聚类分析基础知识总结

合集下载

聚类分析原理

聚类分析原理

聚类分析原理
聚类分析是一种无监督学习算法,它将数据集中的对象分
成相似的组或簇。

其原理基于以下几个关键步骤:
1. 选择合适的相似性度量:聚类算法需要定义一个衡量对
象之间相似性的度量方式。

常用的度量方法包括欧氏距离、曼哈顿距离、余弦相似度等。

2. 初始化聚类中心:聚类算法通常需要提前指定簇的数量K。

然后可以随机选取K个样本作为初始的聚类中心,或者通过某种启发式方法选择初始聚类中心。

3. 分配样本到簇:将每个样本分配到最接近的聚类中心所
属的簇。

这个过程可以通过计算每个样本与每个聚类中心
之间的距离,并选择距离最小的聚类中心来完成。

4. 更新聚类中心:根据当前簇中的样本重新计算聚类中心
的位置,通常是取簇内所有样本的均值作为新的聚类中心。

5. 重复步骤3和步骤4,直到簇的分配结果不再变化或达
到预定的停止条件。

6. 输出最终的聚类结果。

聚类分析的目标是在不知道样本的真实标签的情况下,将
样本聚类成相似的组。

它可以帮助发现数据的内在结构,
识别相似的样本和异常值,以及进行数据压缩和预处理等
任务。

基于聚类分析的电商商品推荐算法研究

基于聚类分析的电商商品推荐算法研究

基于聚类分析的电商商品推荐算法研究一、引言电商平台通过推荐算法实现个性化推荐,有助于提高用户购买体验和转化率。

商品聚类分析是一种有效的方式,可将相似的商品分组,从而为用户提供更加精准的推荐。

本文将从商品聚类分析的角度出发,探讨基于聚类分析的电商商品推荐算法的研究。

二、商品聚类分析基础知识1. 商品聚类分析概念商品聚类分析指的是将一组商品按照某种特征进行分类,以便进行分析和管理。

例如,可以将相似的商品分为一组,为用户提供更加精准的推荐。

2. 商品聚类分析算法商品聚类分析算法主要有两种:层次聚类算法和划分聚类算法。

层次聚类算法又分为凝聚层次聚类和分裂层次聚类。

凝聚层次聚类是从每个商品单独分组开始,逐渐将它们组合为更大的组,直到所有商品都归入一个大组。

分裂层次聚类则是从所有商品在一个大组开始,逐渐将它们分为更小的组。

划分聚类算法则是通过将商品分配给各个组,不断迭代直到达到指定的条件,例如达到最小的组内差异或达到指定次数的迭代次数。

3. 商品聚类分析的应用商品聚类分析已经广泛应用于电商平台的商品推荐系统中。

通过将相似的商品分为一组,将相关的推荐商品推荐给用户,提高了购买体验和转化率。

三、基于聚类分析的电商商品推荐算法1. 数据预处理为了进行聚类分析,需要将商品数据进行预处理,包括去除空值和不需要的变量,对类别变量进行编码,标准化和归一化数值变量等。

2. 特征选择选择适当的特征对于聚类分析至关重要。

可以从商品的价格,销量,评论数,品牌等因素进行选择。

这里需要运用统计方法和领域知识,选择最能反映商品特征的特征。

3. 初步聚类分析选择聚类算法,根据商品特征对商品进行初步聚类分析,对聚类结果进行评估和调整。

4. 优化聚类分析对初步聚类结果进行评估和调整后,进行优化聚类分析。

其中,聚类数的选择是非常重要的。

聚类数过多会使得聚类结果过于细致,不易理解;聚类数过少则可能出现相似的商品被分到不同组的情况。

此时,建议使用聚类分析矩阵和统计指标等分析工具来优化聚类结果。

聚类分析结果总结报告

聚类分析结果总结报告

聚类分析结果总结报告聚类分析是一种常用的数据分析方法,通过找出数据样本之间的相似性,将它们分为簇,从而对数据进行分类。

本次聚类分析旨在对一批消费者进行分类,以便更好地理解他们的行为模式、需求和喜好。

以下是对聚类分析结果的总结报告。

通过对消费者的行为数据进行聚类分析,我们将其分为三个簇:簇1、簇2和簇3。

每个簇代表着一组相似的消费者群体,下面对每个簇进行具体分析。

簇1:这是一个高消费群体,他们在各个维度上的消费都较高。

他们对品牌认知较高,更注重购买名牌产品;他们也更倾向于在线购物,且购买的商品种类较广泛;此外,他们更愿意花费时间在购物上,喜欢认真研究和比较产品特点和价格。

簇1群体对价格并不敏感,更看重商品质量和品牌的声誉。

簇2:这是一个价值敏感的消费群体,他们更注重价格相对便宜的商品。

他们对品牌知名度并不是很敏感,更关注购物便利性和商品的实用性。

他们喜欢到实体店购物,可以触摸和试穿商品,这样可以更好地评估商品的实际价值。

簇2群体对线上购物并不是很感兴趣,更喜欢传统的购物方式。

簇3:这是一个中等消费群体,他们在各个维度上的消费行为都处于中等水平。

他们对品牌和价格都没有太强的偏好,更关注商品的功能和性能。

他们对购物的时间和成本都有一定的限制,更倾向于选择便利和高性价比的商品。

通过以上分析,我们得出以下几个结论:1. 个体之间在消费行为上的差异很大,每个簇代表的消费群体有明显的特征和偏好。

2. 消费者对品牌、价格、购物方式等因素的重视程度存在差异,这可以为市场营销提供指导。

3. 不同簇的消费群体在市场定位和产品推广上需要采取不同的策略,吸引不同簇的目标消费群体。

4. 对于高消费群体,可以重点推广高端品牌和品质产品;对于价值敏感的群体,可以提供更具性价比的产品和便利的购物体验;对于中等消费群体,可以提供功能强大且价格适中的商品。

在实际应用中,聚类分析可以辅助企业进行市场细分和目标客户定位,可以帮助提高市场竞争力和个性化营销的效果。

层次聚类分析

层次聚类分析

D(0)
表1
D(0) G1={X1}G2={X2}G3={X3}G4={X4}G5={X5} G1={X1} 0
G2={X2} 1
G3={X3} 2.5
0
1.5 0
G4={X4} 6
G5={X5} 8
5
7
3.5
5.5
0
2 0
D(1)
表2
D(1) G6={G1, G2} G3={X3} G4={X4} G5={X5} G6 0 1.5 5 7 0 3.5 5.5 0 2 0 G3 G4 G5
层次聚类分析
hierarchical clustering method
聚类分析也是一种分类技术。是研究“ 物以类聚”的一种方法。与多元分析的 其他方法相比,该方法理论上还不完善 ,但由于它能解决许多实际问题,很受 人们的重视,应用方面取得了很大成功 。
举 例
对10位应聘者做智能检验。3项指标X,Y 和Z分别表示数学推理能力,空间想象能 力和语言理解能力。其得分如下,选择合 适的统计方法对应聘者进行分类。
D2(1) G6={X1, X2} G3={X3}
G6 0 4
G3
G4
G5
0
G4={X4}
G5={X5}
30.25
56.25
12.25
30.25
0
4 0
D2(2)
G7
G7
0
G4
G5
G4
G5
20.25
42.25
0
4 0
D2(3)
G7={X1, X2,X3} G8={X4,X5 }
ห้องสมุดไป่ตู้G7
0 30.25
• x11• •

聚类分析的基本概念与方法

聚类分析的基本概念与方法

聚类分析的基本概念与方法聚类分析(Cluster Analysis)是一种将数据分组或分类的统计学方法,通过将相似的对象归为同一组,使得组内的对象之间更加相似,而不同组之间的对象则差异较大。

它是数据挖掘和机器学习领域中常用的技术之一,被广泛应用于市场分析、生物信息学、图像处理等领域。

一、聚类分析的基本概念聚类分析基于相似性的概念,即认为具有相似特征的对象更有可能属于同一类别。

在聚类分析中,每个对象都被视为一个数据点,而聚类则是将这些数据点分组。

基本概念包括以下几点:1. 数据点:数据集中的每个样本或对象都被看作是一个数据点,它具有多个特征或属性。

2. 相似性度量:聚类分析的关键是如何计算数据点之间的相似性或距离。

常用的相似性度量包括欧氏距离、曼哈顿距离、闵可夫斯基距离等。

3. 簇/类别:将相似的数据点归为一组,这个组被称为簇或类别。

簇内的数据点相似度较高,而不同簇之间的数据点相似度较低。

4. 聚类算法:聚类分析依赖于具体的算法来实现数据点的分组。

常见的聚类算法有K均值聚类、层次聚类、密度聚类等。

二、聚类分析的方法1. K均值聚类(K-means Clustering):K均值聚类是一种迭代的聚类方法,它将数据点分成K个簇,每个簇代表一个样本集。

算法的基本思想是通过最小化簇内数据点与簇中心之间的平方误差来确定最优的簇中心位置。

2. 层次聚类(Hierarchical Clustering):层次聚类是一种基于树状结构的聚类算法,它根据数据点之间的相似性逐步合并或分割簇。

层次聚类分为凝聚型和分裂型两种方法,其中凝聚型方法从单个数据点开始,逐步合并最相似的簇;分裂型方法从所有数据点开始,逐步分割最不相似的簇。

3. 密度聚类(Density-Based Clustering):密度聚类基于密度可达的概念,将具有足够高密度的数据点归为一簇。

核心思想是在数据空间中通过密度连通性来确定簇的边界,相对于K均值聚类和层次聚类,密度聚类能够有效处理不规则形状和噪声数据。

聚类分析方法

聚类分析方法

聚类分析方法
聚类分析是一种常用的数据挖掘方法,它可以将相似的数据点分组在一起。

在聚类分析中,数据被分为多个类别,每个类别都包含具有类似特征的数据点。

聚类分析方法有很多种,其中一种是K均值聚类。

K均值聚
类的目标是将数据点分为K个簇,使得每个数据点都属于与
其最近的质心所代表的簇。

首先,在聚类分析中,需要先选择一个初始的簇质心,然后迭代地将每个数据点分配到与其最近的质心所代表的簇中,然后更新簇质心的位置,直到达到收敛。

另一种常见的聚类分析方法是层次聚类。

层次聚类将数据点逐渐合并成一个个的簇,直到所有数据点都属于同一个簇。

层次聚类可以根据不同的相似性度量来合并簇,例如单链接、完全链接或平均链接等。

另外,谱聚类是一种基于图论的聚类方法,它利用数据点之间的相似性构建一个相似度矩阵,并将其转化为一个图。

然后,通过计算图的特征向量来对数据进行聚类分析。

聚类分析方法还有很多其他的变体和扩展,例如密度聚类、模糊聚类和网格聚类等。

这些方法可以根据具体的问题和数据类型来选择和应用。

总的来说,聚类分析方法是一种无监督学习的方法,可以用于发现数据中的内在结构和模式。

它在很多领域都有广泛的应用,
如市场分析、社交网络分析和生物信息学等。

通过应用聚类分析方法,可以帮助我们更好地理解和分析数据。

聚类分析原理及步骤

聚类分析原理及步骤

聚类分析原理及步骤
一,聚类分析概述
聚类分析是一种常用的数据挖掘方法,它将具有相似特征的样本归为
一类,根据彼此间的相似性(相似度)将样本准确地分组为多个类簇,其中
每个类簇都具有一定的相似性。

聚类分析是半监督学习(semi-supervised learning)的一种,半监督学习的核心思想是使用未标记的数据,即在训
练样本中搜集的数据,以及有限的标记数据,来学习模型。

聚类分析是实际应用中最为常用的数据挖掘算法之一,因为它可以根
据历史或当前的数据状况,帮助组织做出决策,如商业分析,市场分析,
决策支持,客户分类,医学诊断,质量控制等等,都可以使用它。

二,聚类分析原理
聚类分析的本质是用其中一种相似性度量方法将客户的属性连接起来,从而将客户分组,划分出几个客户类型,这样就可以进行客户分类、客户
细分、客户关系管理等,更好地实现客户管理。

聚类分析的原理是建立在相似性和距离等度量概念之上:通过对比一
组数据中不同对象之间的距离或相似性,从而将它们分成不同的类簇,类
簇之间的距离越近,则它们之间的相似性越大;类簇之间的距离越远,则
它们之间的相似性越小。

聚类分析的原理分为两类,一类是基于距离的聚类。

市场研究——聚类分析法

市场研究——聚类分析法

市场研究——聚类分析法
聚类分析法在市场研究中有着广泛的应用。

通过对市场中消费者、产品、品牌等进行聚类分析,可以帮助市场研究人员更好地理解市场细分和
目标受众,并制定针对不同群体的市场营销策略。

下面将详细介绍聚类分
析法的原理、应用和步骤。

聚类分析的原理是将数据样本划分为不同的类别或群组,使得同类之
间的差异最小,而不同类之间的差异最大。

输入聚类分析的数据通常是多
维的,每个维度代表一个变量。

聚类分析的目标是找到一个最优的聚类方案,使得相同类别内的样本相似度最高,而不同类别的样本相似度最低。

聚类分析法的应用非常广泛。

在市场研究中,它可以用于客户细分、
产品定位、市场定位等方面。

通过对消费者进行聚类,可以发现隐藏在市
场中的不同消费者群体,并确定他们的特征、需求和偏好。

对产品和品牌
进行聚类分析,则可以帮助确定产品和品牌的差异化定位和市场竞争策略。

需要注意的是,聚类分析法只是一种分析工具,通过聚类分析得到的
结果并不一定代表真实的市场现象,仅供市场研究人员参考和决策。

在市场研究中,聚类分析法的应用是非常重要的。

它能够帮助市场研
究人员更好地理解市场细分和目标受众,并制定针对不同群体的市场营销
策略。

随着数据量的不断增加和分析技术的不断发展,聚类分析法在市场
研究中的应用前景将更加广阔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚类分析cluster analysis聚类分析方法是按样品(或变量)的数据特征,把相似的样品(或变量)倾向于分在同一类中,把不相似的样品(或变量)倾向于分在不同类中。

聚类分析根据分类对象不同分为Q型和R型聚类分析在聚类分析过程中类的个数如何来确定才合适呢?这是一个十分困难的问题,人们至今仍未找到令人满意的方法。

但是这个问题又是不可回避的。

下面我们介绍几种方法。

1、给定阈值——通过观测聚类图,给出一个合适的阈值T。

要求类与类之间的距离不要超过T值。

例如我们给定T=0.35,当聚类时,类间的距离已经超过了0.35,则聚类结束。

聚类分析的出发点是研究对象之间可能存在的相似性和亲疏关系。

样品间亲疏程度的测度研究样品或变量的亲疏程度的数量指标有两种,一种叫相似系数,性质越接近的变量或样品,它们的相似系数越接近于1或一l,而彼此无关的变量或样品它们的相似系数则越接近于0,相似的为一类,不相似的为不同类;另一种叫距离,它是将每一个样品看作p维空间的一个点,并用某种度量测量点与点之间的距离,距离较近的归为一类,距离较远的点应属于不同的类。

变量之间的聚类即R型聚类分析,常用相似系数来测度变量之间的亲疏程度。

而样品之间的聚类即Q型聚类分析,则常用距离来测度样品之间的亲疏程度。

定义:在聚类分析中反映样品或变量间关系亲疏程度的统计量称为聚类统计量,常用的聚类统计量分为距离和相似系数两种。

距离:用于对样品的聚类。

常用欧氏距离,在求距离前,需把指标进行标准化。

相似系数:常用于对变量的聚类。

一般采用相关系数。

相似性度量:距离和相似系数。

距离常用来度量样品之间的相似性,相似系数常用来度量变量之间的相似性。

样品之间的距离和相似系数有着各种不同的定义,而这些定义与变量的类型有着非常密切的关系。

距离和相似系数这两个概念反映了样品(或变量)之间的相似程度。

相似程度越高,一般两个样品(或变量)间的距离就越小或相似系数的绝对值就越大;反之,相似程度越低,一般两个样品(或变量)间的距离就越大或相似系数的绝对值就越小。

一、变量测量尺度的类型为了将样本进行分类,就需要研究样品之间的关系;而为了将变量进行分类,就需要研究变量之间的关系。

但无论是样品之间的关系,还是变量之间的关系,都是用变量来描述的,变量的类型不同,描述方法也就不同。

通常,变量按照测量它们的尺度不同,可以分为三类。

(1)间隔尺度。

指标度量时用数量来表示,其数值由测量或计数、统计得到,如长度、重量、收入、支出等。

一般来说,计数得到的数量是离散数量,测量得到的数量是连续数量。

在间隔尺度中如果存在绝对零点,又称比例尺度。

(2)顺序尺度。

指标度量时没有明确的数量表示,只有次序关系,或虽用数量表示,但相邻两数值之间的差距并不相等,它只表示一个有序状态序列。

如评价酒的味道,分成好、中、次三等,三等有次序关系,但没有数量表示。

(3)名义尺度。

指标度量时既没有数量表示也没有次序关系,只有一些特性状态,如眼睛的颜色,化学中催化剂的种类等。

在名义尺度中只取两种特性状态的变量是很重要的,如电路的开和关,天气的有雨和无雨,人口性别的男和女,医疗诊断中的“十”和“一”,市场交易中的买和卖等都是此类变量。

数据的变换处理所谓数据变换,就是将原始数据矩阵中的每个元素,按照某种特定的运算把它变成为一个新值,而且数值的变化不依赖于原始数据集合中其它数据的新值。

1、中心化变换中心化变换是一种坐标轴平移处理方法,它是先求出每个变量的样本平均值,再从原始数据中减去该变量的均值,就得到中心化变换后的数据。

设原始观测数据矩阵为:中心化变换的结果是使每列数据之和均为0,即每个变量的均值为0,而且每列数据的平方和是该列变量样本方差的(n—1)倍,任何不同两列数据之交叉乘积是这两列变量样本协方差的(n—1)倍,所以这是一种很方便地计算方差与协方差的变换。

2、极差规格化变换规格化变换是从数据矩阵的每一个变量中找出其最大值和最小值,这两者之差称为极差,然后从每个变量的每个原始数据中减去该变量中的最小值,再除以极差,就得到规格化数据。

即有:经过规格化变换后,数据矩阵中每列即每个变量的最大数值为1,最小数值为0,其余数据取值均在0-1之间;并且变换后的数据都不再具有量纲,便于不同的变量之间的比较。

3、标准化变换标准化变换也是对变量的数值和量纲进行类似于规格化变换的一种数据处理方法。

首先对每个变量进行中心化变换,然后用该变量的标准差进行标准化。

即有:经过标准化变换处理后,每个变量即数据矩阵中每列数据的平均值为0,方差为1,且也不再具有量纲,同样也便于不同变量之间的比较。

变换后,数据短阵中任何两列数据乘积之和是两个变量相关系数的(n-1)倍,所以这是一种很方便地计算相关矩阵的变换。

4.对数变换对数变换是将各个原始数据取对数,将原始数据的对数值作为变换后的新值。

即:系统聚类法的算法1.取每个观察值为一个类;2.将性质最近的两个类合并为一个类,类的数目减1;3.如类的数目³2,转2);4.结束聚类过程。

聚类分析可分为对变量聚类(如在儿童的生长发育研究中,把以形态学为主的指标归于一类,以机能为主的指标归于另一类等)和对样品聚类(如解剖学上依据骨骼的形状和大小等,不仅可以区别样品是人还是猿,还可以区别性别、年龄等)。

聚类分析的基本思想:是认为我们所研究的样本或指标(变量)之间存在着程度不同的相似性(亲疏关系)。

于是根据一批样本的多个观测指标,具体找出一些彼此之间相似程度较大的样本(或指标)聚合为一类,把另外一些彼此之间相似程度较大的样本(或指标)又聚合为另一类,关系密切的聚合到一个小的分类单位,关系疏远的聚合到一个大的分类单位,直到把所有样本(或指标)都聚合完毕,把不同的类型一一划分出来,形成一个由小到大的分类系统。

最后把整个分类系统画成一张谱系图,用它把所有样本(或指标)间的亲疏关系表示出来。

这种方法是最常用的、最基本的一种,称为系统聚类分析。

依据研究对象(样品或指标)的特征,对其进行分类的方法,减少研究对象的数目。

各类事物缺乏可靠的历史资料,无法确定共有多少类别,目的是将性质相近事物归入一类。

各指标之间具有一定的相关关系。

Q型(对样本的聚类分析)是对样本进行分类处理,其作用在于:1.能利用多个变量对样本进行分类2.分类结果直观,聚类谱系图能明确、清楚地表达其数值分类结果3.所得结果比传统的定性分类方法更细致、全面、合理R型(对指标变量的聚类分析)是对变量进行分类处理,其作用在于:1.可以了解变量间及变量组合间的亲疏关系2.可以根据变量的聚类结果及它们之间的关系,选择主要变量进行回归分析或Q型聚类分析三、聚类过程1.数据预处理(标准化)2.构造关系矩阵(亲疏关系的描述)3.聚类(根据不同方法进行分类)4.确定最佳分类(类别数)标准化:1.为什么要做标准化:指标变量的量纲不同或数量级相差很大,为了使这些数据能放到一起加以比较,常需做变换。

2.相关说明:假设有N个样本1,2,…n,每个样本有m项指标x1,x2,…,x m,用x ij表示第i 个样品第j个指标的值,则可得到样品数据矩阵。

3.常用方法1)Z Scores:标准化变换作用:变换后的数据均值为0,标准差为1,消去了量纲的影响;当抽样样本改变时,它仍能保持相对稳定性。

2)Range –1 to 1:极差标准化变换作用:变换后的数据均值为0,极差为1,且|xij*|<1,消去了量纲的影响;在以后的分析计算中可以减少误差的产生。

3)Maximum magnitude of 1作用:变换后的数据最大值为1。

4)Range 0 to 1(极差正规化变换/ 规格化变换)作用:变换后的数据最小为0,最大为1,其余在区间[0,1]内,极差为1,无量纲。

5)Mean of 1作用:变换后的数据均值为1。

6)Standard deviation of 1作用:变换后的数据标准差为1。

选择聚类方法:对样本的聚类分析(Q型):一.系统聚类:Hierarchical Cluster也叫分层聚类法可做成聚类谱系图(Hierarchical diagram)。

开始将个样品各自作为一类,并规定样品之间的距离和类与类之间的距离,然后将距离最近的两类合并成一个新类,计算新类与其他类的距离;重复进行两个最近类的合并,每次减少一类,直至所有的样品合并为一类。

系统聚类法是最常用的一种聚类方法,常用的系统聚类方法有最短距离法、最长距离法、中间距离法、类平均法、重心法、Ward最小方差法、密度估计法、两阶段密度估计法、最大似然估计法、相似分析法和可变类平均法。

大多数的研究表明:最好综合特性的聚类方法为类平均法或Ward最小方差法,而最差的则为最短距离法。

Ward最小方差法倾向于寻找观察数相同的类。

类平均法偏向寻找等方差的类。

具有最小偏差的聚类方法为最短距离法和密度估计法。

拉长的或无规则的类使用最短距离法比其他方法好。

最没有偏见的聚类方法为密度估计法。

步骤:s1.构造n个类,每个类包含且只包含一个样品。

s2.计算n个样品两两间的距离,构成距离矩阵,记作D0。

s3.合并距离最近的两类为一新类。

s4.计算新类与当前各类的距离。

若类的个数等于1,转到步骤(5),否则回到步骤(3)。

s5.画聚类图。

s6.决定类的个数,及各类包含的样品数,并对类作出解释。

方法:1.类平均法(average)例:2.最短距离法(single linkage)定义类与类之间的距离为两类最近样品间的距离,即聚类步骤:(1) 规定样品之间的距离,计算n个样品的距离矩阵D(0),它是一个对称矩阵。

(2) 选择D(0)中的最小元素,设为,则将和合并成一个新类,记为,即(3) 计算新类与任一类之间距离的递推公式为在D(0)中,和所在的行和列合并成一个新行新列,对应,该行列上的新距离值由(6.3.2)式求得,其余行列上的距离值不变,这样就得到新的距离矩阵,记作。

(4) 对重复上述对D(0)的两步得D(2),如此下去直至所有元素合并成一类为止。

如果某一步D(m)中最小的元素不止一个,则称此现象为结(tie),对应这些最小元素的类可以任选一对合并或同时合并。

例:3.最长距离法(complete linkage)类与类之间的距离定义为两类最远样品间的距离,即最长距离法与最短距离法的并类步骤完全相同,只是类间距离的递推公式有所不同。

递推公式:最长距离法容易被异常值严重地扭曲,一个有效的方法是将这些异常值单独拿出来后再进行聚类。

4.中间距离法(median method)类与类之间的距离既不取两类最近样品间的距离,也不取两类最远样品间的距离,而是取介于两者中间的距离。

,5.重心法(centroid)也称为样品的均值法6.密度估计法(Density estimation method)DBSCAN Density-Based Spatial Clustering of Applications with Noise (一种基于密度聚类算法)将簇定义为密度相连的点的最大结合,并且有较强的抗“噪声”能力。

相关文档
最新文档