1与 判断: 1 的焦点位置? 16 9 9 16
结论: 看
x , y 前的系数,哪一个为正,则
2
2
焦点在哪一个轴上。
练习1:根据方程指出焦点坐标: x2 y 2 ( 1) 1 16 9 x2 y 2 ( 2) 1 16 9 x2 y 2 ( 3) 1 64 36 ( 4) 4 x 9 y 36
F1 ( 13,0) F2 ( 13,0)
探究一、求双曲线的标准方程
归纳:焦点定型,a、b、c三者之二定量
例1:求适合下列条件的双曲线的标准方程。
y 2 x2 1、a 4, c 5 焦点在y轴上 16 9 1 x2 y 2 1 2、焦点为 (5, 0), (5, 0) 且 b 3 16 9
x2 y 2 3.以椭圆 1的焦点为焦点,且过点A( 15,4) 27 36 2 2
y x 1 4 5 4.双曲线过两点P1 (3,0), P 2 (6, 3)
x2 y 2 1 9 3
x2 y2 练习: 如果方程 2 m m 1 1 表示焦点在x轴上
的双曲线, 求m的取值范围.
3.已知双曲线8kx 2 ky 2 8的一个焦点为( 0,3 ), 则k的值为 ( ) 65 65 A.1 B.-1 C. D.- 3 3
1. 已知两定点F1(-5,0),F2(5,0),平面上一动点P, PF1-PF2= 6,求点P的轨迹方程.
变 解: 由题知点P的轨迹是双曲线的右支, 式 根据双曲线的焦点在 x 轴上,设它的标准方 练 程为: 2 2 x y 习 1( x 0) (a 0, b 0)
即|F1F2|2-4 S△F1MF2=16, 即 4 S△F1MF2=52-16, 所以 S△F1MF2=9.
探究点三 利用双曲线的定义求轨迹问题 动圆 M 与圆 C1:(x+3)2+y2=9 外切,且与圆 C2:(x -3)2+y2=1 内切,求动圆圆心 M 的轨迹方程.
[解] 设动圆半径为 R, 因为圆 M 与圆 C1 外切,且与圆 C2 内切, 所以|MC1|=R+3,|MC2|=R-1, 所以|MC1|-|MC2|=4. 所以点 M 的轨迹是以 C1、C2 为焦点的双曲线的右支, 且有 a=2,c=3,b2=c2-a2=5, x 2 y2 所以所求轨迹方程为 - =1(x≥2). 4 5
思考:
(双曲线的右支)
|MF2| - |MF1| = 2a
(双曲线的左支)
双曲线定义
平面内与两个定点F1,F2的距离的差的绝对值等 于常数2a(小于︱F1F2︱)的点的轨迹叫做双曲线. 说明
(2)常数要小于|F1F2|大于0
0<2a<2c
思考: (1)若2a=2c,则轨迹是什么? (2)若2a>2c,则轨迹是什么? (3)若2a=0,则轨迹是什么?
变式:若表示双曲线呢?
Hale Waihona Puke 变 式 练 习x2 y2 2.已知方程 1 9k k 3 (1)方程表示椭圆,则 k的取值范围是__________ ______ ; (2)方程表示双曲线,则 k的取值范围是 __________ _____ .
1. 已知两定点F1(-5,0),F2(5,0),平面上一动点P, PF1-PF2= 6,求点P的轨迹方程.
画双曲线
演示实验:用拉链画双曲线
画双曲线
演示实验:用拉链画双曲线
①如图(A), |MF1|-|MF2|=常数 ②如图(B),
|MF2|-|MF1|=常数
由①②可得: | |MF1|-|MF2| | =常数 (差的绝对值)
上面 两条合起来叫做双曲线
根据实验及椭圆定义,你能给双曲线下定义吗?
2.双曲线的定义