相似三角形应用题专项练习30题

合集下载

经典相似三角形练习题(附参考答案)

经典相似三角形练习题(附参考答案)

经典练习题相似三角形(附答案)一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=_________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问: (1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE. (1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t 的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是: _________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离O O′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S 1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S 3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.考点:相似三角形的判定;平行线的性质。

相似三角形的性质及应用练习题1

相似三角形的性质及应用练习题1

相似三角形的性质及应用练习卷一、填空题1.已知两个相似三角形的相似比为3, 则它们的周长比为;2.若△ABC∽△A′B′C′, 且, △ABC的周长为12cm, 则△A′B′C′的周长为;3、如图1, 在△ABC中, 中线BE、CD相交于点G, 则= ;S△GED: S△GBC= ;4.如图2, 在△ABC中, ∠B=∠AED, AB=5, AD=3, CE=6, 则AE= ;5.如图3, △ABC中, M是AB的中点, N在BC上, BC=2AB, ∠BMN=∠C, 则△∽△ ,相似比为 , = ;6、如图4, 在梯形ABCD中, AD∥BC, S△ADE: S△BCE=4: 9, 则S△ABD: S△ABC= ;7、如图5, 在△ABC中, BC=12cm, 点D、F是AB的三等分点, 点E、G是AC的三等分点, 则DE+FG+BC= ;8、两个相似三角形的周长分别为5cm和16cm, 则它们的对应角的平分线的比为;9、两个三角形的面积之比为2: 3, 则它们对应角平分线的比为 , 对应边的高的比为;对应边的中线的比周长的比10、已知有两个三角形相似, 一个边长分别为2、3、4, 另一个三角形最长边长为12, 则x、y的值为;二、选择题11.下列多边形一定相似的为()A.两个矩形B.两个菱形C.两个正方形D.两个平行四边形12、在△ABC中, BC=15cm, CA=45cm, AB=63cm, 另一个和它相似的三角形的最短边是5cm, 则最长边是()A.18cmB.21cmC.24cmD.19.5cm13、如图, 在△ABC中, 高BD.CE交于点O, 下列结论错误的是()A.CO·CE=CD·CA B、OE·OC=OD·OBC.AD·AC=AE·AB D、CO·DO=BO·EO14.已知, 在△ABC 中, ∠ACB=900, CD ⊥AB 于D, 若BC=5, CD=3, 则AD 的长为( )A.2.25B.2.5C.2.75D.315.如图, 正方形ABCD 的边BC 在等腰直角三角形PQR 的底边QR 上,其余两个顶点A.D 在PQ 、PR 上, 则PA :PQ 等于( )A.1:B.1: 2C.1: 3D.2: 316.如图, D 、E 分别是△ABC 的边AB 、AC 上的点, = =3,且∠AED=∠B, 则△AED 与△ABC 的面积比是( )A 、1: 2B 、1: 3C 、1: 4D 、4: 9三、解答题17、如图, 已知在△ABC 中, CD=CE, ∠A=∠ECB, 试说明CD2=AD ·BE 。

相似三角形应用题

相似三角形应用题

相似三角形练习题一、解答填空题(共30小题)1、已知BD,CE是△ABC的高,BD•AC_________AB•CE(用两种方法).2、如图,在△ABC中,D是AC上的一点,已知AB2=AD•AC,∠ABD=35°,则∠C=_________度.3、如图,已知AC⊥AB,BD⊥AB,AO=78cm,BO=42cm,CD=159cm,则CO=_________ cm,DO=_________cm.4、如图,已知∠ABC=∠ACD,若AD=3cm,AB=7cm,则AC=_________cm.5、如图,已知△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,AD=4,BD=1.(1)求证:△ABC∽△CBD;(2)则cosB的值为_________.6、如图,在平行四边形ABCD中,过顶点A的直线AF交CD于E点,交BC的延长线于F点.(1)则△ADE_________△FBA;(2)若E点为CD中点,则的值为_________.7、如图,在△ABC中,点D是AB中点,点E在边AC上,且∠AED=∠ABC,如果AE=3,EC=1,那么边AB=_________.8、如图,已知AB:AD=BC:DE=AC:AE,则∠ABD与∠ACE的关系_________.9、如图,已知△ABC中,点E、F分别是AC、AB边上的点,EF∥BC,AF=2,BF=4,BC=5,连接BE,CF相交于点G.(1)则线段EF=_________;(2)则=_________.10、如图,在△ABC中,AB=5,BC=3,AC=4,动点E(与点A,C不重合)在AC边上,EF ∥AB交BC于F点.(1)当△ECF的面积与四边形EABF的面积相等时,CE=_________;(2)当△ECF的周长与四边形EABF的周长相等时,CE=_________.11、如图,在梯形ABCD中,AD∥BC,∠B=90°,AC⊥CD,若AD=9,BC=4,则AC的长为_________.12、如图,△ABC中,AD平分∠BAC,CD=CE,则AB•CD_________AC•BD.13、(2010•宁德)我们知道当人的视线与物体表面互相垂直时的视觉效果最佳.如图是小明站在距离墙壁1.60米处观察装饰画时的示意图,此时小明的眼睛与装饰画底部A处于同一水平线上,视线恰好落在装饰画中心位置E处,且与AD垂直.已知装饰画的高度AD为0.66米,求:(1)装饰画与墙壁的夹角∠CAD=_________度(精确到1°);(2)装饰画顶部到墙壁的距离DC=_________米(精确到0.01米).14、(2009•陕西)小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A、E、C在同一直线上).已知小明的身高EF是1.7m,楼高AB是_________m(结果精确到0.1m).15、(2009•德城区)亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M,颖颖的头顶B及亮亮的眼睛A恰在一条直线上时,两人分别标定自己的位置C,D.然后测出两人之间的距离CD=1.25m,颖颖与楼之间的距离DN=30m(C,D,N在一条直线上),颖颖的身高BD=1.6m,亮亮蹲地观测时眼睛到地面的距离AC=0.8m.住宅楼的高度为_________米.16、(2007•玉溪)如图所示,一段街道的两边缘所在直线分别为AB,PQ,并且AB∥PQ.建筑物的一端DE所在的直线MN⊥AB于点M,交PQ于点N.小亮从胜利街的A处,沿着AB 方向前进,小明一直站在点P的位置等候小亮.(1)请你在图中画出小亮恰好能看见小明时的视线,以及此时小亮所在位置(用点C标出);(2)已知:MN=20 m,MD=8 m,PN=24 m,求(1)中的点C到胜利街口的距离CM=_________ m.17、(2005•济南)如图,在一个长40m、宽30m的长方形小操场上,王刚从A点出发,沿着A⇒B⇒C的路线以3m/s的速度跑向C地.当他出发4s后,张华有东西需要交给他,就从A地出发沿王刚走的路线追赶.当张华跑到距B地2m的D处时,他和王刚在阳光下的影子恰好重叠在同一条直线上.此时,A处一根电线杆在阳光下的影子也恰好落在对角线AC上.(1)求他们的影子重叠时,两人相距_________米.(DE的长)(2)求张华追赶王刚的速度是_________m/s(精确到0.1m/s).18、如图,一油桶高AE为1m,桶内有油,一根木棒AB长为1.2m,从桶盖的小口(A)处斜插入桶内,一端插到桶底,另一端与小口(A)齐平,抽出木棒,量得棒上未浸油部分AC长为0.48m.桶内油面的高度DE=_________m.19、如图,某同学身高1.6米,由路灯下向前步行4米,发现自己的影子长有2米,此路灯高有_________米.20、兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米.(1)一个实际或现实的问题只有数学化后,才有可能用数学的思想方法解决.请你认真读题,画出示意图,并在示意图上标注必要的字母和数字.(2)利用示意图,树的高度是_________米.21、小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面上放一面平面镜,镜子与教学大楼的距离EA=21米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米.教学大楼的高度AB是_________米(注意:根据光的反射定律:反射角等于入射角).22、有一块两直角边长分别为3cm和4cm的直角三角形铁皮,要利用它来裁剪一个正方形,有两种方法:一种是正方形的一边在直角三角形的斜边上,另两个顶点在两条直角边上,如图(1);另一种是一组邻边在直角三角形的两直角边上,另一个顶点在斜边上,如图(2).两种情形下正方形的面积哪个大?_________(填(1)或(2)即可).23、如图,灯泡在圆桌的正上方,当距桌面2m时,圆桌的影子的直径为2.8m,在仅仅改变圆桌的高度,其他条件不变的情况下,圆桌的桌面再上升_________米,其影子的直径变为3.2m.24、如图,马路MN上有一路灯O,小明沿着马路MN散步,当他在距路灯灯柱6米远的B 处时,他在地面上的影长是3米,问当他在距路灯灯柱10米远的D处时,他的影长DF是_________米.25、如图所示,AD、BC为两路灯,身高相同的小明、小亮站在两路灯杆之间,两人相距6.5m,小明站在P处,小亮站在Q处,小明在路灯C下的影长为2m,已知小明身高1.8m,路灯BC高9m.①小亮在路灯D下的影长为_________m;②建筑物AD的高为_________m.26、在《九章算术》“勾股”章中有这样一个问题:“今有邑方不知大小,各中开门,出北门二十步有木,出南门十回步,折而西行﹣千七百七十五步见木.问邑方几何.”用今天的话说,大意是:如图,DEFG是一座正方形小城,北门H位于DG的中点,南门K 位于EF的中点,出北门20步到A处有一树木,出南门14步到C,再向西行1775步到B处,正好看到A处的树木(即点D在直线AB上),小城的边长为_________步.27、如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,电视塔的高ED=_________米.28、已知:如图,一人在距离树21米的点A处测量树高,将一长为2米的标杆BE在与人相距3米处垂直立于地面,此时,观察视线恰好经过标杆顶点E及树的顶点C,此树的高是_________米.29、一位同学想利用树影测树高AB.在某一时刻测得1m的竹竿的影长为0.7m,但当他马上测树影时,发现影子不全落在地上,一部分落在了附近的﹣幢高楼上(如图).于是他只得测出了留在墙上的影长CD为 1.5m,以及地面部分上的影长BD为 4.9m.树高是_________米.30、如图,小龙要测量楼的顶层一根旗杆的顶端距地面的距离.他在地面上放置一面镜子,若小龙的眼睛距镜面中心点2米,镜面中心点距离小龙的脚1.2米,距离大楼底部12米,这根旗杆的顶端距地面的距离为_________米.答案与评分标准一、解答填空题(共30小题)1、已知BD,CE是△ABC的高,BD•AC=AB•CE(用两种方法).考点:相似三角形的判定与性质。

相似三角形判定专项练习30题(有答案)

相似三角形判定专项练习30题(有答案)

相似三角形判定专项练习30题(有答案)1.如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且CF=3FD,△ABE与△DEF相似吗?为什么?2.如图,△BAC、△AGF为等腰直角三角形,且△BAC≌△AGF,∠BAC=∠AGF=90°.若△BAC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E.请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.3.如图,在正三角形ABC中,D,E分别在AC,AB上,且,AE=EB.求证:△AED∽△CBD.4.如图,已知∠1=∠2,且AB•ED=AD•BC,则△ABC与△ADE相似吗?是说明理由.5.已知:如图,在△ABC中,∠C=90°,点D、E分别AB、CB延长线上的点,CE=9,AD=15,连接DE.若BC=6,AC=8,求证:△ABC∽△DBE.6.如图,点D在等边△ABC的BC边上,△ADE为等边三角形,DE与AC交于点F.(1)证明:△ABD∽△DCF;(2)除了△ABD∽△DCF外,请写出图中其他所有的相似三角形.7.如图,CD、BE分别是锐角△ABC中AB、AC边上的高线,垂足为D、E.(1)证明:△ADC∽△AEB;(2)连接DE,则△AED与△ABC能相似吗?说说你的理由.8.如图,在△ABC,AC⊥BC,D是BC延长线上的一点,E是AC上的一点,连接ED,∠A=∠D.求证:△ABC∽△DEC.9.在任意△ABC中,作CD⊥AB,垂足为D,BE⊥AC,垂足为E,F为BC上的中点,连接DE,EF,DF.(1)求证:DF=EF;(2)直接写出除直角三角形以外的所有相似三角形;(3)在(2)中的相似三角形中选择一对进行证明.10.如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE,AD与BE相交于点F.(1)试说明△ABD≌△BCE;(2)△EAF与△EBA相似吗?说说你的理由.11.如图,在△ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,交BA于点E,EC与AD相交于点F.求证:△ABC∽△FCD.12.已知:在Rt△ABC中∠C=90°,CD为AB边上的高.求证:Rt△ADC∽Rt△CDB.13.如图,D为△ABC内一点,E为△ABC外一点,且∠1=∠2,∠3=∠4,找出图中的两对相似三角形并说明理由.14.如图,∠DEC=∠DAE=∠B,试说明:(1)△DAE∽△EBA;(2)找出两个与△ABC相似的三角形(第2小题不要求写出证明过程).15.如图,锐角三角形ABC中,CD,BE分别是AB,AC边上的高,垂足为D,E.(1)证明:△ACD∽△ABE.(2)若将D,E连接起来,则△AED与△ABC能相似吗?说说你的理由.16.如图,在△ABC中,∠BAC=90°,D为BC的中点,AE⊥AD,AE交CB的延长线于点E.(1)求证:△EAB∽△ECA;(2)△ABE和△ADC是否一定相似?如果相似,加以说明;如果不相似,那么增加一个怎样的条件,△ABE和△ADC 一定相似.(1)求证:△ADE∽△ABC;(2)△ABD与△ACE相似吗?为什么?(3)图中还有哪些三角形相似?请直接写出来.18.如图,已知:△ABC为等腰直角三角形,∠ACB=90°,延长BA至E,延长AB至F,∠ECF=135°,求证:△EAC∽△CBF.19.如图所示,Rt△ABC中,已知∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达点B,C),过点D作∠ADE=45°,DE交AC于点E.(1)求证:△ABD∽△DCE;(2)当△ADE是等腰三角形时,求AE的长.20.如图,点E是四边形ABCD的对角线BD上一点,且∠BAC=∠BDC=∠DAE.求证:△ABE∽△ACD.21.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s 的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的22.如图,矩形ABCD中,AB=6,BC=8,动点P从B点出发沿着BC向C移动,速度为每秒2个单位,动点Q 从点C出发沿CD向D出发,速度为每秒1个单位,几秒后由C、P、Q三点组成的三角形与△ABC相似?这时线段PQ与AC的位置关系如何?请说明理由.23.已知,如图,,点B,D,F,E在同一条直线上,请找出图中的相似三角形,并说明理由.24.已知线段AC上有一动点B,分别以AB、BC为边向线段的同一侧作等边三角形△ABD和△BCE.连接AE、CD (如图),若MN分别为AE、CD的中点,(1)求证:AM=CN;(2)求∠MBN的大小;(3)若连接MN,请你尽可能多的说出图中相似三角形和全等三角形.25.如图,已知△ABC和△MBN都是等腰直角三角形,∠BAC=∠MBN=90°,BD⊥AN.请找出与△ABD相似的三角形并给出证明,直接写出∠ANC的度数.26.如图,在△ABC中,AB=6,BC=8.点D以每秒1个单位长度的速度由B向A运动,同时点E以每秒2个单位长度的速度由C向B运动,当点E停止运动时,点D也随之停止.设运动时间为t秒,当以B,D,E为顶点的三角形与△ABC相似时,求t的值.27.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,证明:△ABE∽△AEF.28.如图,在四边形ABCD中,AB⊥BC,AD⊥DC,连接BD,AC,且DE⊥AC于E,交AB于F,求证:△AFD∽△ADB.29.已知,如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B、A、D在一条直线上,连接BE、CD.(2)若M、N分别是BE和CD的中点,将△ADE绕点A按顺时针旋转,如图②所示,试证明在旋转过程中,△AMN 是等腰三角形;(3)试证明△AMN与△ABC和△ADE都相似.30.如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.相似三角形判定专项练习30题参考答案:1.解:△ABE 与△DEF 相似.理由如下: ∵四边形ABCD 为正方形, ∴∠A=∠D=90°,AB=AD=CD , 设AB=AD=CD=4a , ∵E 为边AD 的中点,CF=3FD , ∴AE=DE=2a ,DF=a ,∴==2,==2,∴=,而∠A=∠D , ∴△ABE ∽△DEF . 2.解:△EAD ∽△EBA ,△DAE ∽△DCA . 对△ABE ∽△DAE 进行证明: ∵△BAC 、△AGF 为等腰直角三角形, ∴∠B=45°,∠GAF=45°, ∴∠EAD=∠EBA , 而∠AED=∠BEA , ∴△EAD ∽△EBA . 3.证明:∵△ABC 为正三角形, ∴∠A=∠C=60°,BC=AB , ∵AE=BE , ∴CB=2AE , ∵,∴CD=2AD ,∴==,而∠A=∠C , ∴△AED ∽△CBD . 4.解:△ABC ∽△ADE ,理由为: 证明:∵AB •ED=AD •BC ,∴=,∵∠1=∠2, ∴∠1+∠ABE=∠2+∠ABE ,即∠BAC=∠DAE , ∴△ABC ∽△ADE .5.证明:∵在RT △ABC 中,∠C=90°,BC=6,AC=8, ∴AB==10,∴DB=AD ﹣AB=15﹣10=5 ∴DB :AB=1:2, 又∵EB=CE ﹣BC=9﹣6=3, ∴EB :BC=1:2,又∵∠DBE=∠ABC,∴△ABC∽△DBE.6.(1)证明:∵△ABC,△ADE为等边三角形,∴∠B=∠C=∠3=60°,∴∠1+∠2=∠DFC+∠2,∴∠1=∠DFC,∴△ABD∽△DCF;(2)解:∵∠C=∠E,∠AFE=∠DFC,∴△AEF∽△DCF,∴△ABD∽△AEF,故除了△ABD∽△DCF外,图中相似三角形还有:△AEF∽△DCF,△ABD∽△AEF,△ABC∽△ADE,△ADF∽△ACD.7.(1)证明:∵如图,CD、BE分别是锐角△ABC中AB、AC边上的高线,∴∠ADC=∠AEB=90°.又∵∠A=∠A,∴△ADC∽△AEB;(2)由(1)知,△ADC∽△AEB,则AD:AE=AC:AB.又∵∠A=∠A,∴△AED∽△ABC.8.证明:∵AC⊥BC,∴∠ACB=∠DCE=90°,又∵∠A=∠D,∴△ABC∽△DEC.9.(1)证明:∵CD⊥AB,BE⊥AC,∴∠BEC=∠BDC=90°,而F为BC上的中点,∴EF=BC,DF=BC,∴DF=EF;(2)解:△ADE∽△ACB;△PDE∽△PCB;△PDB∽△PEC;(3)△ADE∽△ACB.理由如下:证明:∵∠ADC=∠AEB=90°,而∠BAE=∠CAD,∴△ABE∽△ACD,∴=,∵∠DAE=∠CAB,∴△ADE∽△ACB.10.(1)证明:∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE=∠BAC,又∵BD=CE,∴△ABD≌△BCE;(2)答:相似;理由如下:∵△ABD≌△BCE,∴∠BAD=∠CBE,∴∠BAC﹣∠BAD=∠CBA﹣∠CBE,∴∠EAF=∠EBA,又∵∠AEF=∠BEA,∴△EAF∽△EBA.11.证明:∵AD=AC,∴∠ADC=∠ACD,∵D为BC中点,且DE⊥BC,∴EB=EC.∴∠B=∠DCF.∴△ABC∽△FCD.12.证明:∵CD为AB边上的高,∴∠ADC=∠CDB=90°,∵∠ACB=90°,∴∠A+∠ACD=90°,∠ACD+∠BCD=90°,∴∠A=∠BCD,∵∠ADC=∠CDB=90°,∴Rt△ADC∽Rt△CDB.13.解:△ABD∽△CBE,△ABC∽△DBE.∵∠1=∠2,∠3=∠4,∴△ABD∽△CBE,∴∵∠1=∠2,∴∠ABC=∠DBE,∴△ABC∽△DBE14.解:(1)∵∠DEC=∠B,∴DE∥AB,∴∠DEA=∠EAB,又∵∠DAE=∠B,∴△DAE∽△EBA;(2)△CDE∽△ABC,△EAC∽△ABC.15.证明:(1)∵CD,BE分别是AB,AC边上的高,∴∠ADC=∠AEB=90°.∵∠A=∠A,∴△ACD∽△ABE.(2)∵△ACD∽△ABE,∴AD:AE=AC:AB.∵∠A=∠A,∴△AED∽△ABC.16.证明:(1)∵△ABC中,∠BAC=90°,D为BC的中点,∴BD=CD,AD=CD,∴∠C=∠DAC,又∵AE⊥AD,∴∠EAB+∠BAD=90°,∠BAD+∠DAC=90°,∴∠EAB=∠C,∴△EAB∽△ECA;(2)由(1)得,∠EAB=∠CAD,∴当∠ABE=∠ADC或AB=BE或∠E=∠C或=时,△ABE和△ADC一定相似.17.解:(1)证明∵∠A=∠A,∠ADE=∠ABC,∴△ADE∽△ABC;(2)相似.证明:∵△ADE∽△ABC;∴,∵∠A=∠A,∴△ABD∽△ACE;(3)△DOE∽△COB;△EOB∽△DOC.18.证明:∵△ABC为等腰直角三角形,∠ACB=90°,∴∠CAB=∠CBA=45°,∴∠E+∠ECA=45°(三角形外角定理).又∠ECF=135°,∴∠ECA+∠BCF=∠ECF﹣∠ACB=45°,∴∠E=∠BCF;同理,∠ECA=∠F,∴△EAC∽△CBF.19.(1)证明:Rt△ABC中,∠BAC=90°,AB=AC=2,∴∠B=∠C=45°.∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,∴∠ADE+∠EDC=∠B+∠BAD.又∵∠ADE=45°,∴45°+∠EDC=45°+∠BAD.∴∠EDC=∠BAD.∴△ABD∽△DCE.(2)解:讨论:①若AD=AE时,∠DAE=90°,此时D点与点B重合,不合题意.②若AD=DE时,△ABD与△DCE的相似比为1,此时△ABD≌△DCE,于是AB=AC=2,BC=2,AE=AC﹣EC=2﹣BD=2﹣(2﹣2)=4﹣2③若AE=DE,此时∠DAE=∠ADE=45°,如下图所示易知AD⊥BC,DE⊥AC,且AD=DC.由等腰三角形的三线合一可知:AE=CE=AC=1.20.解:∵∠BAC=∠BDC,∠AOB=∠DOC,∴∠ABE=∠ACD又∵∠BAC=∠DAE∴∠BAC+∠EAC=∠DAE+∠EAC∴∠DAC=∠EAB∴△ABE∽△ACD.21.解:设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD=90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即,∴经过秒或2秒,△PBQ∽△BCD.22.解:要使两个三角形相似,由∠B=∠PCQ ∴只要或者∵AB=6,BC=8∴只要设时间为t则PC=8﹣2t,CQ=t∴t=或者t=;①当t=时,△ABC∽△PCQ,PQ⊥AC理由:△ABC∽△PCQ∴∠BAC=∠CPQ∵∠BAC+∠ECP=90°,∴∠EPC+∠ECP=90°即PQ⊥AC;②当t=,△ABC∽△QCP,AC平分PQ理由:△ABC∽△QCP∴∠BAC=∠CQP,∠ACB=∠QPC∴∠QCE=∠EQC,∠ACB=∠QPC∴PE=EQ=CE即AC平分PQ23.解:△ABC∽△ADE,△BAD∽△CAE.理由:∵,∴△ABC∽△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∵,∴,∴△BAD∽△CAE,∵∠ACB=∠AED,∠AFE=∠BFC,∴△AFE∽△BFC.24.(1)证明:∵△ABD和△BCE是等边三角形,∴AB=BD,BC=BE,∠EBC=∠ABC=60°,∴∠ABE=∠DBC,在△ABE和△DBC中∴△ABE≌△DBC(SAS)∴AE=DC,∵M、N分别为AE、CD的中点,∴AM=AE,CN=DC∴AM=CN;(2)解:∵△ABE≌△DBC,∴∠EAB=∠CDB,在△AMB和△DNB中∴△AMB≌△DNB(SAS),∴∠ABM=∠DBN,∵∠ABC=∠ABM+∠MBD=60°,∴∠DBN+∠MBD=60°,即∠MBN=60°;(3)解:图中的全等三角形有:△ABM≌△DBN,△BME≌△BCN,△ABE≌△DBC;相似三角形有:△ABD∽△BCE,△ABD∽△BMN,△BMN∽△BCE.25.解:△ABD∽△CBN,理由:∵△ABC和△MBN都是等腰直角三角形,BD⊥AN,∴∠MBD=∠NBD=∠BNM=∠ABC=45°,∴==,∵∠MBA+∠ABD=45°,∠ABD+∠CBN=45°,∴∠ABD=∠CBN,∴△ABD∽△CBN,∴∠BNC=∠ADB=90°,∵∠BNA=45°,∴∠ANC=45°.26.解:∵点D以每秒1个单位长度的速度由B向A运动,同时点E以每秒2个单位长度的速度由C向B运动,∴BD=t,BE=8﹣2t,∴△BDE∽△BAC时,=,即=,解得t=2.4(秒);当△BED∽△BAC时,=,即=,解得t=(秒).综上所述,t的值为2.4秒或秒.27.证明:∵在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,∴∠B=∠C=90°,AB:EC=BE:CF=2:1.∴△ABE∽△ECF.∴AB:EC=AE:EF,∠AEB=∠EFC.∵BE=CE,∠FEC+∠EFC=90°,∴AB:AE=BE:EF,∠AEB+∠FEC=90°.∴∠AEF=∠B=90°.∴△ABE∽△AEF.28.证明:∵∠AEF=∠ABC=90°,∠EAF=∠BAC.∴△EAF∽△BAC,=,即AE•AC=AF•AB.同理可得,△AED∽△ADC,=,即AE•AC=AD2,∴AD2=AF•AB,即=,又∵∠DAF=∠BAD,∴△AFD∽△ADB.29.证明:(1)∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.在△ABE与△ACD中,,∴△ABE≌△ACD,∴BE=CD;(2)由(1)得△ABE≌△ACD,∴∠ABE=∠ACD,BE=CD.∵M,N分别是BE,CD的中点,∴BM=CN.在△ABM与△ACN中,,∴△ABM≌△ACN,∴AM=AN,∴△AMN为等腰三角形;(3)由(2)得△ABM≌△ACN,∴∠BAM=∠CAN,∴∠BAM+∠BAN=∠CAN+∠BAN,即∠MAN=∠BAC,又∵AM=AN,AB=AC,∴AM:AB=AN:AC,∴△AMN∽△ABC;∵AB=AC,AD=AE,∴AB:AD=AC:AE,又∵∠BAC=∠DAE,∴△ABC∽△ADE;∴△AMN∽△ABC∽△ADE.30.证明:在△ABC中,AB=AC,BD=CD,∴AD⊥BC,∵CE⊥AB,∴∠ADB=∠CEB=90°,又∵∠B=∠B,∴△ABD∽△CBE.。

相似三角形典型例题30道

相似三角形典型例题30道

相似三角形典型例题30道1: 在△ABC中,DE是平行于BC的线段,且AD/DB = 2/3。

求DE/BC的比值。

2: 已知△PQR与△XYZ相似,PQ = 6,XY = 9,求QR 与YZ的比值。

3: 在△ABC中,D、E分别是AB、AC上的点,且DE平行于BC,已知AD = 3,DB = 6,求AE与EC的比值。

4: 已知两个相似三角形的面积比为4:9,求它们对应边的比。

5: 在△XYZ中,MN是平行于XY的线段,且XM = 4,MY = 6,求MN/XY的比值。

6: 在△ABC中,AD是BC的中线,且AE是AB的延长线,若AE与BC相交于点F,求AF与FB的比值。

7: 在△DEF中,GH平行于EF,已知DE = 8,DF = 10,求GH/EF的比值。

8: 在一个相似三角形中,若大三角形的周长是36,小三角形的周长是24,求它们的面积比。

9: 在△JKL中,MN平行于JK,若JM = 3,MK = 5,求MN/JK的比值。

10: 如果两个相似三角形的对应边长分别为5和15,求它们的面积比。

11: 在△ABC中,AD是BC的中线,且DE平行于BC,已知AD = 4,BC = 8,求DE的长度。

12: 已知相似三角形的对应边长比为1:4,求它们的周长比。

13: 在△PQR中,S是PQ的中点,若ST平行于QR,求PS与PQ的比值。

14: 在相似三角形中,若小三角形的每条边长为5,大三角形的对应边长为15,求它们的面积比。

15: 在一个三角形中,若一条边的延长线与另一边的平行线相交,则形成的两小三角形与原三角形相似,求相似比。

16: 在△XYZ中,若XY = 10,XZ = 15,YZ = 12,求△XYZ的周长。

17: 已知△ABC与△DEF相似,若AB = 4,DE = 8,求AC与DF的比值。

18: 在△GHI中,JK平行于GH,若GJ = 5,GH = 20,求JK的长度。

19: 在相似三角形中,若一个三角形的面积是36,另一个三角形的面积是144,求其对应边的比。

经典相似三角形练习题(附参考答案)

经典相似三角形练习题(附参考答案)

相似三角形之阳早格格创做一.解问题(共30小题)1.如图,正在△ABC中,DE∥BC,EF∥AB,供证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,面F正在BC上,连DF与AB的延少线接于面G.(1)供证:△CDF∽△BGF;(2)当面F是BC的中面时,过F做EF∥CD接AD于面E,若AB=6cm,EF=4cm,供CD的少.3.如图,面D,E正在BC上,且FD∥AB,FE∥AC.供证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一面,BF⊥AE 于F,试道明:△ABF∽△EAD.5.已知:如图①所示,正在△ABC战△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且面B,A,D正在一条曲线上,对接BE,CD,M,N分别为BE,CD的中面.(1)供证:①BE=CD;②△AMN是等腰三角形;(2)正在图①的前提上,将△ADE绕面A按逆时针目标转动180°,其余条件稳定,得到图②所示的图形.请间接写出(1)中的二个论断是可仍旧创造;(3)正在(2)的条件下,请您正在图②中延少ED接线段BC于面P.供证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延少线上一面,对接EC,接AD于面F.正在不增加辅帮线的情况下,请您写出图中所有的相似三角形,并任选一对于相似三角形赋予道明.7.如图,正在4×3的正圆形圆格中,△ABC战△DEF 的顶面皆正在边少为1的小正圆形的顶面上.(1)挖空:∠ABC=_________°,BC=_________;(2)推断△ABC与△DEC是可相似,并道明您的论断.8.如图,已知矩形ABCD的边少AB=3cm,BC=6cm.某一时刻,动面M从A面出收沿AB目标以1cm/s的速度背B面匀速疏通;共时,动面N从D面出收沿DA目标以2cm/s的速度背A面匀速疏通,问:(1)通过几时间,△AMN的里积等于矩形ABCD里积的?(2)是可存留时刻t,使以A,M,N为顶面的三角形与△ACD相似?若存留,供t的值;若不存留,请道明缘由.9.如图,正在梯形ABCD中,若AB∥DC,AD=BC,对于角线BD、AC把梯形分成了四个小三角形.(1)列出从那四个小三角形中任选二个三角形的所有大概情况,并供出采用到的二个三角形是相似三角形的概率是几;(注意:齐等瞅成相似的惯例)(2)请您任选一组相似三角形,并给出道明.10.如图△ABC中,D为AC上一面,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,对接AE.(1)写出图中所有相等的线段,并加以道明;(2)图中有无相似三角形?若有,请写出一对于;若不,请道明缘由;(3)供△BEC与△BEA的里积之比.11.如图,正在△ABC中,AB=AC=a,M为底边BC 上的任性一面,过面M分别做AB、AC的仄止线接AC 于P,接AB于Q.(1)供四边形AQMP的周少;(2)写出图中的二对于相似三角形(不需道明);(3)M位于BC的什么位子时,四边形AQMP为菱形并道明您的论断.12.已知:P是正圆形ABCD的边BC上的面,且BP=3PC,M是CD的中面,试道明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)供梯形ABCD的里积S;(2)动面P从面B出收,以1cm/s的速度,沿B⇒A⇒D⇒C 目标,背面C疏通;动面Q从面C出收,以1cm/s的速度,沿C⇒D⇒A目标,背面A疏通,过面Q做QE⊥BC 于面E.若P、Q二面共时出收,当其中一面到达手段天时所有疏通随之中断,设疏通时间为t秒.问:①当面P正在B⇒A上疏通时,是可存留那样的t,使得曲线PQ将梯形ABCD的周少仄分?若存留,哀供出t 的值;若不存留,请道明缘由;②正在疏通历程中,是可存留那样的t,使得以P、A、D为顶面的三角形与△CQE相似?若存留,哀供出所有切合条件的t的值;若不存留,请道明缘由;③正在疏通历程中,是可存留那样的t,使得以P、D、Q为顶面的三角形恰佳是以DQ为一腰的等腰三角形?若存留,哀供出所有切合条件的t的值;若不存留,请道明缘由.14.已知矩形ABCD,少BC=12cm,宽AB=8cm,P、Q分别是AB、BC上疏通的二面.若P自面A出收,以1cm/s的速度沿AB目标疏通,共时,Q自面B出收以2cm/s的速度沿BC目标疏通,问通过几秒,以P、B、Q为顶面的三角形与△BDC相似?15.如图,正在△ABC中,AB=10cm,BC=20cm,面P 从面A启初沿AB边背B面以2cm/s的速度移动,面Q 从面B启初沿BC边背面C以4cm/s的速度移动,如果P、Q分别从A、B共时出收,问通过几秒钟,△PBQ 与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的少为几时,那二个曲角三角形相似.17.已知,如图,正在边少为a的正圆形ABCD中,M 是AD的中面,是可正在边AB上找一面N(不含A、B),使得△CDM与△MAN相似?若能,请给出道明,若不克不迭,请道明缘由.18.如图正在△ABC中,∠C=90°,BC=8cm,AC=6cm,面Q从B出收,沿BC目标以2cm/s的速度移动,面P 从C出收,沿CA目标以1cm/s的速度移动.若Q、P 分别共时从B、C出收,试商量通过几秒后,以面C、P、Q为顶面的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试正在腰AB上决定面P 的位子,使得以P,A,D为顶面的三角形与以P,B,C为顶面的三角形相似.20.△ABC战△DEF是二个等腰曲角三角形,∠A=∠D=90°,△DEF的顶面E位于边BC的中面上.(1)如图1,设DE与AB接于面M,EF与AC接于面N,供证:△BEM∽△CNE;(2)如图2,将△DEF绕面E转动,使得DE与BA的延少线接于面M,EF与AC接于面N,于是,除(1)中的一对于相似三角形中,是可再找出一对于相似三角形并道明您的论断.21.如图,正在矩形ABCD中,AB=15cm,BC=10cm,面P沿AB边从面A启初背B以2cm/s的速度移动;面Q沿DA边从面D启初背面A以1cm/s的速度移动.如果P、Q共时出收,用t(秒)表示移动的时间,那么当t为何值时,以面Q、A、P为顶面的三角形与△ABC相似.22.如图,路灯(P面)距大天8米,身下1.6米的小明从距路灯的底部(O面)20米的A面,沿OA天圆的曲线止走14米到B面时,身影的少度是变少了仍旧变短了?变少或者变短了几米?23.阳光彩媚的一天,数教兴趣小组的共教们来丈量一棵树的下度(那棵树底部不妨到达,顶部阻挡易到达),他们戴了以下丈量工具:皮尺,标杆,一副三角尺,小仄里镜.请您正在他们提供的丈量工具中选出所需工具,安排一种丈量规划.(1)所需的丈量工具是:_________;(2)请正在下图中绘出丈量示企图;(3)设树下AB的少度为x,请用所测数据(用小写字母表示)供出x.24.问题背景正在某次活动课中,甲、乙、丙三个教习小组于共一时刻正在阳光下对于校园中一些物体举止了丈量.底下是他们通过丈量得到的一些疑息:甲组:如图1,测得一根曲坐于仄天,少为80cm的竹竿的影少为60cm.乙组:如图2,测得书院旗杆的影少为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体其细细忽略不计)的下度为200cm,影少为156cm.任务央供:(1)请根据甲、乙二组得到的疑息估计出书院旗杆的下度;(2)如图3,设太阳光芒NH与⊙O相切于面M.请根据甲、丙二组得到的疑息,供景灯灯罩的半径.(友情提示:如图3,景灯的影少等于线段NG的影少;需要时可采与等式1562+2082=2602)25.阳光通过窗心映照到室内,正在大天上留住2.7m 宽的明区(如图所示),已知明区到窗心下的墙足距离EC=8.7m,窗心下AB=1.8m,供窗心底边离大天的下BC.26.如图,李华早上正在路灯下集步.已知李华的身下AB=h,灯柱的下OP=O′P′=l,二灯柱之间的距离OO′=m.(1)若李华距灯柱OP的火仄距离OA=a,供他影子AC 的少;(2)若李华正在二路灯之间止走,则他前后的二个影子的少度之战(DA+AC)是可是定值请道明缘由;(3)若李华正在面A往着影子(如图箭头)的目标以v1匀速止走,试供他影子的顶端正在大天上移动的速度v2.27.如图①,分别以曲角三角形ABC三边为曲径背中做三个半圆,其里积分别用S1,S2,S3表示,则不易道明S1=S2+S3.(1)如图②,分别以曲角三角形ABC三边为边背中做三个正圆形,其里积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么闭系;(不必道明)(2)如图③,分别以曲角三角形ABC三边为边背中做三个正三角形,其里积分别用S1、S2、S3表示,请您决定S1,S2,S3之间的闭系并加以道明;(3)若分别以曲角三角形ABC三边为边背中做三个普遍三角形,其里积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具备与(2)相共的闭系,所做三角形应谦足什么条件道明您的论断;(4)类比(1),(2),(3)的论断,请您归纳出一个更具普遍意思的论断.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.供AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)供BD、CD的少;(2)过B做BE⊥DC于E,供BE的少.30.(1)已知,且3x+4z﹣2y=40,供x,y,z的值;(2)已知:二相似三角形对于应下的比为3:10,且那二个三角形的周少好为560cm,供它们的周少.一.解问题(共30小题)1.如图,正在△ABC中,DE∥BC,EF∥AB,供证:△ADE ∽△EFC.解问:道明:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.又∵EF∥AB,∴EF∥AD,∴∠A=∠FEC.∴△ADE∽△EFC.面评:原题考查的是仄止线的本量及相似三角形的判决定理.2.如图,梯形ABCD中,AB∥CD,面F正在BC上,连DF与AB的延少线接于面G.(1)供证:△CDF∽△BGF;(2)当面F是BC的中面时,过F做EF∥CD接AD于面E,若AB=6cm,EF=4cm,供CD的少.解问:(1)道明:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(3分)(2)解:由(1)△CDF∽△BGF,又F是BC的中面,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,(6分)∵AB∥DC ∥EF,F为BC中面,∴E为AD中面,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)3.如图,面D,E正在BC上,且FD∥AB,FE∥AC.供证:△ABC∽△FDE.解问:道明:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一面,BF⊥AE 于F,试道明:△ABF∽△EAD.解问:道明:∵矩形ABCD中,AB∥CD,∠D=90°,(2分)∴∠BAF=∠AED.(4分)∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D.(5分)∴△ABF∽△EAD.(6分)面评:考查相似三角形的判决定理,闭键是找准对于应的角.5.已知:如图①所示,正在△ABC战△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且面B,A,D正在一条曲线上,对接BE,CD,M,N分别为BE,CD的中面.(1)供证:①BE=CD;②△AMN是等腰三角形;(2)正在图①的前提上,将△ADE绕面A按逆时针目标转动180°,其余条件稳定,得到图②所示的图形.请间接写出(1)中的二个论断是可仍旧创造;(3)正在(2)的条件下,请您正在图②中延少ED接线段BC于面P.供证:△PBD∽△AMN.解问:(1)道明:①∵∠BAC=∠DAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△ABE≌△ACD,∴BE=CD.②由△ABE≌△ACD,得∠ABE=∠ACD,BE=CD,∵M、N分别是BE,CD的中面,∴BM=CN.又∵AB=AC,∴△ABM≌△ACN.∴AM=AN,即△AMN为等腰三角形.(2)解:(1)中的二个论断仍旧创造.(3)道明:正在图②中精确绘出线段PD,由(1)共理可证△ABM≌△ACN,∴∠CAN=∠BAM∴∠BAC=∠MAN.又∵∠BAC=∠DAE,∴∠MAN=∠DAE=∠BAC.∴△AMN,△ADE战△ABC皆是顶角相等的等腰三角形.∴△PBD战△AMN皆为顶角相等的等腰三角形,∴∠PBD=∠AMN,∠PDB=∠ANM,∴△PBD∽△AMN.6.如图,E是▱ABCD的边BA延少线上一面,对接EC,接AD于面F.正在不增加辅帮线的情况下,请您写出图中所有的相似三角形,并任选一对于相似三角形赋予道明.分解:根据仄止线的本量战二角对于应相等的二个三角形相似那一判决定理可道明图中相似三角形有:△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.解问:解:相似三角形有△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.(3分)如:△AEF∽△BEC.正在▱ABCD中,AD∥BC,∴∠1=∠B,∠2=∠3.(6分)∴△AEF∽△BEC.(7分)7.如图,正在4×3的正圆形圆格中,△ABC战△DEF 的顶面皆正在边少为1的小正圆形的顶面上.(1)挖空:∠ABC=135°°,BC=;(2)推断△ABC与△DEC是可相似,并道明您的论断.解问:解:(1)∠ABC=135°,BC=;(2)相似;∵BC=,EC==;∴,;∴;又∠ABC=∠CED=135°,∴△ABC∽△DEC.8.如图,已知矩形ABCD的边少AB=3cm,BC=6cm.某一时刻,动面M从A面出收沿AB目标以1cm/s的速度背B面匀速疏通;共时,动面N从D面出收沿DA目标以2cm/s的速度背A面匀速疏通,问:(1)通过几时间,△AMN的里积等于矩形ABCD里积的?(2)是可存留时刻t,使以A,M,N为顶面的三角形与△ACD相似?若存留,供t的值;若不存留,请道明缘由解:(1)设通过x秒后,△AMN的里积等于矩形ABCD里积的,则有:(6﹣2x)x=×3×6,即x2﹣3x+2=0,(2分)解圆程,得x1=1,x2=2,(3分)经考验,可知x1=1,x2=2切合题意,所以通过1秒或者2秒后,△AMN的里积等于矩形ABCD里积的.(4分)(2)假设通过t秒时,以A,M,N为顶面的三角形与△ACD相似,由矩形ABCD,可得∠CDA=∠MAN=90°,果此有或者(5分)即①,或者②(6分)解①,得t=;解②,得t=(7分)经考验,t=或者t=皆切合题意,所以动面M,N共时出收后,通过秒或者秒时,以A,M,N为顶面的三角形与△ACD相似.(8分)9.如图,正在梯形ABCD中,若AB∥DC,AD=BC,对于角线BD、AC把梯形分成了四个小三角形.(1)列出从那四个小三角形中任选二个三角形的所有大概情况,并供出采用到的二个三角形是相似三角形的概率是几;(注意:齐等瞅成相似的惯例)(2)请您任选一组相似三角形,并给出道明.解问:解:(1)任选二个三角形的所有大概情况如下六种情况:①②,①③,①④,②③,②④,③④(2分)其中有二组(①③,②④)是相似的.∴采用到的二个三角形是相似三角形的概率是P=(4分)道明:(2)采用①、③道明.正在△AOB与△COD中,∵AB∥CD,∴∠CDB=∠DBA,∠DCA=∠CAB,∴△AOB∽△COD(8分)采用②、④道明.∵四边形ABCD是等腰梯形,∴∠DAB=∠CBA,∴正在△DAB与△CBA中有AD=BC,∠DAB=∠CAB,AB=AB,∴△DAB≌△CBA,(6分)∴∠ADO=∠BCO.又∠DOA=∠COB,∴△DOA∽△COB(8分).面评:此题考查概率的供法:如果一个事变有n种大概,而且那些事变的大概性相共,其中事变A出现m种截止,那么事变A的概率P(A)=,即相似三角形的道明.还考查了相似三角形的判决.10.附加题:如图△ABC中,D为AC上一面,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,对接AE.(1)写出图中所有相等的线段,并加以道明;(2)图中有无相似三角形?若有,请写出一对于;若不,请道明缘由;(3)供△BEC与△BEA的里积之比.解问:解:(1)AD=DE,AE=CE.∵CE⊥BD,∠BDC=60°,∴正在Rt△CED中,∠ECD=30°.∴CD=2ED.∵CD=2DA,∴AD=DE,∴∠DAE=∠DEA=30°=∠ECD.∴AE=CE.(2)图中有三角形相似,△ADE∽△AEC;∵∠CAE=∠CAE,∠ADE=∠AEC,∴△ADE∽△AEC;(3)做AF⊥BD的延少线于F,设AD=DE=x,正在Rt△CED中,可得CE=,故AE=.∠ECD=30°.正在Rt△AEF中,AE=,∠AED=∠DAE=30°,∴sin∠AEF=,∴AF=AE•sin∠AEF=.∴.面评:原题主要考查了曲角三角形的本量,相似三角形的判决及三角形里积的供法等,范畴较广.11.如图,正在△ABC中,AB=AC=a,M为底边BC上的任性一面,过面M分别做AB、AC的仄止线接AC 于P,接AB于Q.(1)供四边形AQMP的周少;(2)写出图中的二对于相似三角形(不需道明);(3)M位于BC的什么位子时,四边形AQMP为菱形并道明您的论断.解问:解:(1)∵AB∥MP,QM∥AC,∴四边形APMQ是仄止四边形,∠B=∠PMC,∠C=∠QMB.∵AB=AC,∴∠B=∠C,∴∠PMC=∠QMB.∴BQ=QM,PM=PC.∴四边形AQMP的周少=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a.(2)∵PM∥AB,∴△PCM∽△ACB,∵QM∥AC,∴△BMQ∽△BCA;(3)当面M中BC的中面时,四边形APMQ是菱形,∵面M是BC的中面,AB∥MP,QM∥AC,∴QM,PM是三角形ABC的中位线.∵AB=AC,∴QM=PM=AB=AC.又由(1)知四边形APMQ是仄止四边形,∴仄止四边形APMQ是菱形.12.已知:P是正圆形ABCD的边BC上的面,且BP=3PC,M是CD的中面,试道明:△ADM∽△MCP.解问:道明:∵正圆形ABCD,M为CD中面,∴CM=MD=AD.∵BP=3PC,∴PC=BC=AD=CM.∴.∵∠PCM=∠ADM=90°,∴△MCP∽△ADM.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)供梯形ABCD的里积S;(2)动面P从面B出收,以1cm/s的速度,沿B⇒A⇒D⇒C 目标,背面C疏通;动面Q从面C出收,以1cm/s的速度,沿C⇒D⇒A目标,背面A疏通,过面Q做QE⊥BC 于面E.若P、Q二面共时出收,当其中一面到达手段天时所有疏通随之中断,设疏通时间为t秒.问:①当面P正在B⇒A上疏通时,是可存留那样的t,使得曲线PQ将梯形ABCD的周少仄分?若存留,哀供出t 的值;若不存留,请道明缘由;②正在疏通历程中,是可存留那样的t,使得以P、A、D为顶面的三角形与△CQE相似?若存留,哀供出所有切合条件的t的值;若不存留,请道明缘由;③正在疏通历程中,是可存留那样的t,使得以P、D、Q为顶面的三角形恰佳是以DQ为一腰的等腰三角形?若存留,哀供出所有切合条件的t的值;若不存留,请道明缘由.解问:解:(1)过D做DH∥AB接BC于H面,∵AD∥BH,DH∥AB,∴四边形ABHD是仄止四边形.∴DH=AB=8;BH=AD=2.∴CH=8﹣2=6.∵CD=10,∴DH2+CH2=CD2∴∠DHC=90°.∠B=∠DHC=90°.∴梯形ABCD是曲角梯形.∴SABCD=(AD+BC)AB=×(2+8)×8=40.(2)①∵BP=CQ=t,∴AP=8﹣t,DQ=10﹣t,∵AP+AD+DQ=PB+BC+CQ,∴8﹣t+2+10﹣t=t+8+t.∴t=3<8.∴当t=3秒时,PQ将梯形ABCD 周少仄分.②第一种情况:0<t≤8若△PAD∽△QEC则∠ADP=∠C ∴tan∠ADP=tan∠C==∴=,∴t=若△PAD∽△CEQ则∠APD=∠C∴tan∠APD=tan∠C==,∴=∴t=第二种情况:8<t≤10,P、A、D三面不克不迭组成三角形;第三种情况:10<t≤12△ADP为钝角三角形与Rt△CQE不相似;∴t=或者t=时,△PAD与△CQE相似.③第一种情况:当0≤t≤8时.过Q面做QE⊥BC,QH⊥AB,垂足为E、H.∵AP=8﹣t,AD=2,∴PD==.∵CE=t,QE=t,∴QH=BE=8﹣t,BH=QE=t.∴PH=t﹣t=t.∴PQ==,DQ=10﹣t.Ⅰ:DQ=DP,10﹣t=,解得t=8秒.Ⅱ:DQ=PQ,10﹣t=,化简得:3t2﹣52t+180=0解得:t=,t=>8(分歧题意舍来)∴t=第二种情况:8≤t≤10时.DP=DQ=10﹣t.∴当8≤t<10时,以DQ为腰的等腰△DPQ恒创造.第三种情况:10<t≤12时.DP=DQ=t﹣10.∴当10<t≤12时,以DQ为腰的等腰△DPQ恒创造.综上所述,t=或者8≤t <10或者10<t≤12时,以DQ为腰的等腰△DPQ创造.14.已知矩形ABCD,少BC=12cm,宽AB=8cm,P、Q分别是AB、BC上疏通的二面.若P自面A出收,以1cm/s的速度沿AB目标疏通,共时,Q自面B出收以2cm/s的速度沿BC目标疏通,问通过几秒,以P、B、Q为顶面的三角形与△BDC相似?解问:解:设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD=90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即,∴通过秒或者2秒,△PBQ∽△BCD.15.如图,正在△ABC中,AB=10cm,BC=20cm,面P 从面A启初沿AB边背B面以2cm/s的速度移动,面Q 从面B启初沿BC边背面C以4cm/s的速度移动,如果P、Q分别从A、B共时出收,问通过几秒钟,△PBQ 与△ABC相似.解问:设通过秒后t秒后,△PBQ与△ABC相似,则有AP=2t,BQ=4t,BP=10﹣2t,当△PBQ∽△ABC时,有BP:AB=BQ:BC,即(10﹣2t):10=4t:20,解得t=2.5(s)(6分)当△QBP∽△ABC时,有BQ:AB=BP:BC,即4t:10=(10﹣2t):20,解得t=1.所以,通过2.5s或者1s时,△PBQ与△ABC相似(10分).解法二:设ts后,△PBQ与△ABC相似,则有,AP=2t,BQ=4t,BP=10﹣2t分二种情况:(1)当BP与AB对于当令,有=,即=(2)当BP与BC对于当令,有=,即=,解得t=1s所以通过1s或者2.5s时,以P、B、Q三面为顶面的三角形与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的少为几时,那二个曲角三角形相似.解问:解:∵AC=,AD=2,∴CD==.要使那二个曲角三角形相似,有二种情况:1)当Rt△ABC∽Rt△ACD时,2)有=,∴AB==3;3)当Rt△ACB∽Rt△CDA时,4)有=,∴AB==3.故当AB的少为3或者3时,那二个曲角三角形相似.17.已知,如图,正在边少为a的正圆形ABCD中,M 是AD的中面,是可正在边AB上找一面N(不含A、B),使得△CDM与△MAN相似?若能,请给出道明,若不克不迭,请道明缘由.解问:道明:分二种情况计划:①若△CDM∽△MAN,则=.∵边少为a,M是AD的中面,∴AN=a.②若△CDM∽△NAM,则.∵边少为a,M是AD的中面,∴AN=a,即N面与B沉合,分歧题意.所以,能正在边AB上找一面N(不含A、B),使得△CDM与△MAN相似.当AN=a时,N面的位子谦足条件.18.如图正在△ABC中,∠C=90°,BC=8cm,AC=6cm,面Q从B出收,沿BC目标以2cm/s的速度移动,面P 从C出收,沿CA目标以1cm/s的速度移动.若Q、P 分别共时从B、C出收,试商量通过几秒后,以面C、P、Q为顶面的三角形与△CBA相似?解问:解:设通过x秒后,二三角形相似,则CQ=(8﹣2x)cm,CP=xcm,(1分)∵∠C=∠C=90°,∴当或者时,二三角形相似.(3分)(1)当时,,∴x=;(4分)(2)当时,,∴x=.(5分)所以,通过秒或者秒后,二三角形相似.(6分)面评:原题概括考查了路途问题,相似三角形的本量及一元一次圆程的解法.19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试正在腰AB上决定面P的位子,使得以P,A,D为顶面的三角形与以P,B,C为顶面的三角形相似.解问:解:(1)若面A,P,D分别与面B,C,P对于应,即△APD∽△BCP,∴=,∴=,∴AP2﹣7AP+6=0,∴AP=1或者AP=6,检测:当AP=1时,由BC=3,AD=2,BP=6,∴=,又∵∠A=∠B=90°,∴△APD∽△BCP.当AP=6时,由BC=3,AD=2,BP=1,又∵∠A=∠B=90°,∴△APD∽△BCP.(2)若面A,P,D分别与面B,P,C对于应,即△APD∽△BPC.∴=,∴=,∴AP=.考验:当AP=时,由BP=,AD=2,BC=3,∴=,又∵∠A=∠B=90°,∴△APD∽△BPC.果此,面P的位子有三处,即正在线段AB距离面A的1、、6处.20.△ABC战△DEF是二个等腰曲角三角形,∠A=∠D=90°,△DEF的顶面E位于边BC的中面上.(1)如图1,设DE与AB接于面M,EF与AC接于面N,供证:△BEM∽△CNE;(2)如图2,将△DEF绕面E转动,使得DE与BA的延少线接于面M,EF与AC接于面N,于是,除(1)中的一对于相似三角形中,是可再找出一对于相似三角形并道明您的论断.解问:道明:(1)∵△ABC是等腰曲角三角形,∴∠MBE=45°,∴∠BME+∠MEB=135°又∵△DEF是等腰曲角三角形,∴∠DEF=45°∴∠NEC+∠MEB=135°∴∠BEM=∠NEC,(4分)而∠MBE=∠ECN=45°,∴△BEM∽△CNE.(6分)(2)与(1)共理△BEM∽△CNE,∴.(8分)又∵BE=EC,∴,(10分)则△ECN与△MEN中有,又∠ECN=∠MEN=45°,∴△ECN∽△MEN.(12分)21.如图,正在矩形ABCD中,AB=15cm,BC=10cm,面P沿AB边从面A启初背B以2cm/s的速度移动;面Q沿DA边从面D启初背面A以1cm/s的速度移动.如果P、Q共时出收,用t(秒)表示移动的时间,那么当t为何值时,以面Q、A、P为顶面的三角形与△ABC相似.解问:解:以面Q、A、P为顶面的三角形与△ABC相似,所以△ABC∽△PAQ或者△ABC∽△QAP,①当△ABC∽△PAQ时,,所以,解得:t=6;②当△ABC∽△QAP时,,所以,解得:t=;③当△AQP∽△BAC时,=,即=,所以t=;④当△AQP∽△BCA时,=,即=,所以t=30(舍来).故当t=6或者t=时,以面Q、A、P为顶面的三角形与△ABC相似.22.如图,路灯(P面)距大天8米,身下1.6米的小明从距路灯的底部(O面)20米的A面,沿OA天圆的曲线止走14米到B面时,身影的少度是变少了仍旧变短了?变少或者变短了几米?解问:解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;共理,由△NBD∽△NOP,可供得NB=1.5米,∴小明的身影变短了5﹣1.5=3.5米.23.阳光彩媚的一天,数教兴趣小组的共教们来丈量一棵树的下度(那棵树底部不妨到达,顶部阻挡易到达),他们戴了以下丈量工具:皮尺,标杆,一副三角尺,小仄里镜.请您正在他们提供的丈量工具中选出所需工具,安排一种丈量规划.(1)所需的丈量工具是:;(2)请正在下图中绘出丈量示企图;(3)设树下AB的少度为x,请用所测数据(用小写字母表示)供出x.解问:解:(1)皮尺,标杆;(2)丈量示企图如图所示;(3)如图,测得标杆DE=a,树战标杆的影少分别为AC=b,EF=c,∵△DEF∽△BAC,∴,∴,∴.(7分)24.问题背景正在某次活动课中,甲、乙、丙三个教习小组于共一时刻正在阳光下对于校园中一些物体举止了丈量.底下是他们通过丈量得到的一些疑息:甲组:如图1,测得一根曲坐于仄天,少为80cm的竹竿的影少为60cm.乙组:如图2,测得书院旗杆的影少为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其细细忽略不计)的下度为200cm,影少为156cm.任务央供:(1)请根据甲、乙二组得到的疑息估计出书院旗杆的下度;(2)如图3,设太阳光芒NH与⊙O相切于面M.请根据甲、丙二组得到的疑息,供景灯灯罩的半径.(友情提示:如图3,景灯的影少等于线段NG的影少;需要时可采与等式1562+2082=2602)解问:解:(1)由题意可知:∠BAC=∠EDF=90°,∠BCA=∠EFD.∴△ABC∽△DEF.∴,即,(2分)∴DE=1200(cm).所以,书院旗杆的下度是12m.(3分)(2)解法一:与①类似得:,即,∴GN=208.(4分)正在Rt△NGH中,根据勾股定理得:NH2=1562+2082=2602,∴NH=260.(5分)设⊙O的半径为rcm,对接OM,∵NH切⊙O于M,∴OM⊥NH.(6分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN,∴(7分),又ON=OK+KN=OK+(GN﹣GK)=r+8,∴,解得:r=12.∴景灯灯罩的半径是12cm.(8分)解法二:与①类似得:,即,∴GN=208.(4分)设⊙O的半径为rcm,对接OM,∵NH切⊙O于M,∴OM⊥NH.(5分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN.∴,即,(6分)∴MN=r,又∵ON=OK+KN=OK+(GN﹣GK)=r+8.(7分)正在Rt△OMN中,根据勾股定理得:r2+(r)2=(r+8)2即r2﹣9r﹣36=0,解得:r1=12,r2=﹣3(分歧题意,舍来),∴景灯灯罩的半径是12cm.(8分)25.(2007•黑银)阳光通过窗心映照到室内,正在大天上留住2.7m宽的明区(如图所示),已知明区到窗心下的墙足距离EC=8.7m,窗心下AB=1.8m,供窗心底边离大天的下BC.解问:解:∵AE∥BD,∴△ECA∽△DCB,∴.∵EC=8.7m,ED=2.7m,∴CD=6m.∵AB=1.8m,∴AC=BC+1.8m,∴,∴BC=4,即窗心底边离大天的下为4m.面评:此题基原上易度不大,利用相似比即可供出窗心底边离大天的下.26.如图,李华早上正在路灯下集步.已知李华的身下AB=h,灯柱的下OP=O′P′=l,二灯柱之间的距离OO′=m.(1)若李华距灯柱OP的火仄距离OA=a,供他影子AC 的少;(2)若李华正在二路灯之间止走,则他前后的二个影子的少度之战(DA+AC)是可是定值请道明缘由;(3)若李华正在面A往着影子(如图箭头)的目标以v1匀速止走,试供他影子的顶端正在大天上移动的速度v2.解问:解:(1)由已知:AB∥OP,∴△ABC∽△OPC.∵,∵OP=l,AB=h,OA=a,∴,∴解得:.(2)∵AB∥OP,∴△ABC∽△OPC,∴,即,即.∴.共理可得:,∴=是定值.(3)根据题意设李华由A到A',身下为A'B',A'C'代表其影少(如图).由(1)可知,即,∴,共理可得:,∴,由等比本量得:,当李华从A走到A'的时间,他的影子也从C移到C',果此速度与路途成正比∴,所以人影顶端正在大天上移动的速度为.27.如图①,分别以曲角三角形ABC三边为曲径背中做三个半圆,其里积分别用S1,S2,S3表示,则不易道明S1=S2+S3.(1)如图②,分别以曲角三角形ABC三边为边背中做三个正圆形,其里积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么闭系;(不必道明)(2)如图③,分别以曲角三角形ABC三边为边背中做三个正三角形,其里积分别用S1、S2、S3表示,请您决定S1,S2,S3之间的闭系并加以道明;(3)若分别以曲角三角形ABC三边为边背中做三个普遍三角形,其里积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具备与(2)相共的闭系,所做三角形应谦足什么条件道明您的论断;(4)类比(1),(2),(3)的论断,请您归纳出一个更具普遍意思的论断.解:设曲角三角形ABC的三边BC、CA、AB的少分别为a、b、c,则c2=a2+b2(1)S1=S2+S3;(2)S1=S2+S3.道明如下:隐然,S1=,S2=,S3=∴S2+S3==S1;(3)当所做的三个三角形相似时,S1=S2+S3.道明如下:∵所做三个三角形相似∴∴=1∴S1=S2+S3;(4)分别以曲角三角形ABC三边为一边背中做相似图形,其里积分别用S1、S2、S3表示,则S1=S2+S3.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.供AE.解问:解:∵△ABC∽△ADE,∴AE:AC=AD:AB.∵AE:AC=(AB+BD):AB,∴AE:9=(15+5):15.∴AE=12.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)供BD、CD的少;(2)过B做BE⊥DC于E,供BE的少.解问:解:(1)Rt△ABC中,根据勾股定理得:BC==5,∵Rt△ABC∽Rt△BDC,∴==,==,∴BD=,CD=;(2)正在Rt△BDC中,S△BDC=BE•CD=BD•BC,∴BE===3.30.(1)已知,且3x+4z﹣2y=40,供x,y,z的值;(2)已知:二相似三角形对于应下的比为3:10,且那二个三角形的周少好为560cm,供它们的周少.解:(1)设=k,那么x=2k,y=3k,z=5k,由于3x+4z﹣2y=40,∴6k+20k﹣6k=40,∴k=2,∴x=4,y=6,z=10.(2)设一个三角形周少为Ccm,则另一个三角形周少为(C+560)cm,则,∴C=240,C+560=800,即它们的周少分别为240cm,800cm。

相似三角形30道经典题

相似三角形30道经典题

相似三角形30道经典题英文回答:1. Theorem: If two triangles are similar, then their corresponding sides are proportional.2. Corollary: If two triangles have two pairs of corresponding sides proportional, then they are similar.3. Theorem: If two triangles have three pairs of corresponding angles congruent, then they are similar.4. Corollary: If two triangles have two pairs of corresponding angles congruent, then the third pair is also congruent, and the triangles are similar.5. Theorem: The ratio of the areas of two similar triangles is equal to the square of the ratio of any two corresponding sides.6. Corollary: The ratio of the areas of two similar triangles is equal to the square of the ratio of any two corresponding altitudes.7. Theorem: If a line parallel to one side of a triangle divides another side into two segments, then the ratio of the lengths of the segments is equal to the ratio of the corresponding sides of the triangle.8. Corollary: If a line parallel to the base of a triangle divides the other two sides into segments, then the ratios of the lengths of the segments are equal to the ratio of the corresponding sides of the triangle.9. Theorem: If a line parallel to one side of a triangle divides the area of the triangle into two parts, then the ratio of the areas of the parts is equal to the ratio of the corresponding sides of the triangle.10. Corollary: If a line parallel to the base of a triangle divides the area of the triangle into two parts, then the ratios of the areas of the parts are equal to theratio of the corresponding sides of the triangle.11. Theorem: The sum of the interior angles of a triangle is 180 degrees.12. Corollary: The sum of the exterior angles of a triangle is 360 degrees.13. Theorem: The Pythagorean Theorem: For a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.14. Corollary: The converse of the Pythagorean Theorem: If the square of one side of a triangle is equal to the sum of the squares of the other two sides, then the triangle is a right triangle.15. Theorem: The Law of Cosines: For any triangle, the square of one side is equal to the sum of the squares of the other two sides minus twice the product of the other two sides and the cosine of the included angle.16. Corollary: The Law of Sines: For any triangle, the ratio of the sine of one angle to the length of theopposite side is equal to the ratio of the sine of anyother angle to the length of its opposite side.17. Theorem: The area of a triangle is equal to halfthe product of the base and height.18. Corollary: The area of a triangle is equal to half the product of two sides and the sine of the included angle.19. Theorem: The perimeter of a triangle is equal tothe sum of the lengths of its three sides.20. Corollary: The perimeter of a triangle is equal to the sum of the lengths of two sides plus the length of the third side.21. Theorem: If a triangle is equilateral, then its angles are all equal to 60 degrees.22. Corollary: If a triangle has two sides equal, thenits angles opposite the equal sides are equal.23. Theorem: If a triangle has two angles equal, thenits sides opposite the equal angles are equal.24. Corollary: If a triangle has three equal sides,then its angles are all equal to 60 degrees.25. Theorem: If a triangle has a right angle, then its other two angles are acute.26. Corollary: If a triangle has an obtuse angle, then its other two angles are acute.27. Theorem: If a triangle has two adjacent sides equal, then the angle opposite the equal sides is greater than the other angles.28. Corollary: If a triangle has two adjacent sides unequal, then the angle opposite the greater side isgreater than the angle opposite the smaller side.29. Theorem: If a triangle has two adjacent angles equal, then the sides opposite the equal angles are equal.30. Corollary: If a triangle has two adjacent angles unequal, then the side opposite the greater angle isgreater than the side opposite the smaller angle.中文回答:1. 定理,如果两个三角形相似,那么它们对应边的比值相等。

经典相似三角形练习题(附参考答案)

经典相似三角形练习题(附参考答案)

相似三角形一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF和AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= _________ °,BC= _________ ;(2)判断△ABC和△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形和△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC和△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A 方向,向点A 运动,过点Q 作QE⊥BC 于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形和△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ 为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形和△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s 的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ和△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM和△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s 的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形和△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形和以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE和AB交于点M,EF和AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE和BA的延长线交于点M,EF和AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s 的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形和△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm .丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH和⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有和(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.解答:证明:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.又∵EF∥AB,∴EF∥AD,∴∠A=∠FEC.∴△ADE∽△EFC.点评:本题考查的是平行线的性质及相似三角形的判定定理.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF和AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.解答:(1)证明:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(3分)(2)解:由(1)△CDF∽△BGF,又F是BC的中点,BF=FC,∴△CDF ≌△BGF ,∴DF=GF,CD=BG,(6分)∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.解答:证明:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.解答:证明:∵矩形ABCD中,AB∥CD,∠D=90°,(2分)∴∠BAF=∠AED.(4分)∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D.(5分)∴△ABF∽△EAD.(6分)点评:考查相似三角形的判定定理,关键是找准对应的角.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.解答:(1)证明:①∵∠BAC=∠DAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△ABE≌△ACD,∴BE=CD.②由△ABE≌△ACD,得∠ABE=∠ACD,BE=CD,∵M、N分别是BE,CD的中点,∴BM=CN.又∵AB=AC,∴△ABM≌△ACN.∴AM=AN,即△AMN为等腰三角形.(2)解:(1)中的两个结论仍然成立.(3)证明:在图②中正确画出线段PD,由(1)同理可证△ABM≌△ACN,∴∠CAN=∠BAM∴∠BAC=∠MAN.又∵∠BAC=∠DAE,∴∠MAN=∠DAE=∠BAC.∴△AMN,△ADE和△ABC都是顶角相等的等腰三角形.∴△PBD和△AMN都为顶角相等的等腰三角形,∴∠PBD=∠AMN,∠PDB=∠ANM,∴△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.分析:根据平行线的性质和两角对应相等的两个三角形相似这一判定定理可证明图中相似三角形有:△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.解答:解:相似三角形有△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.(3分)如:△AEF∽△BEC.在▱ABCD中,AD∥BC,∴∠1=∠B,∠2=∠3.(6分)∴△AEF∽△BEC.(7分)7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= 135°°,BC= ;解答:解:(1)∠ABC=135°,BC=;(2)相似;∵BC=,EC==;∴,;∴;又∠ABC=∠CED=135°,∴△ABC∽△DEC.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s 的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形和△ACD相似?若存在,求t 的值;若不存在,请说明理由解:(1)设经过x秒后,△AMN的面积等于矩形ABCD面积的,则有:(6﹣2x)x=×3×6,即x2﹣3x+2=0,(2分)解方程,得x1=1,x2=2,(3分)经检验,可知x1=1,x2=2符合题意,所以经过1秒或2秒后,△AMN的面积等于矩形ABCD面积的.(4分)(2)假设经过t秒时,以A,M,N为顶点的三角形和△ACD相似,由矩形ABCD,可得∠CDA=∠MAN=90°,因此有或(5分)即①,或②(6分)解①,得t=;解②,得t=(7分)经检验,t=或t=都符合题意,所以动点M,N同时出发后,经过秒或秒时,以A,M,N为顶点的三角形和△ACD相似.(8分)9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)解答:解:(1)任选两个三角形的所有可能情况如下六种情况:①②,①③,①④,②③,②④,③④(2分)其中有两组(①③,②④)是相似的.∴选取到的二个三角形是相似三角形的概率是P=(4分)证明:(2)选择①、③证明.在△AOB和△COD中,∵AB∥CD,∴∠CDB=∠DBA,∠DCA=∠CAB,∴△AOB∽△COD(8分)选择②、④证明.∵四边形ABCD是等腰梯形,∴∠DAB=∠CBA,∴在△DAB和△CBA中有AD=BC,∠DAB=∠CAB,AB=AB,∴△DAB≌△CBA,(6分)∴∠ADO=∠BCO.又∠DOA=∠COB,∴△DOA∽△COB(8分).点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,即相似三角形的证明.还考查了相似三角形的判定.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE ⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC 和△BEA的面积之比.解答:解:(1)AD=DE,AE=CE.∵CE⊥BD,∠BDC=60°,∴在Rt△CED中,∠ECD=30°.∴CD=2ED.∵CD=2DA,∴AD=DE,∴∠DAE=∠DEA=30°=∠ECD.∴AE=CE.(2)图中有三角形相似,△ADE∽△AEC;∵∠CAE=∠CAE,∠ADE=∠AEC,∴△ADE∽△AEC;(3)作AF⊥BD的延长线于F,设AD=DE=x,在Rt△CED中,可得CE=,故AE=.∠ECD=30°.在Rt△AEF中,AE=,∠AED=∠DAE=30°,∴sin∠AEF=,∴AF=AE•sin∠AEF=.∴.点评:本题主要考查了直角三角形的性质,相似三角形的判定及三角形面积的求法等,范围较广.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.解答:解:(1)∵AB∥MP,QM∥AC,∴四边形APMQ是平行四边形,∠B=∠PMC,∠C=∠QMB.∵AB=AC,∴∠B=∠C,∴∠PMC=∠QMB.∴BQ=QM,PM=PC.∴四边形AQMP的周长=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a.(2)∵PM∥AB,∴△PCM∽△ACB,∵QM∥AC,∴△BMQ∽△BCA;(3)当点M中BC的中点时,四边形APMQ是菱形,∵点M是BC的中点,AB∥MP,QM∥AC,∴QM,PM是三角形ABC的中位线.∵AB=AC,∴QM=PM=AB=AC.又由(1)知四边形APMQ是平行四边形,∴平行四边形APMQ是菱形.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.解答:证明:∵正方形ABCD,M为CD中点,∴CM=MD=AD.∵BP=3PC,∴PC=BC=AD=CM.∴.∵∠PCM=∠ADM=90°,∴△MCP∽△ADM.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC 于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形和△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ 为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.解答:解:(1)过D作DH∥AB交BC于H点,∵AD∥BH,DH∥AB,∴四边形ABHD是平行四边形.∴DH=AB=8;BH=AD=2.∴CH=8﹣2=6.∵CD=10,∴DH 2+CH2=CD2∴∠DHC=90°.∠B=∠DHC=90°.∴梯形ABCD 是直角梯形.∴S ABCD=(AD+BC )AB=×(2+8)×8=40.(2)①∵BP=CQ=t,∴AP=8﹣t,DQ=10﹣t ,∵AP+AD+DQ=PB+BC+CQ,∴8﹣t+2+10﹣t=t+8+t.∴t=3<8.∴当t=3秒时,PQ将梯形ABCD周长平分.②第一种情况:0<t≤8若△PAD∽△QEC则∠ADP=∠C∴tan∠ADP=tan∠C==∴=,∴t=若△PAD∽△CEQ则∠APD=∠C ∴tan∠APD=tan∠C==,∴=∴t=第二种情况:8<t≤10,P、A、D三点不能组成三角形;第三种情况:10<t≤12△ADP为钝角三角形和Rt△CQE不相似;∴t=或t=时,△PAD和△CQE相似.③第一种情况:当0≤t≤8时.过Q点作QE⊥BC,QH⊥AB,垂足为E、H.∵AP=8﹣t,AD=2,∴PD==.∵CE=t,QE=t,∴QH=BE=8﹣t,BH=QE=t.∴PH=t﹣t=t.∴PQ==,DQ=10﹣t.Ⅰ:DQ=DP,10﹣t=,解得t=8秒.Ⅱ:DQ=PQ,10﹣t=,化简得:3t2﹣52t+180=0解得:t=,t=>8(不合题意舍去)∴t=第二种情况:8≤t≤10时.DP=DQ=10﹣t.∴当8≤t<10时,以DQ为腰的等腰△DPQ恒成立.第三种情况:10<t≤12时.DP=DQ=t﹣10.∴当10<t≤12时,以DQ为腰的等腰△DPQ恒成立.综上所述,t=或8≤t<10或10<t≤12时,以DQ为腰的等腰△DPQ成立.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形和△BDC相似?解答:解:设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD=90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即,∴经过秒或2秒,△PBQ∽△BCD.15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s 的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ和△ABC相似.解答:设经过秒后t秒后,△PBQ和△ABC相似,则有AP=2t,BQ=4t,BP=10﹣2t,当△PBQ∽△ABC时,有BP:AB=BQ:BC,即(10﹣2t):10=4t:20,解得t=2.5(s)(6分)当△QBP∽△ABC时,有BQ:AB=BP:BC,即4t:10=(10﹣2t):20,解得t=1.所以,经过2.5s或1s时,△PBQ和△ABC相似(10分).解法二:设ts后,△PBQ和△ABC相似,则有,AP=2t,BQ=4t,BP=10﹣2t分两种情况:(1)当BP和AB对应时,有=,即=,解得t=2.5s(2)当BP和BC对应时,有=,即=,解得t=1s所以经过1s或2.5s时,以P、B、Q三点为顶点的三角形和△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.解答:解:∵AC=,AD=2,∴CD==.要使这两个直角三角形相似,有两种情况:1)当Rt△ABC∽Rt△ACD时,2)有=,∴AB==3;3)当Rt△ACB∽Rt△CDA时,4)有=,∴AB==3.故当AB的长为3或3时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM和△MAN相似?若能,请给出证明,若不能,请说明解答:证明:分两种情况讨论:①若△CDM∽△MAN ,则=.∵边长为a,M是AD的中点,∴AN=a.②若△CDM∽△NAM,则.∵边长为a,M是AD的中点,∴AN=a,即N点和B重合,不合题意.所以,能在边AB上找一点N(不含A、B),使得△CDM和△MAN相似.当AN=a时,N点的位置满足条件.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s 的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形和△CBA相似?解答:解:设经过x秒后,两三角形相似,则CQ=(8﹣2x)cm,CP=xcm,(1分)∵∠C=∠C=90°,∴当或时,两三角形相似.(3分)(1)当时,,∴x=;(4分)(2)当时,,∴x=.(5分)所以,经过秒或秒后,两三角形相似.(6分)点评:本题综合考查了路程问题,相似三角形的性质及一元一次方程的解法.19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形和以P,B,C为顶点的三角形相似.解答:解:(1)若点A,P,D分别和点B,C,P对应,即△APD∽△BCP,∴=,∴=,∴AP2﹣7AP+6=0,∴AP=1或AP=6,检测:当AP=1时,由BC=3,AD=2,BP=6,∴=,又∵∠A=∠B=90°,∴△APD∽△BCP.当AP=6时,由BC=3,AD=2,BP=1,又∵∠A=∠B=90°,∴△APD∽△BCP.(2)若点A,P,D分别和点B,P,C对应,即△APD∽△BPC.∴=,∴=,∴AP=.检验:当AP=时,由BP=,AD=2,BC=3,∴=,又∵∠A=∠B=90°,∴△APD∽△BPC.因此,点P的位置有三处,即在线段AB距离点A的1、、6处.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE和AB交于点M,EF和AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE和BA的延长线交于点M,EF和AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你解答:证明:(1)∵△ABC是等腰直角三角形,∴∠MBE=45°,∴∠BME+∠MEB=135°又∵△DEF是等腰直角三角形,∴∠DEF=45°∴∠NEC+∠MEB=135°∴∠BEM=∠NEC,(4分)而∠MBE=∠ECN=45°,∴△BEM∽△CNE.(6分)(2)和(1)同理△BEM∽△CNE,∴.(8分)又∵BE=EC,∴,(10分)则△ECN和△MEN中有,又∠ECN=∠MEN=45°,∴△ECN∽△MEN .(12分)21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s 的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形和△ABC相似.解答:解:以点Q、A、P为顶点的三角形和△ABC相似,所以△ABC∽△PAQ或△ABC∽△QAP,①当△ABC∽△PAQ时,,所以,解得:t=6;②当△ABC∽△QAP时,,所以,解得:t=;③当△AQP∽△BAC时,=,即=,所以t=;④当△AQP∽△BCA时,=,即=,所以t=30(舍去).故当t=6或t=时,以点Q、A、P为顶点的三角形和△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?解答:解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;同理,由△NBD∽△NOP,可求得NB=1.5米,∴小明的身影变短了5﹣1.5=3.5米.23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.解答:解:(1)皮尺,标杆;(2)测量示意图如图所示;(3)如图,测得标杆DE=a,树和标杆的影长分别为AC=b,EF=c,∵△DEF∽△BAC,∴,∴,∴.(7分)24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH和⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)解答:解:(1)由题意可知:∠BAC=∠EDF=90°,∠BCA=∠EFD.∴△ABC∽△DEF.∴,即,(2分)∴DE=1200(cm).所以,学校旗杆的高度是12m .(3分)(2)解法一:和①类似得:,即,∴GN=208.(4分)在Rt△NGH中,根据勾股定理得:NH2=1562+2082=2602,∴NH=260.(5分)设⊙O的半径为rcm,连接OM,∵NH切⊙O于M,∴OM⊥NH.(6分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN,∴(7分),又ON=OK+KN=OK+(GN﹣GK)=r+8,∴,解得:r=12.∴景灯灯罩的半径是12cm.(8分)解法二:和①类似得:,即,∴GN=208.(4分)设⊙O的半径为rcm,连接OM,∵NH切⊙O于M,∴OM⊥NH.(5分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN.∴,即,(6分)∴MN=r,又∵ON=OK+KN=OK+(GN﹣GK)=r+8.(7分)在Rt△OMN中,根据勾股定理得:r2+(r)2=(r+8)2即r2﹣9r﹣36=0,解得:r1=12,r2=﹣3(不合题意,舍去),∴景灯灯罩的半径是12cm.(8分)25.(2007•白银)阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.解答:解:∵AE∥BD,∴△ECA∽△DCB,∴.∵EC=8.7m,ED=2.7m,∴CD=6m.∵AB=1.8m,∴AC=BC+1.8m,∴,∴BC=4,即窗口底边离地面的高为4m.点评:此题基本上难度不大,利用相似比即可求出窗口底边离地面的高.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.解答:解:(1)由已知:AB∥OP,∴△ABC∽△OPC.∵,∵OP=l,AB=h,OA=a,∴,∴解得:.(2)∵AB∥OP,∴△ABC∽△OPC,∴,即,即.∴.同理可得:,∴=是定值.(3)根据题意设李华由A到A',身高为A'B',A'C'代表其影长(如图).由(1)可知,即,∴,同理可得:,∴,由等比性质得:,当李华从A走到A'的时候,他的影子也从C移到C',因此速度和路程成正比∴,所以人影顶端在地面上移动的速度为.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有和(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.解:设直角三角形ABC的三边BC、CA、AB的长分别为a、b、c,则c2=a2+b2(1)S1=S2+S3;(2)S1=S2+S3.证明如下:显然,S1=,S2=,S3=∴S2+S3==S1;(3)当所作的三个三角形相似时,S1=S2+S3.证明如下:∵所作三个三角形相似∴∴=1 ∴S1=S2+S3;(4)分别以直角三角形ABC三边为一边向外作相似图形,其面积分别用S1、S2、S3表示,则S1=S2+S3.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.解答:解:∵△ABC∽△ADE,∴AE:AC=AD:AB.∵AE:AC=(AB+BD):AB,∴AE:9=(15+5):15.∴AE=12.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.解答:解:(1)Rt△ABC中,根据勾股定理得:BC==5,∵Rt△ABC∽Rt△BDC,∴==,==,∴BD=,CD=;(2)在Rt△BDC中,S△BDC=BE•CD=BD•BC,∴BE===3.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,解:(1)设=k,那么x=2k,y=3k,z=5k,由于3x+4z﹣2y=40,∴6k+20k﹣6k=40,∴k=2,∴x=4,y=6,z=10.(2)设一个三角形周长为Ccm,则另一个三角形周长为(C+560)cm,则,∴C=240,C+560=800,即它们的周长分别为240cm,800cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形应用题专项练习30题(有答案)1.如图,某一时刻一根2米长的竹竿EF影长GE为米,此时,小红测得一颗被风吹斜的柏树与地面成30°角,树顶端B在地面上的影子点D与B到垂直地面的落点C的距离是米,则树长AB是多少米.2.铁血红安》在中央一台热播后,吸引了众多游客前往影视基地游玩.某天小明站在地面上给站在城楼上的小亮照相时发现:他的眼睛、凉亭顶端、小亮头顶三点恰好在一条直线上(如图).已知小明的眼睛离地面米,凉亭顶端离地面2米,小明到凉亭的距离为2米,凉亭离城楼底部的距离为40米,小亮身高米.请根据以上数据求出城楼的高度.3.如图,△ABC是一张锐角三角形的硬纸片,AD是边BC上的高,BC=40cm,AD=30cm.从这张硬纸片上剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上,顶点G,H分别在AC,AB上,AD与HG的交点为M.(1)试说明:;(2)求这个矩形EFGH的宽HE的长.4.如图所示,某测量工作人员的眼睛A与标杆顶端F,电视塔顶端E在同一直线上,已知此人眼睛距地面米,标杆为米,且BC=1米,CD=19米,求电视塔的高ED.5.如图,要测量某建筑物的高度AB,立两根高为2m的标杆BC和DE,两竿相距BD=38m,D、B、H三点共线,从BC 退行3m,到达点F,从点F看点A,A、C、F三点共线,从DE退行5m到达点G,从点G看点A,A、E、G三点也共线,试算出建筑物的高度AB及HB的长度.6.如图,路灯A离地8米,身高米的小王(C D)的影长DB与身高一样,现在他沿OD方向走10米,到达E处.(1)请画出小王在E处的影子EH;(2)求EH的长.7.已知:如图,一人在距离树21米的点A处测量树高,将一长为2米的标杆BE在与人相距3米处垂直立于地面,此时,观察视线恰好经过标杆顶点E及树的顶点C,求此树的高.8.如图,一电线杆AB的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN,量得其影长MF为米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米.你能利用小明测量的数据算出电线杆AB的高吗?9.如图,大刚在晚上由灯柱A走向灯柱B,当他走到M点时,发觉他身后影子的顶部刚好接触到灯柱A的底部,当他向前再走12米到N点时,发觉他身前的影子刚好接触到灯柱B的底部,已知大刚的身高是米,两根灯柱的高度都是米,设AM=NB=x米.求:两根灯柱之间的距离.10.如图,小李晚上由路灯A下的B处走到C时,测得影子CD的长为2米,继续往前走3米到达E处时,测得影子EF的长为2米,已知小李的身高CM为米,求路灯A的高度AB.11.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=,CD=10m,求树高AB.12.为了测量被池塘隔开的A,B两点之间的距离.根据实际情况,作出如下图形,其中AB⊥BE,EF⊥BE,AF交BE 于D,C在BD上,实际可测量①BC;②CD;③DE;④EF;⑤DB;⑥∠ACB;⑦∠ADB等数据.你会选择测量哪些数据?请说出你的方案,并列出求AB长的表达式.13.如图,要测量河宽,可在两岸找到相对的两点A、B,先从B出发与AB成90°方向向前走50米,到C处立一标杆,然后方向不变继续朝前走10米到D处,在D处转90°,沿DE方向走到E处,若A、C、E三点恰好在同一直线上,且DE=17米,你能根据题目提供的数据和图形求出河宽吗?14.在一次测量旗杆高度的活动中,某小组使用的方案如下:AB表示某同学从眼睛到脚底的距离,CD表示一根标杆,EF表示旗杆,AB、CD、EF都垂直于地面,若AB=,CD=2m,人与标杆之间的距离BD=1m,标杆与旗杆之间的距离DF=30m,求旗杆EF的高度.15.我们知道当人的视线与物体表面互相垂直时的视觉效果最佳.如图是小明站在距离墙壁米处观察装饰画时的示意图,此时小明的眼睛与装饰画底部A处于同一水平线上,视线恰好落在装饰画中心位置E处,且与AD垂直.已知装饰画的高度AD为米,求:(1)装饰画与墙壁的夹角∠CAD的度数(精确到1°);(2)装饰画顶部到墙壁的距离DC(精确到米).16.如图,学校的围墙外有一旗杆AB,甲在操场上C处直立3m高的竹竿CD,乙从C处退到E处恰好看到竹竿顶端D,与旗杆顶端B重合,量得CE=3m,乙的眼睛到地面的距离FE=;丙在C1处也直立3m高的竹竿C1D l,乙从E处退后6m到E l处,恰好看到两根竹竿和旗杆重合,且竹竿顶端D l与旅杆顶端B也重合,测得C l E l=4m.求旗杆AB的高.17.如图,一个三角形钢筋框架三边长分别为20cm、50cm、60cm,要做一个与其相似的钢筋框架.现有长为30cm 和50cm的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为另外两边,你认为有几种不同的截法?并分别求出.18.某校初三年级数学兴趣小组的同学准备在课余时间测量校园内一棵树的高度.一天,在阳光下,一名同学测得一根长为l米的竹竿的影长为米,同一时刻另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在实验楼的第一级台阶上,此时测得落在地面上的影长为米,落在台阶上的影长为米,若一级台阶高为米(如图),求树的高度?19.如图,小明站在灯光下,投在地面上的身影AB=,蹲下来,则身影AC=,已知小明的身高AD=,蹲下时的高度等于站立高度的一半,求灯离地面的高度PH.20.如图,阳光通过窗口照到室内,在地面上留下一段亮区.已知亮区一边到窗下的墙脚距离CE=,窗高AB=,窗口底边离地面的高度BC=,求亮区ED的长.21.如图,△ABC是一块三角形余料,AB=AC=13cm,BC=10cm,现在要把它加工成正方形零件,使正方形的一边在△ABC 的边上,其余两个顶点分别在三角形另外两条边上.试求正方形的边长是多少?22.阳光通过窗口照射到室内,在地面上留下宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=,窗口高AB=,求窗口底边离地面的高BC.23.已知:CD为一幢3米高的温室,其南面窗户的底框G距地面1米,CD在地面上留下的最大影长CF为2米,现欲在距C点7米的正南方A点处建一幢12米高的楼房AB(设A,C,F在同一水平线上).(1)按比例较精确地作出高楼AB及它的最大影长AE;(2)问若大楼AB建成后是否影响温室CD的采光,试说明理由.24.一个钢筋三角架三边长分别是30厘米、75厘米、90厘米,现在再做一个与其相似的钢筋三角架,而只有长为45厘米和75厘米的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的截法有多少种?写出你的设计方案,并说明理由.25.有一块两直角边长分别为3cm和4cm的直角三角形铁皮,要利用它来裁剪一个正方形,有两种方法:一种是正方形的一边在直角三角形的斜边上,另两个顶点在两条直角边上,如图(1);另一种是一组邻边在直角三角形的两直角边上,另一个顶点在斜边上,如图(2).两种情形下正方形的面积哪个大?26.求证:一个人在两个高度相同的路灯之间行走,他前后的两个影子的长度之和是一个定值.27.某居民小区有一朝向为正南的居民楼(如图),该居民楼的一楼是高为6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角是30°时.(1)超市以上的居民住房采光是否有影响,影响多高?(2)若要使采光不受影响,两楼相距至少多少米?(结果保留根号)28.如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为,求路灯杆AB的高度.29.如图,点D、E分别在AC、BC上,如果测得CD=20m,CE=40m,AD=100m,BE=20m,DE=45m,(1)△ABC与△EDC相似吗?为什么?(2)求A、B两地间的距离.30.如图,是小亮晚上在广场散步的示意图,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置.(1)在小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为;(2)请你在图中画出小亮站在AB处的影子;(3)当小亮离开灯杆的距离OB=时,身高(AB)为的小亮的影长为,问当小亮离开灯杆的距离OD=6m时,小亮的影长是多少m?相似三角形性质和判定专项练习30题参考答案:1.解:如图,CD=,∵△BDC∽△FGE,∴=,即=,∴BC=6,在Rt△ABC中,∵∠A=30°,∴AB=2BC=12,即树长AB是12米.2.解:过点A作AM⊥EF于点M,交CD于点N,由题意可得:AN=2m,CN=2﹣=(m),MN=40m,∵CN∥EM,∴△ACN∽△AEM,∴=,∴=,解得:EM=,∵AB=MF=,故城楼的高度为:+﹣=(米),答:城楼的高度为.3.(1)证明:∵四边形EFGH为矩形,∴EF∥GH,∴∠AHG=∠ABC,又∵∠HAG=∠BAC,∴△AHG∽△ABC,∴;(2)解:设HE=xcm,MD=HE=xcm,∵AD=30cm,∴AM=(30﹣x)cm,∵HG=2HE,∴HG=(2x)cm,由(1)可得,解得,x=12,∴宽HE的长为12cm.4.解:过A点作AH⊥ED,交FC于G,交ED于H.由题意可得:△AFG∽△AEH,∴即,解得:EH=米.∴ED=+=米.5.解:设BH=x,AH=y,根据题意可得:BC∥AH,DE∥AH,则△FCB∽△FAH,△EDG∽△AHG,故=,=,即=,=,则=,解得:x=57,故=,解得:y=40,答:建筑物的高度AB为40m及HB的长度为57m.6.解:(1)如图:(2分).(2)由=(3分)∴OB=8米(4分),∴OE=米.由=(5分)即=.(7分)∴EH=米.(8分)7.解:∵CD⊥AB,EB⊥AD,∴EB∥CD,∴△ABE∽△ADC,∴,.∵EB=2,AB=3,AD=21,∴,∴CD=14.答:此树高为14米.8.解:过C点作CG⊥AB于点G,∴GC=BD=3米,GB=CD=2米.∵∠NMF=∠AGC=90°,NF∥AC,∴∠NFM=∠ACG,∴△NMF∽△AGC,∴,∴AG===6,∴AB=AG+GB=6+2=8(米),故电线杆子的高为8米.9.解:由对称性可知AM=BN,设AM=NB=x米,∵MF∥BC,∴△AMF∽△ABC∴=,∴=∴x=3经检验x=3是原方程的根,并且符合题意.∴AB=2x+12=2×3+12=18(m).答:两个路灯之间的距离为18米.10.解:∵小李的身高:小李的影长=路灯的高度:路灯的影长,当小李在CG处时,Rt△DCG∽Rt△DBA,即CD:BD=CG:AB,当小李在EH处时,Rt△FEH∽Rt△FBA,即EF:BF=EH:AB=CG:AB,∴CD:BD=EF:BF,∵CG=EH=米,CD=1米,CE=3米,EF=2米,设AB=x,BC=y,∴,解得:y=3,经检验y=3是原方程的根.∵CD:BD=CG:AB,即=,解得x=6米.即路灯A的高度AB=6米.11.解:∵∠DEF=∠BCD=90°∠D=∠D∴△DEF∽△DCB∴=∵DE=40cm=,EF=20cm=,AC=,CD=10m,∴=∴BC=5米,∴AB=AC+BC=+5=米∴树高为米.12.解:选择①⑥,可由公式AB=BC×tan∠ACB求出A、B两点间的距离;选择③④⑤可以证得△DEF∽△DBA,则=,可求得AB的长为.13.解:∵先从B处出发与AB成90°角方向,∴∠ABC=90°,∵BC=50m,CD=10m,∠EDC=90°,∴△ABC∽△EDC,∴AB=5DE,∵沿DE方向再走17米,到达E处,即DE=17,∴AB=5×17=85.∴河宽为85米14.解:过点A作AH⊥EF于H点,AH交CD于G,∵CD∥EF,∴△ACG∽△AEH,∴,即:,∴EH=.∴EF=EH+HF=+=14,∴旗杆的高度为14米.15.解:(1)∵AD=,∴AE=AD=,在Rt△ABE中,(1分)∵sin∠ABE==,∴∠ABE≈12°,(4分)∵∠CAD+∠DAB=90°,∠ABE+∠DAB=90°,∴∠CAD=∠ABE=12°.∴镜框与墙壁的夹角∠CAD的度数约为12°.(5分)(2)解法一:在Rt△ACD中,∵sin∠CAD=,∴CD=AD•sin∠CAD=×sin12°≈,(7分)解法二:∵∠CAD=∠ABE,∠ACD=∠AEB=90°,∴△ACD∽△BEA,(6分)∴,∴,∴CD≈.(7分)∴镜框顶部到墙壁的距离CD约是米.(8分)16.解:设BO=x,GO=y.∵GD∥OB,∴△DGF∽△BOF,∴:x=3:(3+y)同理:x=4:(y+6+3)解上面2个方程得,经检验x=9,y=15均是原方程的解,∴旗杆AB的高为9+15=24(米).17.解:有两种不同的截法:(1)如图(一),以30cm长的钢筋为最长边,设中边为x,短边长为y,则有,①,解得x=25,②,解得y=10,所以从50cm长的钢筋上分别截取10cm、25cm的两段;(6分)(2)如图(二),以30cm长的钢筋为中边,设长边为x,短边长为y,①,解得x=36,②,解得y=12.所以从50cm长的钢筋上分别截取12cm、36cm的两段.(12分)(3)若以30cm长的钢筋为短边,设长边为x,中边长为y,,解得:x=90(不合题意,舍去)18.解:如图,设树的高度为AB,BD为落在地面的影长,CE为落在台阶上的影长,CD为台阶高延长EC交AB于F,则四边形BDCF是矩形,从而FC=BD=,BF=CD=,所以EF=+=,则,解得AF=8,AB=AF+FB=(米).所以树的高度AB为米.19.解:因为AD∥PH,∴△ADB∽△HPB;△AMC∽△HPC∴AB:HB=AD:PH,AC:AM=HC:PH,即:(+AH)=:PH,:=(+HA):PH,解得:PH=8m.即路灯的高度为8米20.解:根据题意,易得△DCB∽△ACE,∴CD:CE=BC:CA,又因为AB=米,CE=米,BC=米,所以(﹣ED):=:(+).解得ED=米.21.解:∵△ABC中,AB=AC=13cm,BC=10cm,∴AD=12,∵四边形DEFG是正方形,∴ED∥BC,DE=GF,(1分)∴△AED∽△ACB,(1分)又∵AN⊥BC,∴AN⊥DE,DG=ED=EF,(1分)∴,(2分)设DE=x,则AM=12﹣x,∴,(1分)解得:x=.答:这个正方形的边长为厘米.(1分)22.解:∵AE∥BD,∴△ECA∽△DCB,∴.∵EC=,ED=,∴CD=6m.∵AB=,∴AC=BC+,∴,∴BC=4,即窗口底边离地面的高为4m23.解:如图,∵HE∥DF,HC∥AB,∴△CDF∽△ABE∽△CHE,∴AE:AB=CF:DC,∴AE=8米,由AC=7米,可得CE=1米,由比例可知:CH=米>1米,故影响采光.24.解:设截成的两边的长分别为xcm、ycm,①45cm与30cm是对应边时,新做三角架的两边之和一定大于75cm,不符合;②45cm与75cm是对应边时,∵两三角架相似,∴==,解得x=18,y=54,∵18+54=72cm<75cm,∴从75cm长的钢筋截取18cm和54cm两根;③45cm与90cm是对应边时,∵两三角架相似,∴==,解得x=15,y=,∵15+=<75cm,∴从75cm长的钢筋截取15cm和两根;综上所述,共有两种截法:方法一:从75cm长的钢筋截取18cm和54cm两根,方法二:从75cm长的钢筋截取15cm和两根.25.解:(1)因为△ABC为直角三角形,边长分别为3cm和4cm,则AB==5.作AB边上的高CH,交DG于点Q.于是=,故CH=cm.易得:△DCG∽△ACB,故:=.设正方形DEFG的边长为xcm,得:=,解得:x=.(2)令AC=3cm,设正方形边长为ycm.易得:△ADE∽△ACB,于是:=,=,解得:y=.∵<,∴第二种情形下正方形的面积大.26.解:如图所示,CD、EF为路灯高度,AB为该人高度,BM、BN为该人前后的两个影子.∵AB∥CD,∴=,∴=,即 MB=.同理BN=.∴MB+BN==常数(定值).27.解:(1)如图1所示:过F点作FE⊥AB于点E,∵EF=15米,∠AFE=30°,∴AE=5米,∴EB=FC=(20﹣5)米.∵20﹣5>6,∴超市以上的居民住房采光要受影响;(2)如图2所示:若要使超市采光不受影响,则太阳光从A直射到C处.∵AB=20米,∠ACB=30°∴BC===20米答:若要使超市采光不受影响,两楼最少应相距20米.28.解:∵CD∥EF∥AB,∴可以得到△CDF∽△ABF,△ABG∽△EFG,∴,,又∵CD=EF,∴,∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴,∴BD=9,BF=9+3=12,∴,解得,AB=.29.解:(1)∵CD=20m,CE=40m,AD=100m,BE=20m,DE=45m,∴AC=AD+CD=100+20=120m,BC=BE+CE=20+40=60m,∵==,==,∠C=∠C,∴△CDE∽△CBA;(2)∵△CDE∽△CBA,∴=,即=,解得AB=135m.30.解:(1)因为光是沿直线传播的,所以当小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为变短;(2)如图所示,BE即为所求;(3)先设OP=x,则当OB=米时,BE=米,∴=,即=,∴x=米;当OD=6米时,设小亮的影长是y米,∴=,∴=,∴y=(米).即小亮的影长是米.。

相关文档
最新文档