刚体定轴转动的转动定律
刚体定轴转动定律

o
P
x
2.角位移
描写刚体位置变化的物理量。
角坐标的增量:
称为刚体的角位移
y v2 p v1
P
3.角速度
R
x
描写刚体转动快慢和方向
的物理量。
角速度 lim d
t0 t dt 方向:满足右手定则,沿刚体转动方向右旋大拇指指向。
角速度是矢量,但对于刚体定轴 转动角速度的方向只有两个,在表 示角速度时只用角速度的正负数值 就可表示角速度的方向,不必用矢 量表示。
11mb 2
例4、半径为 R 质量为 M 的 圆环,绕垂直于圆环平面的 质心轴转动,求转动惯量J。
解: J R2dm MR 2
M o R dm
例5、半径为 R 质量为 M 的圆盘,绕垂直于圆盘 平面的质心轴转动,求转动惯量 J。
解:分割圆盘为圆环
dm
M
R2
2
rdr
J r2dm
M
dr
R
0
t 细杆绕一端的转动惯量
J 1 ml 2 3
摩擦阻力
t
例8、质量为 m1 和m2 两个物体, 跨在定滑轮上 m2 放在光滑的桌 面上,滑轮半径为 R,质量为 M,求:m1 下落的加速度,和 绳子的张力 T1、T2。
解:m1 g T1 m1a (1)
T2 m2a
b)作圆周运动的质点的角动量 L= r m v
c)角动量是描述转动状态的物理量;
P L
d)质点的角动量又称为动量矩。
or
dL
d (r mv)
dr
mv
r
d (mv)
r
F
dt
简述刚体转动定律

刚体转动定律引言刚体转动定律是描述刚体绕固定轴进行旋转时运动规律的物理定律。
在刚体力学中,刚体是指其内部各点的相对位置保持不变的物体。
刚体转动定律主要包括角动量守恒、角加速度与力矩之间的关系以及转动惯量等内容。
本文将从这些方面对刚体转动定律进行详细介绍。
角动量守恒角动量是描述旋转物体运动状态的重要物理量,定义为质点或刚体绕某一轴线旋转时,其线性动量相对于该轴线的偏离程度。
在没有外力作用下,系统的角动量守恒。
角动量L可以表示为L = Iω,其中I是物体的转动惯量,ω是物体的角速度。
根据角速度ω = Δθ/Δt可以得到L = IΔθ/Δt。
当一个刚体受到外力矩作用时,根据牛顿第二定律可以得到F = ma,同样地,在角度上也有τ = Iα。
其中τ表示力矩,I表示物体的转动惯量,α表示物体的角加速度。
当刚体绕固定轴转动时,如果外力矩为零,则根据牛顿第二定律可以得到τ = 0,进而推导出Iα = 0。
由此可见,在没有外力矩作用下,刚体的角加速度为零,即角动量守恒。
转动惯量转动惯量是描述物体对于旋转运动的惯性大小的物理量。
对于一个质点来说,其转动惯量可以表示为I = mr²,其中m是质点的质量,r是质点到轴线的距离。
对于一个复杂形状的刚体来说,其转动惯量则需要通过积分计算得到。
对于连续分布的物体来说,其转动惯量可以表示为I = ∫r²dm。
不同形状和布局的刚体具有不同的转动惯量。
例如,对于一个围绕自身中心垂直旋转的圆盘来说,其转动惯量可以表示为I = ½MR²,其中M是圆盘的质量,R是圆盘半径。
角加速度与力矩之间的关系当刚体受到外力矩作用时,根据牛顿第二定律可以得到τ = Iα。
这个关系描述了力矩和角加速度之间的关系。
对于一个质点来说,其角加速度可以表示为α = τ/I,其中τ是作用在质点上的力矩,I是质点的转动惯量。
对于一个复杂形状的刚体来说,其转动惯量不仅与质量有关,还与物体的形状和布局有关。
刚体定轴转动定律公式

刚体定轴转动定律公式刚体定轴转动定律是描述刚体绕定轴做转动运动的数学公式。
本文将详细介绍刚体定轴转动定律的公式及相关参考内容。
1.刚体定轴转动定律公式1.1角位移公式刚体绕定轴做转动运动时,它的每一个质点都有一个角位移,角位移是一个标量,用Δθ表示。
角位移与刚体绕定轴转动的弧长有关,它们之间的关系可以用以下公式表示:Δθ = Δl / r其中,Δl表示弧长的长度,r表示刚体绕定轴的半径。
1.2角速度公式角速度是描述刚体绕定轴的旋转速度的物理量,用ω表示,角速度是一个矢量,它的方向垂直于刚体绕定轴的平面,符号和方向由右手定则确定。
角速度与角位移之间的关系可以用以下公式表示:ω = Δθ / Δt其中,Δt表示时间间隔。
1.3角加速度公式角加速度是描述刚体绕定轴转动加速度的物理量,用α表示,角加速度是一个矢量,它的方向也垂直于刚体绕定轴的平面,符号和方向由右手定则确定。
角加速度与角速度之间的关系可以用以下公式表示:α = Δω / Δt其中,Δt表示时间间隔。
1.4力矩公式力矩是描述外力对刚体绕定轴转动影响的物理量,用M表示,力矩是一个矢量,它的方向垂直于刚体绕定轴的平面,符号和方向由右手定则确定。
力矩与角加速度之间的关系可以用以下公式表示:M = I α其中,I表示刚体绕定轴的转动惯量,α表示角加速度。
2.参考内容2.1转动惯量的定义转动惯量是描述刚体绕定轴转动惯性的物理量,用I表示,它反映了刚体对于绕定轴转动的惯性大小。
转动惯量的计算方法取决于刚体的形状和密度分布。
常见的刚体的转动惯量计算公式:(1)矩形薄板绕转轴的转动惯量Izz = 1/12m(a²+b²)其中,m表示薄板的质量,a和b表示薄板的长和宽。
(2)圆环绕轴的转动惯量Izz = mr²其中,m表示圆环的质量,r表示圆环的半径。
2.2角动量的定义角动量是描述刚体绕定轴转动动量的物理量,用L表示,它反映了刚体绕定轴转动的惯性大小和角速度大小。
刚体定轴转动的转动定律力矩

力矩平衡的条件
静平衡
刚体在转动过程中,如果合力矩 为零,则刚体保持静止状态。
动平衡
刚体在转动过程中,如果合力矩为 零,则刚体保持匀速转动状态。
平衡状态
无论是静平衡还是动平衡,刚体的 平衡状态都满足合力矩为零的条件。
力矩平衡的应用
机械平衡
在机械设计中,通过调整刚体的质量 分布或添加平衡装置,使刚体在转动 过程中满足力矩平衡条件,以保证机 械设备的稳定性和可靠性。
刚体的定轴转动
定轴转动:刚体绕某一固定轴线作旋 转运动。
在定轴转动中,刚体的角速度和角加 速度是矢量,其方向沿固定轴线,而 力矩是改变刚体转动状态的唯一物理 量。
刚体定轴转动的特点
角速度矢量、角加速度矢量和力 矩矢量都与固定轴线平行。
刚体定轴转动时,其上各点的速 度方向与该点到轴线的垂直线段 相垂直,各点的加速度方向与该
实例三:旋转木马的旋转
总结词
旋转木马的旋转是刚体定轴转动的又一实例,通过外力矩的作用,使旋转木马绕轴转动。
详细描述
旋转木马在外力矩的作用下开始转动,当旋转木马转动时,由于摩擦阻力和空气阻力的作用,旋转木 马会逐渐减速并最终停止。
实例四:陀螺的稳定旋转
总结词
陀螺的稳定旋转是刚体定轴转动的最后一个实例,陀螺通过自转保持稳定的旋转状态。
在日常生活和工业生产中,转动 定律也广泛应用于各种旋转运动
的分析和设计。
04
刚体定轴转动的力矩平衡
力矩平衡的概念
力矩平衡
刚体在转动过程中,受到 的力矩之和为零,即合力 矩为零。
力矩
力对转动轴的力矩等于力 和力臂的乘积,其中力臂 是从转动轴到力的垂直距 离。
转动轴
刚体转动的中心轴,可以 是固定的点或线。
大学物理Ⅰ刚体定轴转动的转动定律

5.1刚体运动的描述
一.刚体
刚体:在外力作用下,形状和大小都不发生变 化的物体 . (任意两质点间距离保持不变的特殊质点 组)
(1)刚体的运动
刚体的运动形式:平动、转动 .
平动:若刚体中所有点 的运动轨迹都保持完全相同, 或者说刚体内任意两点间的 连线总是平行于它们的初始 位置间的连线 .
F F11 F
其中F11对转轴的力 矩为零,故 F 对转轴的力矩
M zk r F
z
k F11
F
O r
F
M z rF sin
2)合力矩等于各分 力矩的 矢量和 M M1 M2 M3
第五章 刚体的定轴转动
3) 刚体内作用力和反作用力的力矩互相抵消
M ij
O
rj
d ri
i
j
Fji Fij
M
rdf
l
grdr
0
1 gl 2
2
1 mgl
2
dm dl
dm ds
dm dV
其中、、分别
为质量的线密度、 面密度和体密度。
线分布
面分布
体分布
第五章 刚体的定轴转动
m 例1 一质量为 、长为 l 的均匀细长棒,求通过棒中
心并与棒垂直的轴的转动惯量 .
O
Or
l 2 O´ dr l 2
O´ dr l
r 解 设棒的线密度为 ,取一距离转轴 OO´ 为 处的质
fi
第五章 刚体的定轴转动
M i外 M i内 miri2
i
i
i
Mi内 0
i
M i外 ( miri2 )
i
i
z
O rj
2.91刚体的定轴转动力矩 转动定律 转动惯量

M r F
d
P
F
F
Fi 0 , M i 0
F
F
2.9刚体的定轴转动定律
讨论
第二章 守恒定律
1)若力 F 不在转动平面内,把力分解为平行和垂
直于转轴方向的两个分量 其中 Fz 对转轴的力 矩为零,故 F 对转轴的 力矩
代入初始条件积分 得
3g d sind 2l
3g (1 cos ) l
考虑到
7lg 12 v0 dr g cost cos( t) dt 2 24 v0 7l
t
2.9刚体的定轴转动定律
第二章 守恒定律
例4 一长为 l 质量为 m 匀质细杆竖直放置,其 下端与一固定铰链 O 相接,并可绕其转动 . 由于此 竖直放置的细杆处于非稳定平衡状态,当其受到微小 扰动时,细杆将在重力作用下由静止开始绕铰链O 转 动 .试计算细杆转动到与竖直线成 角时的角加速度 和角速度 .
刚体定轴转动的角动量定理
第二章 守恒定律
t2
t1
Mdt J 2 J1
3 刚体定轴转动的角动量守恒定律 若M 讨论 若 J 不变, 不变;若 J 变, 也变,但 L 内力矩不改变系统的角动量.
守 恒条件
0 ,则 L J 常量
M 0
J 不变.
在冲击等问题中
L mi ri vi (
i
2 mi ri )
L J
i
ri
mi
z
2 刚体定轴转动的角动量定理 dL d( J ) M dt dt
O
vi
t1
[理学]第5章 刚体的定轴转动_OK
![[理学]第5章 刚体的定轴转动_OK](https://img.taocdn.com/s3/m/1edbe6d74b35eefdc8d333f9.png)
J 2
x 2dm l x2dx 1 ml 2
0
3
o
dx
dm
17 x
图(2)
记住几个典型的转动惯量:
*圆环(通过中心轴)………………… J = mR2
*圆盘、圆柱(通过中心轴)………… J 1 mR2 2
*细棒(端点垂直轴)…………………J A
1 3
m L2
*细棒(质心垂直轴)…………………J c
滑轮的角速度.
解:两重物加速度大小a相同,滑轮角加速度为
隔离物体分析力方向如图
由牛顿第二定律: m1g-T1=m1a T2-m2g=m2a
转动定律: (T1-T2)r=Jb 且有: a=rb
T1 T1 a m1 m1g
r T2
m2 T2 a
m2g
解方程组得:
m1 m2 gr m1 m2 r 2 J
转动平面: 取垂直于转轴 的平面为参考系, 称转动平面。,
转轴
Z 转动方向
vi
Δmi
转动平面
P
o θ
x
op r
2.定轴转动的角量描述
1.角位置θ
6
2.角位移
3.角速度: d 角速度是矢量 。dt
单位:rad/s
Zω 转动方向
v
方向与转动方向成 右手螺旋法则。
P点线速度 v r
P
o θ 转动平面 op r
第五章 刚体的定轴转动
转轴
1
一、力矩
复习
M rF
1. 大小:M = rFsinθ
2.方向:由右手螺旋定则确定。
Z F// F
O r F⊥ p
注意:上式中F指的是与转轴垂直平面(转动平面)上的力,
第五章 刚体的定轴转动

刚体定轴转动
ω
v 的方向按右手螺旋法则确定. 的方向按右手螺旋法则确定.
在定轴转动中, 在定轴转动中,角速度的方向 沿转轴方向. 沿转轴方向.
角加速度α 角加速度
v ω
2
ω dω d θ = = 2 α = lim t →0 t dt dt
单位: 单位:rad /s 2 角加速度也是矢量, 角加速度也是矢量,方向与角速度增量 的极限方向相同,在定轴转动中, 与 同向 的极限方向相同,在定轴转动中,α与ω同向 或反向. 或反向. 刚体的转动其转轴是可以改变的, 刚体的转动其转轴是可以改变的,为反映瞬时轴的方 向及其变化情况,引入角速度矢量和角加速度矢量. 向及其变化情况,引入角速度矢量和角加速度矢量. 注意 退化为代数量. :定轴转动时, ω,α退化为代数量. 定轴转动时, 退化为代数量
刚体的一般运动都可认为是平动和转动的结合. 刚体的一般运动都可认为是平动和转动的结合.
1. 用角量描述转动 (1) 角位移 θ : ) 时间内刚体转动角度. 在 t 时间内刚体转动角度. 单位: 单位:rad (2)角速度 ω : )
z θ
B A
θ dθ ω = lim = t →0 t dt
●
r2
转动惯量的定义: 转动惯量的定义:
J = ∑mi ri
2
对质量连续分布的刚体, 对质量连续分布的刚体,上式可写成积分形式
J = ∫ r dm
2
dm—质元的质量 质元的质量 r—质元到转轴的距离 质元到转轴的距离
线分布 dm = λdx 面分布 dm = σds 体分布 dm = ρdV
λ 是质量的线密度
F iz
ri = roi sinθ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
J端点
x2dm
m
o
0Lx2mLdx A
1 mL 2
o
3
x dx
dm L
Bx
(2)如图所示,以过中点垂直于棒的 为oo 轴,沿棒长方向为x 轴,原点在轴上,在棒 上取长度元 ,d则x 由转动惯量的定义有:
o
A
x dx B x
dm
L
L
2 o2
J端点
x2dm
m
L 2 L 2
x2
mLdx
1 12
如: 滑冰运动员的表演.
3.2.4 例题分析
1.一绳跨过定滑轮,两端分别系有质量分 别为m 和M 的物体,且 M . 滑m 轮可看作是 质量均匀分布的圆盘,其质量为 ,半径m为 R ,转轴垂直于盘面通过盘心,如图所示. 由于轴上有摩擦,滑轮转动时受到了摩擦 阻力矩 的作用M阻. 设绳不可伸长且与滑轮间 无相对滑动.求物体的加速度及绳中的张力.
此时有 ,T1物理T2学中称这样的滑轮为“理 想滑轮”,称这样的装置为阿特伍德机.
2.求长为L ,质量为m 的均匀细棒AB 的转
动惯量.
(1)对于通过棒的一端与棒垂直的轴;
(2)对于通过棒的中点与棒垂直的轴.
解 (1)如图所示,以过A 端垂直于棒的 为oo
轴,沿棒长方向为x 轴,原点在轴上,在棒
上取长度元 ,d则x 由转动惯量的定义有:
J miri2
i
适用于离散分布刚体转动惯量的计算
J r2dm m
适用于连续分布刚体转动惯量的计算 在国际单位制(SI)中,转动惯量的单位 为千克二次方米,即 k.g m2
刚体转动惯量的大小与下列因素有关:
(1)形状大小分别相同的刚体质量大的转 动惯量大;
(2)总质量相同的刚体,质量分布离轴越 远转动惯量越大;
0
W内力 0,
Ek0 12J02,
Ek
1J2.
2
微分形M 式d: d12J2
积
分形式 M: d1J2
0
2
12J02
3.2.3 刚体定轴转动的角动量守恒定律
1. 角动量( 动量矩 )
L
对于定点转动而言: L r P
r m v
P m v
在国际单位制(SI) 中,角动量的单位为 o
r
z
F
o
r F//
F
P
注意:
(1)力矩是对点或对轴而言的; (2)一般规定,使刚体逆时针绕定轴转动 时M;0使刚体顺时针绕定轴转动时 M . 0
2. 刚体定轴转动的转动定律
对质元 ,m由i 牛顿 第二运动定律得
F 外 F 力 内 力 m ia i
其中 a是i 质元 绕m轴i 作圆运动的加速度, 写为分量式如下:
3.2 刚体定轴转动动力学
3.2.1 刚体定轴转动的转动定律 3.2.2 刚体定轴转动的动能定理 3.2.3 刚体定轴转动的角动量守恒定律 3.2.4 例题分析
3.2.1 刚体定轴转动的转动定律
1. 力矩
M
对于定点转动而言:
MFd
Fsrin
M r F o r
d
F
m
对于定轴转动而言:
M r F rF
v i mi ri
o
2. 刚体定轴转动时力矩所做的功及功率
d W F d r y
F
(Fco)sds
(Fsrin )d
dr
dW M d
o
d
r
P
x
W Md 0
NdW M dM
dt dt
3. 刚体定轴转动的动能定理
W 外 W 内 力 E 力 k E k E k 0
W外力
Md,
m
kgm2s1 rsin
对于绕固定轴oz的转 动的L 质 i元 r i 而 mm 言iiv : i
m iri2k
z
L
vi ri
mi
对于绕固定轴oz 转动 的整个刚体而言:
L Nmiri2J
i
角动量的方向沿轴的正向或负向,所以可
用代数量来描述.
2. 角动量定理(动量矩定理)
M J d dJ dL
dt dt dt
微分 M 形 d d J t式 d: L 积分形 tt0M式 dJ t: J0
的合外力矩为零.
——角动量守恒的条件
则 d d L : J 0 , 或 L J 常 . 量
——角动量守恒的内容
注意:在推导角动量守恒定律的过程中受 到了刚体、定轴等条件的限制,但它的适用 范围却远远超过了这些限制.
z ,
F内力
orimi i
i
F外力
F 外c力 oi sF 内c力 oi s m iain F 外s力 in iF 内s力 in i m iai
其中 和a in 是a质i 元 绕轴m作i 圆运动的法向 加速度和切向加速度,所以
法 法向 力向 F 的外 作c力 用: o 线i 过sF 转内 轴c,力 其o 力i 矩s 为m 零iri . 2 切F 向 外s力 i: in F 内s力 iin m iri
据题意可知,绳与滑轮间无相对滑动,所 以滑轮边缘上一点的切向加速度和物体的加 速度相等,即
a a 1 a 2 a R
联立以上三个方程,得
(M m)g M阻
a
R M m m
2
(2Mm)m gmM 阻
T1m(ga)
2
R
Mmm
2
(2mm)MgMM 阻
T2M(ga)
2
R
Mmm
2
注意:当不计滑轮的质量和摩擦阻力矩时,
F 外 r is力 i i n F 内 r is力 i i n m ir i 2
外F 力外 矩r 为is 力 Miin 内F 力内 矩r i为s 力 零iin m ir i2
i
i
i
MJ
刚体定轴转动的转动定律
转动惯量J
3. 转动惯量
转动惯量是刚体作转动时对惯性的量度描述.
mL2
3.试求质量为m 、半径为R 的匀质圆环 对垂直于平面且过中心轴的转动惯量.
解 受力分析如图所示.对
于上下作平动的两物体,
可以视为质点,由牛顿第 二运动定律得
对 对M m: :T M 1 gmT2gm M1a2aa
T
1
1
M
oR 阻 m
T2
若以顺时针方向转的力
mM
矩为正,逆时针转的方向 为负,则由刚体定轴转动 G m 的转动定律得
a2 GM
T 2R T 1R M 阻 J 1 2m R 2
(3)对同一刚体而言,转轴不同,质量对 轴的分布就不同,转动惯量的大小就不同.
3.2.2 刚体定轴转动的动能定理
1. 刚体定轴转动的动能( 转动动能 )
对于第i 个质元,动能为
o
Eki 12mivi2 12miri22
对于整个刚体,动能为
N
Ek Eki
i1
1 2
N miri22
i1
1 2
J
2