《航空雷达讲义》PPT课件
合集下载
《雷达定位与导航》课件

干涉仪测姿技术
总结词
利用多个天线接收信号的相位差来测量目标的位置和姿态变化。
详细描述
干涉仪测姿技术通过比较不同天线接收到的信号相位差,可以精确测量目标的位置和姿态变化。这种 技术具有高精度和动态响应快的优点,常用于精确制导武器和无人机的导航定位。
基于信号特征的识别技术
总结词
利用不同物体对雷达信号的反射特性来 识别目标类型和姿态。
导航
确定和引导飞行器、船舶、车辆等运 动体的方向和位置,以及提供位置、 航行、气象等信息服务的技术。
雷达定位与导航的应用领域
军事应用
雷达定位与导航技术在军事领域有广泛的应用,如导弹制导、战场侦察、目标 跟踪等。
民用应用
雷达定位与导航技术在民用领域也有广泛应用,如航空导航、航海导航、车辆 自主导航等。
详细描述
多模态融合的导航定位技术将结合多种传感器和导航 系统的数据,如GPS、北斗、惯导、轮速传感器等, 实现多源数据的融合和互补,提高导航定位的精度和 可靠性。这种技术将有助于解决复杂环境下的导航定 位难题,满足各种应用场景的需求。
基于人工智能的雷达数据处理技术
总结词
基于人工智能的雷达数据处理技术将利用机器学习和深 度学习算法,提高雷达数据处理的速度和准确性。
VS
详细描述
基于信号特征的识别技术通过分析雷达回 波的频率、幅度和散射特性等信息,可以 识别出目标类型、距离、速度和姿态等参 数。这种技术具有高分辨率和抗干扰能力 强的优点,常用于复杂环境下的目标识别 和跟踪。
05 雷达定位与导航的应用案 例
无人机航迹规划与控制
无人机航迹规划
根据任务需求,规划无人机的飞行路径,确 保无人机能够高效、安全地完成任务。
雷达基本工作原理课件

雷达的分类
01
脉冲雷达
发射脉冲信号,通过测量脉冲 信号往返时间计算目标距离。
02
连续波雷达
发射连续波信号,通过测量信 号频率变化计算目标距离和速
度。
03
合成孔径雷达
利用高速平台对目标区域进行 扫描,形成高分辨率的合成孔
径图像。
雷达的应用
军事侦察
利用雷达探测敌方军事目标,如飞机、 坦克等。
气象观测
指雷达在存在欺骗干扰的情况下,仍能正常工作并检测到目标的能力 ,通常由信号鉴别和抗干扰算法决定。
多目标处理能力
跟踪能力
指雷达在同一时间内能够跟踪的 目标数量,通常由数据处理能力 和硬件资源决定。
分辨能力
指雷达在同一时间内能够分辨的 目标数量,通常由信号处理算法 和天线波束宽度决定。
05
雷达技术的发展趋势
天线是雷达系统的辐射和接收单元,负责发射和接收电磁波。
波束形成是天线的重要技术,通过控制天线阵列的相位和幅度,形成具有特定形状 和方向的波束。
天线的性能指标包括方向图、增益、副瓣电平和极化方式等。
信号处理与数据处理
信号处理是雷达系统的关键技术之一,负责对接收到的回波信号进行处 理和分析。
数据处理负责对雷达系统获取的数据进行进一步的处理、分析和利用。
当目标相对于雷达移动时,反 射的电磁波频率会发生变化, 这种变化被雷达接收并转换为 目标的相对速度。
速度测量的精度受到多普勒效 应的影响,而分辨率则受到雷 达工作频率和采样率的影响。
03
雷达系统组成
发射机
发射机是雷达系统的核心组件之 一,负责产生高功率的射频信号
。
它通常包括振荡器、功率放大器 和调制器等组件,用于将低功率 信号放大并调制为所需的波形。
雷达原理介绍ppt课件

的射频信号进行下变频以转化为视频信号(即中心频率等
于0)。正交解调接收机即可完成这样的下变频处理:
sm(t) = s(t) exp(-j2 f0t) 可见,正交解调处理将信号的中心频率降低了 f0 。
|s( f )|
s(t)
sm(t)
正交解 调前
exp(-j2 f0t)
0 |sm( f )|
f0
f
正交解
基本原理
发射系统 接收系统
目标
将雷达的接收信号与发射信号进行比较,就可 以获得目标的位置、速度、形状等信息,根据这些 信息,雷达进而可以完成对目标的检测、跟踪、识 别等任务。
基本原理
发射信号:
Tp
t
Tr
雷达发射周期性脉冲,记脉冲宽度为 Tp,重复周期为 Tr,雷达峰值功率(即脉冲期间的平均功率)为Pt,雷达 平均功率(即周期内的平均功率)为Pav,工作比(即脉冲 宽度与重复周期之比)为D。显然有:
SNR = Ps / Pn 显然SNR越高,目标回波就越显著,就越有利于信号分析。
发射功率
不考虑各种损耗,影响目标回波峰值功率Ps的因素有:
雷达发射峰值功率Pt、目标的雷达截面积(RCS) 、目
标与雷达的相对距离R。它们之间存在关系:
Ps= Pt /R4 是与雷达系统及环境有关的常数。若 过小或R过大,则
Tp
t
响应的 3dB宽度称为雷 达距离分辨率,它表征 了雷达将相邻目标区分 开的能力。若接收机没 有脉冲压缩,可用发射
与雷达相距r的目标回波相对于发射脉冲 脉宽Tp近似距离分辨率;
的延时 = 2r / c,c为电磁波的传播速度。 若有脉冲压缩,分辨率
那么,与雷达的相对距离差为r的两个
【空客A320培训PPT课件】气象雷达概述

FCOM EXIT
导航系统
MENU 气象雷达概述
13/12
11/12
本单元已完成
导航系统
水域 地面 城区,山脉
方式选择开关有三个位置: WX用于显示降水强度 WX/TURB用洋红色显示紊流区域 MAP:雷达工作在地图方式。
MENU 气象雷达概述
12/12 NEXT
主题列表
概述 控制面板 开关 仰角选钮 灵敏度选钮 方式转换开关
AUDIO RETURN
GLOSSARY
5/12
导航系统
现在让我们看一下气象雷达的控制和指示部件。 -ON/OFF开关控制它的电源供应, 当开关在ON位时,TILT将显示在ND上,
MENU 气象雷达概述
6/12 NEXT
导航系统
MENU 气象雷达概述
7/12
ห้องสมุดไป่ตู้
导航系统
- TILT旋钮用于调节雷达天线和水平面的夹角,天线夹 角也显示在ND上。
MENU 气象雷达概述
8/12 NEXT
导航系统
-GAIN旋钮用于人工调节接收机的灵敏度。在这种情况 下,绿色的MAN将显示在TILT的下方。
在AUTO(自动)位,雷达自动调节灵敏度到最佳状态 。
MENU 气象雷达概述
9/12 NEXT
导航系统
MENU 气象雷达概述
10/12
导航系统
MENU 气象雷达概述
导航系统
MENU 气象雷达概述
1/12
气象雷达用于探测恶劣气象并将它显 示在ND上。
导航系统
MENU 气象雷达概述
2/12
气象雷达可作为避免遭遇恶劣气象的有效 工具。
导航系统
MENU 气象雷达概述
《雷达基本工作原理》PPT课件(2024)

雷达抗干扰与隐身技术探讨
2024/1/28
15
常见干扰类型及抗干扰措施
有源干扰
通过发射与雷达信号相似的干扰信号,使雷达难以区分目标 回波和干扰信号。
2024/1/28
无源干扰
利用反射、散射等方式,使雷达信号偏离目标或产生虚假目 标。
16
常见干扰类型及抗干扰措施
01
02
03
信号处理技术
采用先进的信号处理技术 ,如脉冲压缩、动目标检 测等,提高雷达抗干扰能 力。
2024/1/28
雷达定义
利用电磁波的反射原理进行目标 探测和定位的电子设备。
发展历程
从20世纪初的萌芽阶段到二战期 间的广泛应用,再到现代雷达技 术的不断创新和发展。
4
雷达应用领域及重要性
应用领域
军事、民用航空、气象、海洋监测、 地质勘探等。
重要性
在各个领域发挥着不可替代的作用, 如保障国家安全、提高航空安全、预 测天气变化等。
强化信号处理部分
信号处理是雷达技术的核心,建议增加相关 课时和实验,深入讲解信号处理技术。
2024/1/28
33
课程安排建议和拓展学习资源推荐
• 引入新技术:随着科技的发展,新型雷达技术不断涌现,建议课程中加入新型雷达技术的介绍和 讨论。
2024/1/28
34
课程安排建议和拓展学习资源推荐
2024/1/28
02
在安检、反恐、生物医学等领域 具有潜在应用价值。
2024/1/28
30
06
总结回顾与课程安排建议
2024/1/28
31
关键知识点总结回顾
雷达基本概念
雷达是一种利用电磁波进行探测和测 距的电子设备,广泛应用于军事、民 用等领域。
雷达介绍PPT课件

方位360o L波段(1~2G)
05.12.2020 22
四、雷达的应用
3、引导指挥雷达(监视雷达)
能对多批次目标同时检测 测量目标的精度和分辨力较高
S波段(2~4G)
05.12.2020 23
四、雷达的应用
4、火控雷达
作用距离小 测量精度高
05.12.2020 24
四、雷达的应用
5、制导雷达
三、雷达的发展历史
•60年代,电扫描相控阵天线。美国AN/SPS-33防空相控阵雷 达工作于S波段(2G~4GHz,10cm),方位机械扫描,仰角 电扫描。 •1964年,美国装置了第一个空间轨道监视雷达,用于监视人 造地球卫星或空间飞行器。 •60年代,NRL美国海军实验室研制成探测距离在3700km以 上的“麦德雷”高频超视距雷达,首先证明了超视距雷达探 测飞机,弹道导弹和舰艇的能力,还能确定海面状况和海洋 上空风情的能力。
四、雷达的应用
10、气象雷达
05.12.2020 32
四、雷达的应用
11、空中管制雷达
05.12.2020 33
四、雷达的应用
12、合成孔径雷达
05.12.2020 34
四、雷达的应用
13、宇航应用
05.12.2020 35
四、雷达的应用
14、其它 ➢测高雷达 ➢雷达引信 ➢探地雷达 ➢防撞雷达
05.12.2020 15
三、雷达的发展历史
•合成孔径雷达、相控阵雷达、脉冲多普勒雷达在70年代得到新 的发展。 •70年代中期,合成孔径雷达的计算机成像。装在卫星的合成孔 径雷达获得分辨率25×25m的雷达图像,1cm波段的机载合成 孔径雷达可以达到0.09m2的分辨率。 •70年代越南战争后期,出现用甚高频(VHF)雷达探测地下坑 道。 •空间应用方面,雷达用来帮助“阿波罗”飞船在月球着陆,在 卫星方面被用作高度计,测量地球及其表面的不平度。 •70年代,“丹麦眼镜蛇”雷达是一部又代表性的大型高分辨率 相控阵雷达,美国将该雷达用于观测,跟踪苏联勘查加半岛下 靶场上空的多个再入弹道导弹的弹头。
05.12.2020 22
四、雷达的应用
3、引导指挥雷达(监视雷达)
能对多批次目标同时检测 测量目标的精度和分辨力较高
S波段(2~4G)
05.12.2020 23
四、雷达的应用
4、火控雷达
作用距离小 测量精度高
05.12.2020 24
四、雷达的应用
5、制导雷达
三、雷达的发展历史
•60年代,电扫描相控阵天线。美国AN/SPS-33防空相控阵雷 达工作于S波段(2G~4GHz,10cm),方位机械扫描,仰角 电扫描。 •1964年,美国装置了第一个空间轨道监视雷达,用于监视人 造地球卫星或空间飞行器。 •60年代,NRL美国海军实验室研制成探测距离在3700km以 上的“麦德雷”高频超视距雷达,首先证明了超视距雷达探 测飞机,弹道导弹和舰艇的能力,还能确定海面状况和海洋 上空风情的能力。
四、雷达的应用
10、气象雷达
05.12.2020 32
四、雷达的应用
11、空中管制雷达
05.12.2020 33
四、雷达的应用
12、合成孔径雷达
05.12.2020 34
四、雷达的应用
13、宇航应用
05.12.2020 35
四、雷达的应用
14、其它 ➢测高雷达 ➢雷达引信 ➢探地雷达 ➢防撞雷达
05.12.2020 15
三、雷达的发展历史
•合成孔径雷达、相控阵雷达、脉冲多普勒雷达在70年代得到新 的发展。 •70年代中期,合成孔径雷达的计算机成像。装在卫星的合成孔 径雷达获得分辨率25×25m的雷达图像,1cm波段的机载合成 孔径雷达可以达到0.09m2的分辨率。 •70年代越南战争后期,出现用甚高频(VHF)雷达探测地下坑 道。 •空间应用方面,雷达用来帮助“阿波罗”飞船在月球着陆,在 卫星方面被用作高度计,测量地球及其表面的不平度。 •70年代,“丹麦眼镜蛇”雷达是一部又代表性的大型高分辨率 相控阵雷达,美国将该雷达用于观测,跟踪苏联勘查加半岛下 靶场上空的多个再入弹道导弹的弹头。
航空雷达讲义

波音机型:自动模式:选择的是 波音机型:人工模式:选择的是WX+T(天 WX+T(天气+颠簸)和+5°俯仰, 气+������ 颠簸)和+2°俯仰,雷达处在 而且雷达处在“A”(自动)模式。 “M”(人工)模式。没有显示任何增益信 VAR表示增益高于或低于 息说明选定的是CAL增益。 CAL(校正)增益位置。
MultiScan 雷达的操作
• MultiScan 雷达的操作(自动)
• 当一开始选择了自动模式时,雷达将完成沿着飞机飞行航迹的 第一次扫描, 这是为了保证飞行正前方的天气能够马上显示给机组。 第二次扫描则调低俯仰,这样可能会看到明显的地面杂波。天线第二 次扫描时地面杂波抑制算法开始起作用,而且将在第五次扫描开始时 (16秒)完全初始化。初始化过程完成后,机组就能看到优化的天气图 像,对选定的各种距离范围都有最少的地面杂波。此外, OverFlightTM功能也将全面介入,以防止对飞机构成威胁的 雷暴在 雷达波束下面被漏过。
MultiScan 雷达的操作 • 工作模式
1 、WX(天气模式)
WX(天气)模式可以显示,除颠簸信息以外的天气目标。当 MultiScan处于AUTO模式时,天气显示将提供无地面杂波的 图像,可以迅速、准确地了解危险天气。 选定了WX(天气)模 式。显示的4种颜 色(黑、绿、黄、红) 代表不同的雷暴强 度。注意GCS(地 面杂波抑制)处于打 开状态(MultiScan 处于全自动模式), 天气显示基本上没 有地面杂波。
此画面显示的是距离设定为40 海里时的天气和颠簸。共有五种颜 色(黑、绿、黄、红及紫红。紫红 色表示的是颠簸。
此图显示的是中同样的颠簸,但这次 的距离设定是80海里。记住,只有40海 里内的颠簸能够显示,而且在任何距离范 围内都可显示。
《雷达导论概论》课件

工作原理
雷达通过发射机产生高频电磁波,经过天线辐射到空间中,遇到目标后反射回 来,被雷达天线接收并传输给接收机进行处理,最终形成目标图像或数据。
雷达的分类
脉冲雷达
连续波雷达
通过发射脉冲信号进行探测,根据回波信 号的延迟时间确定目标距离,具有较高的 距离分辨率。
发射连续的电磁波,通过测量电磁波在空 间中的传播时间来确定目标距离,具有较 高的速度分辨率。
气象观测
雷达能够探测气象目标,如降水、风速、风向 等,为气象预报提供数据支持。
资源探测
雷达可用于地质勘探和资源探测,发现地下矿藏和资源分布。
未来雷达技术的发展趋势
隐身技术
随着反雷达技术的发展,雷达隐身技术将更加重要,提高雷达的生 存能力。
高频、超宽带技术
高频和超宽带雷达具有更高的分辨率和更强的抗干扰能力,是未来 发展的重要方向。
交通运输
雷达在交通运输领域中用于车辆自动驾驶、交通流量监测 、航道监测等方面,可以提高交通运输的安全性和效率。
航空航天
雷达在航空航天领域中用于导航、气象观测、地形测绘、 卫星轨道测量等方面,对于航空航天技术的发展具有重要 意义。
气象观测
雷达在气象观测领域中用于降水、风速、云层等方面的观 测和预报,对于气象研究和灾害预警具有重要作用。
合成孔径雷达
相控阵雷达
利用高速运动平台产生的多普勒效应,将 较小尺寸的天线等效为大面积天线,提高 雷达的方位分辨率。
通过控制阵列天线中各个辐射单元的相位 和幅度,实现雷达波束的扫描和跟踪,具 有多功能和高机动性。
雷达的应用领域
军事应用
雷达在军事领域中广泛应用于目标探测、跟踪、火控、制 导等方面,是现代战争中不可或缺的重要装备。
雷达通过发射机产生高频电磁波,经过天线辐射到空间中,遇到目标后反射回 来,被雷达天线接收并传输给接收机进行处理,最终形成目标图像或数据。
雷达的分类
脉冲雷达
连续波雷达
通过发射脉冲信号进行探测,根据回波信 号的延迟时间确定目标距离,具有较高的 距离分辨率。
发射连续的电磁波,通过测量电磁波在空 间中的传播时间来确定目标距离,具有较 高的速度分辨率。
气象观测
雷达能够探测气象目标,如降水、风速、风向 等,为气象预报提供数据支持。
资源探测
雷达可用于地质勘探和资源探测,发现地下矿藏和资源分布。
未来雷达技术的发展趋势
隐身技术
随着反雷达技术的发展,雷达隐身技术将更加重要,提高雷达的生 存能力。
高频、超宽带技术
高频和超宽带雷达具有更高的分辨率和更强的抗干扰能力,是未来 发展的重要方向。
交通运输
雷达在交通运输领域中用于车辆自动驾驶、交通流量监测 、航道监测等方面,可以提高交通运输的安全性和效率。
航空航天
雷达在航空航天领域中用于导航、气象观测、地形测绘、 卫星轨道测量等方面,对于航空航天技术的发展具有重要 意义。
气象观测
雷达在气象观测领域中用于降水、风速、云层等方面的观 测和预报,对于气象研究和灾害预警具有重要作用。
合成孔径雷达
相控阵雷达
利用高速运动平台产生的多普勒效应,将 较小尺寸的天线等效为大面积天线,提高 雷达的方位分辨率。
通过控制阵列天线中各个辐射单元的相位 和幅度,实现雷达波束的扫描和跟踪,具 有多功能和高机动性。
雷达的应用领域
军事应用
雷达在军事领域中广泛应用于目标探测、跟踪、火控、制 导等方面,是现代战争中不可或缺的重要装备。