透射电子显微镜及其应用

合集下载

透射电子显微镜在材料科学中的应用研究

透射电子显微镜在材料科学中的应用研究

透射电子显微镜在材料科学中的应用研究透射电子显微镜(Transmission Electron Microscope,简称TEM)是一种非常强大且重要的工具,在材料科学中发挥着重要的作用。

本文将着重探讨TEM的应用研究,以展示其在材料科学领域中的重要意义和潜力。

首先,TEM可以提供高分辨率的图像,由于其采用了电子束替代了传统光学显微镜中的光线束,因此具有比传统光学显微镜更高的分辨率。

这使得TEM能够在原子尺寸的范围内观察和研究材料的微观结构和组成。

通过TEM,可以看到材料中的晶体缺陷、晶界、原子排列以及纳米颗粒的形态和分布等信息,从而为研究者提供更全面的材料性能分析。

其次,TEM还可以用于分析材料的化学成分。

通过透射电子显微镜的能谱分析功能,可以检测材料的元素组成和分布情况。

这对于研究材料中的微量元素、杂质或特定材料结构是非常关键的。

比如,在材料科学中研究合金材料时,通过使用TEM可以准确分析不同元素的分布、堆垛结构以及可能存在的相变现象,从而为合金材料的优化设计和开发提供了有力的支持。

另外,TEM还可以进行纳米材料的研究。

随着纳米科技的快速发展,各种纳米材料的制备和应用也受到了广泛关注。

通过TEM可以实时观察和研究纳米材料的形貌、大小、形态演变等特性。

举个例子,纳米颗粒在不同条件下的自组装过程可以通过TEM实时观察,从而为理解纳米材料的自组装机制和控制纳米结构提供了重要线索。

此外,TEM还可以用于研究材料的力学性能。

通过使用纳米压痕技术,可以将纳米尺度下材料的力学性能直接导入TEM,从而实时观察材料在纳米尺度下的力学行为。

这种研究方法可以为我们提供关于材料变形、断裂、塑性等方面的深入洞察。

综上所述,透射电子显微镜在材料科学中的应用研究具有重要意义。

TEM不仅能够提供高分辨率的图像,观察和研究材料的微观结构和组成,还能对材料的化学成分进行定量分析。

此外,TEM还可以用于纳米材料和力学性能的研究,为我们深入理解材料特性和设计材料性能提供了有力工具。

透射电子显微镜的应用

透射电子显微镜的应用

透射电子显微镜的应用透射电子显微镜具有分辨率高、可与其他技术联用的优点,在材料学、物理、化学和生物学等领域有着广泛地应用。

1、材料的微观结构对材料的力学、光学、电学等物理化学性质起着决定性作用。

透射电镜作为材料表征的重要手段,不仅可以用衍射模式来研究晶体的结构,还可以在成像模式下得到实空间的高分辨像,即对材料中的原子进行直接成像,直接观察材料的微观结构。

电子显微技术对于新材料的发现也起到了巨大的推动作用,D.Shechtman借助透射电镜发现了准晶,重新定义了晶体,丰富了材料学、晶体学、凝聚态物理学的内涵,D.Shechtman也因此获得了2011年诺贝尔化学奖。

2、在物理学领域电子全息术能够同时提供电子波的振幅和相位信息,从而使这种先进的显微分析方法在磁场和电场分布等与相位密切相关的研究上得到广泛应用。

目前,电子全息已经应用在测量半导体多层薄膜结构器件的电场分布、磁性材料内部的磁畴分布等方面。

中国科学院物理研究所的张喆和朱涛等利用高分辨电子显微术和电子全息方法研究了Co基磁性隧道结退火热处理前后的微观结构和相应势垒层结构的变化,研究结果表明,退火处理可以明显地改善势垒层和顶电极、底电极之间的界面质量,改进势垒本身的结构。

3、在化学领域原位透射电镜因其超高的空间分辨率为原位观察气相、液相化学反应提供了一种重要的方法。

利用原位透射电子显微镜进一步理解化学反应的机理和纳米材料的转变过程,以期望从化学反应的本质理解、调控和设计材料的合成。

目前,原位电子显微技术已在材料合成、化学催化、能源应用和生命科学领域发挥着重要作用。

透射电镜可以在极高的放大倍数下直接观察纳米颗粒的形貌和结构,是纳米材料常用的表征手段之一。

天津大学的杜希文和美国Brookhaven国家实验室的HoulinL.xin等用原位透射电镜观察了CoNi双金属纳米粒子在氧化过程中形貌的变化,充分混合的Co、Ni 合金粒子经过氧化后,Co和Ni发生了空间上的部分分离,并在理论上对该现象进行了解释。

透射电子显微镜下的生物大分子结构解析

透射电子显微镜下的生物大分子结构解析

透射电子显微镜下的生物大分子结构解析一、透射电子显微镜技术概述透射电子显微镜(Transmission Electron Microscope, TEM)是一种利用电子束穿透样品的高分辨率显微镜技术。

与传统的光学显微镜相比,透射电子显微镜能够提供纳米级别的分辨率,这使得它在生物大分子结构解析领域具有独特的优势。

本文将探讨透射电子显微镜在生物大分子结构解析中的应用,分析其原理、技术特点以及在生物科学领域的重要作用。

1.1 透射电子显微镜的基本原理透射电子显微镜的工作原理基于电子光学原理,电子束通过电磁透镜聚焦,穿透样品后,由检测器接收并转换成图像。

由于电子波长远小于可见光,因此TEM能够达到比光学显微镜更高的分辨率。

1.2 透射电子显微镜的技术特点透射电子显微镜具有以下技术特点:- 高分辨率:能够达到原子级别的分辨率,适合观察生物大分子的精细结构。

- 多模式成像:除了传统的透射成像外,还可以进行扫描透射成像(STEM)和电子衍射等。

- 样品制备要求:需要将生物样品制备成极薄的切片,以确保电子束的有效穿透。

- 环境控制:需要在高真空环境下操作,以避免电子束与空气分子的相互作用。

1.3 透射电子显微镜在生物大分子结构解析中的应用透射电子显微镜在生物大分子结构解析中的应用非常广泛,包括蛋白质、核酸、病毒等生物大分子的形态学研究和结构分析。

二、生物大分子结构解析的技术和方法生物大分子结构解析是一个复杂的过程,涉及多种技术和方法。

透射电子显微镜技术在这一过程中扮演着重要角色,但也需要与其他技术相结合,以获得更全面和准确的结构信息。

2.1 样品制备技术生物大分子的样品制备是结构解析的第一步,也是关键步骤之一。

透射电子显微镜要求样品必须足够薄,通常需要使用超微切割、冷冻断裂或聚焦离子束等技术来制备样品。

2.2 高分辨率成像技术高分辨率成像是获取生物大分子结构信息的基础。

透射电子显微镜通过优化电子束的聚焦、样品的放置和成像条件,可以获得高质量的图像。

透射电子显微镜系统用途

透射电子显微镜系统用途

透射电子显微镜系统用途透射电子显微镜(Transmission Electron Microscopy,简称TEM)是现代科学研究中一种重要的工具。

透射电子显微镜利用电子束与材料之间的相互作用过程,可以对材料的微观结构进行研究,具有非常高的空间分辨率和分析能力。

透射电子显微镜系统多用于材料科学、生物学、物理学等领域的研究,在以下几个方面有着广泛的应用。

首先,在材料科学领域,透射电子显微镜可用于研究材料的晶体结构。

材料的微观结构对材料的性能和行为有着重要影响,透射电子显微镜可以通过电子衍射技术获得材料的晶体结构信息,包括晶格常数、晶面取向、位错等。

通过观察材料不同晶面之间的相对位置、原子分布的均匀性以及位错和缺陷的分布情况,可以揭示材料的晶体缺陷机制、相变行为等,为材料设计和优化提供重要的理论依据和指导。

其次,在生物学领域,透射电子显微镜可以用于研究生物样品的细胞结构和超微结构。

由于电子波长比光波短得多,透射电子显微镜可以在非常高的分辨率下观察细胞器、细胞膜、核糖体等细胞结构的细节。

透射电子显微镜还可以通过结合能谱分析技术,对生物样品进行元素分析,获得样品中各元素的分布情况,并进一步研究其与生物活性之间的关联。

此外,透射电子显微镜还可以用于研究纳米材料的结构和性质。

现代纳米材料的研究是材料科学领域的热点之一,透射电子显微镜可以对纳米材料进行直接的成像,并通过纳米尺度的电子衍射获得其晶体结构、晶界、界面等信息。

通过透射电子显微镜对纳米材料进行分析,可以了解纳米尺度下材料的小尺寸效应、表面形貌和晶体结构的变化规律等,为纳米材料的制备和应用提供重要的科学依据。

最后,透射电子显微镜还可以用于研究材料的化学成分和原子分布。

透射电子显微镜可以结合能谱技术,对材料的元素组成进行定量分析。

通过对材料中不同位置的元素分布进行测量和对比分析,可以提供有关材料的化学成分、元素偏析、晶体生长机制等信息。

透射电子显微镜在材料的化学分析领域具有很高的分析能力和探测灵敏度,为材料的研究和开发提供了重要的技术支持。

透射电子显微镜技术在食品微结构研究中的应用

透射电子显微镜技术在食品微结构研究中的应用

透射电子显微镜技术在食品微结构研究中的应用透射电子显微镜(Transmission Electron Microscope,TEM)是一种非常重要且先进的科学仪器,它以其高分辨率和高清晰度的成像能力,在各个领域都有广泛的应用。

在食品科学研究领域中,透射电子显微镜技术也扮演着至关重要的角色,为我们揭示了食品微结构的奥秘。

首先,透射电子显微镜技术在食品中的应用给我们提供了食品微观结构的详细信息。

食品作为我们日常生活的重要组成部分,其微观结构直接关系到食品的品质、口感和营养价值。

通过透射电子显微镜技术,我们可以观察到食物中微观结构的组织、形态和分布情况。

例如,我们可以通过观察面团中的淀粉颗粒、蔬菜细胞壁的组织结构等来了解食材的品质和加工工艺对食品结构的影响。

其次,透射电子显微镜技术在食品中的应用还可以帮助我们研究食品加工过程中的微观变化。

食品在加工过程中经历了许多复杂的物理和化学变化,这些变化会直接影响食品的品质和营养。

透射电子显微镜技术可以帮助我们观察食品在加工过程中的微观结构变化,并揭示这些变化与食品性质之间的关系。

例如,在研究食品制备中的膨化过程时,透射电子显微镜可以帮助我们观察到淀粉颗粒在高温下的膨胀情况,从而揭示膨化程度与食品膨胀性质之间的关联。

此外,透射电子显微镜技术在研究食品中的微生物和微生物菌群中也起到了重要的作用。

食品中的微生物对于食品质量和安全具有重要影响,了解微生物的形态、结构和分布情况对于研究微生物的繁殖和传播机制非常关键。

透射电子显微镜技术可以帮助我们观察微生物的细胞结构、细胞壁的形态和组织,进一步了解微生物的生物学特性。

通过这种方式,我们可以研究食品中微生物的种类、数量和分布情况,为食品安全控制和微生物菌群的调控提供科学依据。

然而,透射电子显微镜技术在食品研究中也存在一些挑战。

首先,透射电子显微镜技术需要高度专业的操作和维护,需要配备高端显微镜设备和相关的样品制备技术。

这增加了食品研究者的技术门槛和仪器设备的投入成本。

透射电子显微镜解析出材料结构与缺陷的微观形貌

透射电子显微镜解析出材料结构与缺陷的微观形貌

透射电子显微镜解析出材料结构与缺陷的微观形貌材料科学与工程领域中,了解材料的微观结构和缺陷是极为重要的。

透射电子显微镜(Transmission Electron Microscope,简称TEM)作为一种高分辨率的显微镜,被广泛应用于研究材料的微观结构和缺陷的形貌。

本文将对透射电子显微镜的原理以及其在解析材料结构和缺陷方面的应用进行探讨。

首先,我们来了解一下透射电子显微镜的原理。

TEM利用电子束的穿透性质,通过透射模式进行成像。

当电子束通过材料样品时,被材料中的原子核和电子云散射,形成折射、衍射和透射等效应。

其中,透射电子显微镜主要依靠透射电子的成像来解析材料的微观结构和缺陷。

在TEM中,电子束通过样品后,经过透射器(透镜)和投影透镜组件进行成像,最后由像差校正系统进行调整来提高成像质量。

透射电子显微镜的高分辨率使得它能够解析出材料的微观形貌,包括晶体结构、晶格缺陷和界面等。

透射电子显微镜在解析材料结构方面具有得天独厚的优势。

通过TEM的高分辨率成像,可以直接观察到材料的晶格结构。

晶体的晶体结构、晶胞参数、晶体方向和位错等重要的结构信息可以通过TEM成像来获得。

通过选取特定的衍射点和晶格平面,可以进一步通过电子衍射技术确定晶体结构。

透射电子衍射技术可以通过模式匹配和比对已知晶体结构的衍射图案来确定材料的晶体结构,为研究和设计材料提供了重要的依据。

此外,透射电子显微镜还可以帮助解析材料中的晶体缺陷。

晶格缺陷是材料中常见的现象,对材料的性能和行为产生显著影响。

通过透射电子显微镜观察,可以揭示出材料中的位错(dislocation)、嵌错(inclusion)、晶界(grain boundary)和尖晶石等各种缺陷。

位错是晶体中最常见的缺陷类型之一,它们对晶格的完整性和形貌起到了至关重要的作用。

透射电子显微镜可以通过成像和EDS(能谱分析)技术来定量和表征位错的类型和密度。

此外,透射电子显微镜还可以通过高分辨率透射电子显微镜(HRTEM)技术对材料的晶界和界面进行观察,揭示出材料微观结构中的复杂性。

透射电子显微镜的原理及应用

透射电子显微镜的原理及应用

透射电子显微镜的原理及应用一.前言人的眼睛只能分辨1/60度视角的物体,相当于在明视距离下能分辨0.1mm 的目标。

光学显微镜通过透镜将视角扩大,提高了分辨极限,可达到2000A 。

光学显微镜做为材料研究和检验的常用工具,发挥了重大作用。

但是随着材料科学的发展,人们对于显微镜分析技术的要求不断提高,观察的对象也越来越细。

如要求分表几十埃或更小尺寸的分子或原子。

一般光学显微镜,通过扩大视角可提高的放大倍数不是无止境的。

阿贝(Abbe )证明了显微镜的分辨极限取决于光源波长的大小。

在一定波长条件下,超越了这个极限度,在继续放大将是徒劳的,得到的像是模糊不清的。

图1-1(a )表示了两个点光源O 、P 经过会聚透镜L ,在平面上形成像O ,、P ,的光路。

实际上当点光源透射会聚成像时,由于衍射效应的作用在像平面并不能得到像点。

图1-1(b )所示,在像面上形成了一个中央亮斑及周围明暗相间圆环所组成的埃利斑(Airy )。

图中表示了像平面上光强度的分布。

约84%的强度集中在中央亮斑上。

其余则由内向外顺次递减,分散在第一、第二……亮环上。

一般将第一暗环半径定义为埃利斑的半径。

如果将两个光源O 、P 靠拢,相应的两个埃利斑也逐渐重叠。

当斑中心O ,、P ,间距等于案例版半径时,刚好能分辨出是两个斑,此时的光点距离d 称为分辨本领,可表示如下:αλsin 61.0d n = (1-1) 式中,λ为光的波长,n 为折射系数,α孔径半角。

上式表明分辨的最小距离与波长成正比。

在光学显微镜的可见光的波长条件下,最大限度只能分辨2000A 。

于是,人们用很长时间寻找波长短,又能聚焦成像的光波。

后来的X 射线和γ射线波长较短,但是难以会聚聚焦。

1924年德布罗(De Broglie )证明了快速粒子的辐射,并发现了一种高速运动电子,其波长为0.05A 。

,这比可见的绿光波长短十万倍!又过了两年布施(Busch )提出用轴对称的电场和磁场聚焦电子线。

物理实验中透射电子显微镜的使用指南

物理实验中透射电子显微镜的使用指南

物理实验中透射电子显微镜的使用指南透射电子显微镜(Transmission Electron Microscopy,简称TEM)是现代物理实验中一种非常重要的工具,它能够提供高分辨率的观测和分析样品的微观结构和成分。

本文将为您介绍透射电子显微镜的使用指南。

一、透射电子显微镜的原理与构造透射电子显微镜利用电子束通过样品并形成细致的图像,它的原理是基于电子的波粒二象性以及电子与样品相互作用的特性。

透射电子显微镜通常由电子源、透镜系统、样品台和显像系统等组成。

电子源是透射电子显微镜的核心部件,常用的电子源包括热阴极和场发射阴极。

透镜系统负责控制和聚焦电子束,它由透镜、磁透镜和计数器等组成。

样品台用于固定和转动样品,使得电子束可以满足不同角度的入射条件。

显像系统则负责收集电子束通过样品后的信息,并将其转化成可见图像。

二、透射电子显微镜的样品制备透射电子显微镜对样品制备要求极高,首先需要将样品制备成薄片,以保证电子束能够穿透样品并形成可观测的图像。

常用的样品制备方法有机械切割、电子束刻蚀和离子薄化等。

在样品制备过程中,还需要注意避免样品表面的污染和氧化。

在制备过程中,可以采用真空环境、惰性气体保护或氮气氛等方法来防止样品受到污染。

同时,也要注意避免样品上的含水气泡,可以通过超声震荡或去离子水清洗等方法去除。

三、透射电子显微镜的操作指南在使用透射电子显微镜时,需要注意以下几点:1. 系统预热:在使用透射电子显微镜之前,需要进行系统预热以达到稳定的工作状态。

预热时间通常为数小时,具体时间取决于仪器和操作要求。

2. 加热和冷却样品:透射电子显微镜可以在不同温度下观察样品。

在进行加热或冷却样品之前,需要确保样品和样品台可以承受相应的温度,并根据需要选择正确的加热或冷却装置。

3. 对溶液样品的观察:如果需要观察溶液样品,可以将样品制备在薄碳膜或其他透明基底上,并在观察前进行干燥。

同时,还应注意避免样品在高真空下蒸发或结晶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

透射电子显微镜及其应用读书报告姓名:孙家宝学号:DG1022076电子科学与工程学院2020年1月21日目录第一章透射电子显微镜 (1)1.1 透射电子显微镜的结构 (1)1.1.1.电子光学部分 (1)1.1.2.真空系统 (3)1.1.3.供电控制系统 (4)1.2 透射电子显微镜主要的性能参数 (4)1.2.1 分辨率 (4)1.2.2 放大倍数 (4)1.2.3 加速电压 (5)1.3 透射电镜的成像原理 (5)1.3.1 透射电镜的成像方式 (5)1.3.2 衬度理论 (6)1.4 透射电镜的电子衍射花样 (6)1.4.1 电子衍射花样 (6)1.4.2电子衍射与X射线衍射相比的优点 (7)1.4.3电子衍射与X射线衍射相比的不足之处 (7)1.4.4选区电子衍射 (7)1.4.5常见的几种衍射图谱 (8)1.4.6单晶电子衍射花样的标定 (8)第二章透射电子显微镜分析样品制备 (10)2.1 透射电镜复型技术(间接样品) (10)2.1.1塑料——碳二级复型 (10)2.1.1萃取复型(半直接样品) (11)2.2 金属薄膜样品的制备 (11)1.2 电子显微镜中的电光学问题 (13)1.2.1 电子射线(束)的特性 (13)第一章 透射电子显微镜1.1 透射电子显微镜的结构透射电子显微镜(TEM )是观察和分析材料的形貌、组织和结构的有效工具。

TEM 用聚焦电子束作照明源,使用对电子束透明的薄膜试样,以透过试样的透射电子束或衍射电子束所形成的图像来分析试样内部的显微组织结构。

图1.1(a )(b )是两种典型的透射电镜的实物照片。

透射电子显微镜的光路原理图如图1.2所示。

透射电镜一般是由电子光学部分、真空系统和供电系统三大部分组成。

1.1.1.电子光学部分(a) Philips CM12透射电镜(b) JEM-2010透射电镜 图1.1 透射电子显微镜图1.2透射电子显微镜的光路原理图图1.3透射电镜电子光学部分示意图整个电子光学部分完全置于镜筒之内,自上而下顺序排列着电子枪、聚光镜、样品室、 物镜、中间镜、投影镜、观察室、荧光屏、照相机构等装置。

根据这些装置的功能不同又可将电子光学部分分为照明系统、样品室、成像系统及图像观察和记录系统。

图1.3为透射电子显微镜电子光学部分示意图。

1照明系统照明系统由电子枪、聚光镜和相应的平移对中及倾斜调节装置组成。

它的作用:是为成像系统提供 一束亮度高、相干性好的照明光源。

为满足暗场成像的需要照明电子束可在2-3度范围内倾斜。

①电子枪。

它由阴极、栅极和阳极构成。

在真空中通电加热后使从阴极发射的电子获得较高的动能形成定向高速电子流。

②聚光镜。

聚光镜的作用是会聚从电子枪发射出来的电子束,控制照明孔径角、电流密度和光斑尺寸。

2样品室样品室中有样品杆、样品杯及样品台。

其位于照明部分和物镜之间,它的主要作用是通过试样台承载试样,移动试样。

3成像系统一般由物镜、中间镜和投影镜组成。

中间镜和投影镜的作用是将来自物镜的图像进一步放大。

成像系统补充说明:a) 由物镜、中间镜(1、2个)和投影镜(1、2个)组成。

b) 成像系统的两个基本操作是将衍射花样或图像投影到荧光屏上。

图1.4 照明系统示意图c) 通过调整中间镜的透镜电流,使中间镜的物平面与物镜的背焦面重合,可在荧光屏上得到衍射花样。

d) 若使中间镜的物平面与物镜的像平面重合则得到显微像。

4图像观察与记录系统该系统由荧光屏、照相机、数据显示等组成.在分析电镜中,还有探测器和电子能量分析等附件,见图1.6。

1.1.2.真空系统真空系统由机械泵、油扩散泵、换向阀门、真空测量仪泵及真空管道组成。

它的作用是排除镜图1.5 透射电镜成像系统的两种基本操作:(a )将衍射谱投影到荧光屏;(b )将显微像投影到荧光屏图1.6 透射电镜图像观察与记录系统示意图筒内气体,使镜筒真空度至少要在10-3 pa 以上。

如果真空度低的话,电子与气体分子之间的碰撞引起散射而影响衬度,还会使电子栅极与阳极间高压电离导致极间放电,残余的气体还会腐蚀灯丝,污染样品。

1.1.3.供电控制系统加速电压和透镜磁电流不稳定将会产生严重的色差及降低电镜的分辨本领,所以加速电压和透镜电流的稳定度是衡量电镜性能好坏的一个重要标准。

透射电镜的电路主要由高压直流电源、透镜励磁电源、偏转器线圈电源、电子枪灯丝加热电源,以及真空系统控制电路、真空泵电源、照相驱动装置及自动曝光电路等部分组成。

另外,许多高性能的电镜上还装备有扫描附件、能谱议、电子能量损失谱等仪器。

1.2 透射电子显微镜主要的性能参数1.2.1 分辨率分辨率是TEM 的最主要性能指标,表征电镜显示亚显微组织、结构细节的能力。

透射电镜的分辨率分为点分辨率和线分辨率两种。

点分辨率能分辨两点之间的最短距离,线分辨率能分辨两条线之间的最短距离,通过拍摄已知晶体的晶格象测定,又称晶格分辨率。

透射电镜点分辨率和线分辨率照片如图1.7所示。

1.2.2 放大倍数透射电镜的放大倍数是指电子图像对于所观察试样区的线性放大率。

目前高性能TEM 的放大倍数范围为80~100万倍。

不仅考虑最高和最低放大倍数,还要考虑是否覆盖低倍到高倍的整个范围。

将仪器的最小可分辨距离放大到人眼可分辨距离所需的放大倍数称为有效放大倍数。

一般仪器的最大倍数稍大于有效放大倍数。

透射电镜的放大倍数可用下面的公式来表示:图1.7测量透射电镜分辨率的照片(a )点分辨率(硅蒸镀膜) (b )线分辨率(金)其中M 为放大倍数,A 、B 为常数,I 中为中间镜激磁电流,单位为mA 。

以下是对透射电镜放大倍率的几点说明:a) 人眼分辨本领约0.2mm ,光学显微镜约0.2μm 。

b) 把0.2μm 放大到0.2mm 的M 是1000倍,是有效放大倍数。

c) 光学显微镜分辨率在0.2μm 时,有效M 是1000倍。

d) 光学显微镜的M 可以做的更高,但高出部分对提高分辨率没有贡献,仅是让人眼观察舒服。

1.2.3 加速电压加速电压是指电子枪阳极相对于阴极灯丝的电压,决定了发射的电子的波长λ。

电压越高,电子束对样品的穿透能力越强(厚试样)、分辨率越高、对试样的辐射损伤越小。

普通TEM 的最高V 一般为100kV 和200kV ,通常所说的V 是指可达到的最高加速电压。

高分辨透射电子显微镜。

1.3 透射电镜的成像原理1.3.1 透射电镜的成像方式透射电镜的成像方式主要有两种,一种明场像,一种暗场像。

明场像为直射电子所成的像,图像清晰。

暗场像为散射电子所成的像,图像有畸变,且分辨率低。

中心暗场像为入射电子束对试样的倾斜照射得到的暗场像,图像不畸变且分辨率高。

成像电子的选择是通过在物镜的背焦面上插入物镜光阑来实现的。

图1.8为双光束衍射条件下的衍衬成像方法。

B AI M M M M -==中投中物总2⋅⋅1.3.2 衬度理论衬度的定义为显微图像中不同区域的明暗差别。

分为质厚衬度和衍射衬度两种。

1 质厚衬度质厚衬度是非晶体样品衬度的主要来源。

样品不同微区存在原子序数和厚度的差异形成的。

来源于电子的非相干散射,Z 越高,产生散射的比例越大;d 增加,将发生更多的散射。

不同微区Z 和d 的差异,使进入物镜光阑并聚焦于像平面的散射电子I 有差别,形成像的衬度。

Z 较高、样品较厚区域在屏上显示为较暗区域。

图像上的衬度变化反映了样品相应区域的原子序数和厚度的变化。

质厚衬度受物镜光阑孔径和加速V 的影响。

选择大孔径(较多散射电子参与成像),图像亮度增加,散射与非散射区域间的衬度降低。

选择低电压(较多电子散射到光阑孔径外),衬度提高,亮度降低。

支持膜法和萃取复型,质厚衬度图像比较直观。

2 衍射衬度衍射衬度是来源于晶体试样各部分满足布拉格反射条件不同和结构振幅的差异。

例如电压一定时,入射束强度是一定的,假为L ,衍射束强度为ID 。

在忽略吸收的情况下,透射束为L-ID 。

这样如果只让透射束通过物镜光阑成像,那么就会由于样品中各晶面或强衍射或弱衍射或不衍射,导致透射束相应强度的变化,从而在荧光屏上形成衬度。

形成衬度的过程中,起决定作用的是晶体对电子束的衍射。

这就是衍射衬度的由来。

1.4 透射电镜的电子衍射花样1.4.1 电子衍射花样电镜中的电子衍射,其衍射几何与X 射线完全相同,都遵循布拉格方程 所规定的衍射条件和几何关系。

衍射方向可以由厄瓦尔德球(反射球)作图求出。

图1.9分别为AuCu3有序相的超点阵花样(a )及指数化结果(b )1.4.2电子衍射与X射线衍射相比的优点电子衍射能在同一试样上将形貌观察与结构分析结合起来。

电子波长短,单晶的电子衍射花样如晶体的倒易点阵的一个二维截面在底片上放大投影,从底片上的电子衍射花样可以直观地辨认出一些晶体的结构和有关取向关系,使晶体结构的研究比X射线简单。

物质对电子散射主要是核散射,因此散射强,约为X射线一万倍,曝光时间短。

1.4.3电子衍射与X射线衍射相比的不足之处电子衍射强度有时几乎与透射束相当,以致两者产生交互作用,使电子衍射花样,特别是强度分析变得复杂,不能象X射线那样从测量衍射强度来广泛的测定结构。

此外,散射强度高导致电子透射能力有限,要求试样薄,这就使试样制备工作较X射线复杂;在精度方面也远比X射线低。

1.4.4选区电子衍射获取衍射花样可通过光阑选区衍射来实现。

光阑选区衍射是是通过物镜象平面上插入选区光阑限制参加成象和衍射的区域来实现的。

另外,电镜的一个特点就是能够做到选区衍射和选区成象的一致性。

图1.10 选区成像与选区衍射示意图图1.11(a)选区形貌;(b)选区衍射斑点为了尽可能减小选区误差,选区衍射应遵循如下操作步骤:1插入选区光阑,套住欲分析的物相,调整中间镜电流使选区光阑边缘清晰,此时选区光阑平面与中间镜物平面重合;2调整物镜电流,使选区内物象清晰,此时样品的一次象正好落在选区光阑平面上,即物镜象平面,中间镜物面,光阑面三面重合;3减弱中间镜电流,使中间镜物平面移到物镜背焦面,荧光屏上可观察到放大的电子衍射花样4用中间镜旋钮调节中间镜电流,使中心斑最小最圆,其余斑点明锐,此时中间镜物面与物镜背焦面相重合。

5减弱第二聚光镜电流,使投影到样品上的入射束近似平行束,摄照。

1.4.5常见的几种衍射图谱1.4.6单晶电子衍射花样的标定图1.12(a)单晶电子衍射谱;(b)多晶电子衍射谱图1.13 (a)、(b)、(c)复杂电子衍射花样图1.14所示为某有色材料基体的单晶电子衍射花样。

标定指数。

花样指数标定步骤如下:1选靠近中心的斑点A 、B 、C 、D, 测得R A = 7mm ,R B = 14mm ,R C = 13.5mm ,R D = 18.5mm ,∠AOB≈90°,R B /R A = 1.628。

相关文档
最新文档