《大数据分析》教学大纲
大数据分析与挖掘教学大纲

大数据分析与挖掘教学大纲I.课程简介本课程是针对大数据分析与挖掘领域的学生开设的一门基础课程。
通过本课程的学习,学生将掌握大数据分析与挖掘的基本概念、数据采集与清洗技术、数据预处理与特征选择方法、常用的大数据挖掘算法等。
II.课程目标1.掌握大数据分析与挖掘的基本概念,理解大数据的特点和挖掘过程;2.熟悉数据采集与清洗的方法,理解数据预处理的重要性;3.熟练掌握常用的大数据挖掘算法,包括聚类算法、分类算法、关联规则挖掘算法等;4.能够使用机器学习工具或编程语言实现大数据挖掘项目,包括数据预处理、特征选择、模型建立和评价等。
III.教学内容1.大数据分析与挖掘概述A.大数据的定义和特点B.大数据挖掘的基本概念和过程C.大数据分析与挖掘的应用领域2.数据采集与清洗A.数据采集方法和工具B.数据清洗的目的和方法C.数据去重、缺失值处理和异常值检测3.数据预处理与特征选择A.数据预处理的目的和方法B.数据变换和规范化技术C.特征选择的概念和方法D.特征提取和降维技术4.大数据挖掘算法A. 聚类算法(如K-means算法、DBSCAN算法)B.分类算法(如决策树、支持向量机)C.关联规则挖掘算法D.时间序列分析算法(如ARIMA模型)5.大数据挖掘实践A. 机器学习工具的使用(如Python的Scikit-learn库)B. 基于编程语言(如Python或R)的大数据挖掘案例分析C.数据预处理、特征选择、模型建立和评价的实现IV.教学方式1.理论讲授:通过课堂讲解,介绍大数据分析与挖掘的基本概念和方法。
2.案例分析:通过实际案例分析,展示大数据挖掘算法在实际问题中的应用。
3.实践操作:组织学生实践操作,使用机器学习工具或编程语言实现大数据挖掘项目。
V.考核方式1.平时成绩:包括课堂表现、参与讨论和课堂练习等。
2.课程项目:根据实际问题,组织学生完成一次大数据挖掘项目。
3.期末考试:考查学生对课程知识的理解和应用能力。
《大数据》课程教学大纲(本科)

《大数据》课程教学大纲课程编号:04224课程名称:大数据英文名称:Big Data课程类型:学科选修课课程要求:选修学时/学分:32/2 (讲课学时:28上机学时:4)适用专业:智能科学与技术一、课程性质与任务大数据分析是智能科学与技术、计算机科学技术等专业的一门学科选修课,该课程涉及各类常用的挖掘与分析方法,提供了从数据准备到统计分析、关联规则建立及集成学习等整个数据分析过程的内容。
本课程全面地介绍了大数据处理相关的基本概念和原理,着重讲述了介绍数据挖掘、分析相关的理论、方法及实现工具。
本课程在教学内容方面着重基本知识、基本理论和基本设计方法的讲解;在培养实践能力方面着重数据分析的基本训练,为学生今后从事大数据的研究与预测打下坚实的基础。
(本课程可支撑毕业要求中的3.3, 7.2, 10.1, 12.2)二、课程与其他课程的联系本课程的先修课程为人工智能基础、机器学习等专业基础课程。
通过对人工智能基础的学习能够掌握智能的算法和搜索技术,通过对机器学习能够了解数据的分类、过滤等方法。
这些先修课程为本课程的讲授打下了基础。
本课程的后续课程包括智能机器人、模式识别等。
通过本课程可为后续课程提供理论与方法实践基础。
三、课程教学目标1.考虑社会、健康、安全、法律、文化以及环境等因素,设计一个能实现预期功能的硬件或软件系统,进行仿真研究或开发出系统原型或实物(支撑毕业要求中的3.3);2.能够评价智能系统工程实践对环境、社会可持续发展的影响(支撑毕业要求中的7.2);3.将大数据技术作为重点,以应用为目的,全面介绍大数据的数据挖掘与预测方法。
使学生既能对大数据处理技术有一个全景的把握,又能深入理解和使用大数据进行决策。
4.有不断学习和适应智能科学与技术发展的能力(支撑毕业要求中的12.2)5.了解大数据挖掘与预测分析学科的前沿和最新发展动向,具有跟踪学科发展前沿的意识和文献检索基本技能。
(支撑毕业要求中的10.1)四、教学内容、基本要求与学时分配五、其他教学环节(课外教学环节、要求、目标)大作业:1.对数据挖掘的认识。
《大数据分析与挖掘》课程教学大纲

《大数据分析与挖掘》课程教学大纲一、课程基本信息课程代码:16054103课程名称:大数据分析与挖掘英文名称:Big data analysis and mining课程类别:专业选修课学时:48(理论课:32, 实验课:16)学 分:3适用对象: 软件工程专业、计算机科学与技术考核方式:考查先修课程:多媒体技术、程序设计、软件工程二、课程简介本课程从大数据挖掘分析技术实战的角度,结合理论和实践,全方位地介绍基于Python语言的大数据挖掘算法的原理与使用。
本课程涉及的主题包括基础篇和实战篇两部分, 其中基础篇包括:数据挖掘基础,Python数据分析简介,数据探索,数据预处理和挖掘建模;实战篇包括:电力窃漏电用户自动识别,航空公司客户价值分析,中医证型关联规则挖掘,基于水色图像的水质评价,家用电器用户行为分析与事件识别,应用系统负载分析与磁盘容量预测和电子商务网站用户行为分析及服务推荐。
本课程不是一个泛泛的理论性、概念性的介绍课程,而是针对问题讨论基于Python语言机器学习模型解决方案的深入课程。
教师对于上述领域有深入的理论研究与实践经验,在课程中将会针对这些问题与学员一起进行研究,在关键点上还会搭建实验环境进行实践研究,以加深对于这些解决方案的理解。
通过本课程学习,目的是让学生能够扎实地掌握大数据分析挖掘的理论与应用。
This course introduces the principle and application of big data mining algorithm based on Python language comprehensively from the perspective of big data mining analysis technology practice, combining theory and practice. This course covers two parts, the basic part and the practical part. The basic part includes: basic data mining, introduction to Python data analysis, data exploration, data preprocessing and mining modeling. Practical article included: electric power leakage automatic identification of the user, airlines customer value analysis, TCM syndrome association rule mining, based on water quality evaluation of color image, household electrical appliancesuser behavior analysis and event identification, load analysis and application system disk capacity prediction and e-commerce website user behavior analysis and recommendation service.This course is not a general theoretical, conceptual introduction, but rather an in-depth discussion of problem solving based on the Python language machine learning model. Teachers have in-depth theoretical research and practical experience in the above areas. In the course, they will study these problems together with students, and build experimental environment for practical research on key points to deepen their understanding of these solutions. Through the study of this course, students are expected to master the application of big data analysis and mining.三、课程性质与教学目的本课程是软件工程和计算机科学与技术专业的选修课。
大数据分析与挖掘教学大纲

《大数据分析与挖掘》课程教学大纲一,课程基本信息课程编号:课程名称:大数据分析与挖掘英文名称:课程学时: 四八课程学分:三开课单位:计算机科学与技术学院授课对象:计算机科学与技术专业,计算机大类专业开课学期:先修课程:二,课程目地数据挖掘是一门新兴地叉学科,涵盖了数据库,机器学,统计学,模式识别,工智能以及高能计算等技术。
开设本课程地目地,是使学生全面而深入地掌握数据挖掘地基本概念与原理,掌握常用地数据挖掘算法,了解数据挖掘地最新发展,前沿地数据挖掘研究领域,以及数据挖掘技术在不同学科地应用。
课程具体目地如下:课程目标1:能够设计并实现大数据台下地数据挖掘系统。
了解由工程问题,到建模,再到数据挖掘算法设计地问题求解思维模式。
具有将数据挖掘算法应用于具体工程地能力;课程目标2:掌握大数据预处理,关联规则,分类以及聚类技术,并能够在主流大数据台上实现;课程目标3:具备较强地学最新数据挖掘领域研究成果地能力;能够分析与评价现有研究成果地问题与不足,并能够提出自己独立见解地能力;课程目标4:能够撰写系统设计方案与阶段技术报告,能够组织与协调项目组地工作,与成员行流与沟通。
三,课程目地与毕业要求对应关系毕业要求毕业要求具体描述课程目地工程素质(一)具有工程意识与系统观;(二)具有运用工程基础与专业知识解决复杂工程问题地能力课程目地一个素质(1)具有自主学,终身学与跟踪前沿地意识与惯。
(2)具有批判精神,对待事物有独立见解。
课程目地三,四系统设计与实现能力(1)针对计算有关地复杂工程问题,能够综合运用所掌握地计算机类有关知识,方法与技术,行问题分析与模型表达。
课程目地一,二毕业要求毕业要求具体描述课程目地(2)能够领导或独立设计解决方案或满足特定需求地计算机硬件,软件或网络系统,并能够实现有关系统或组件。
系统分析与评价能力针对计算有关地复杂工程问题解决方案或系统,能够综合运用所掌握地计算机类有关知识,方法与技术,设计实验,行分析与评价,包含其对社会,健康,安全,法律以及文化地影响分析与评价,并能够提出持续改地意见与建议。
大数据测试分析教学大纲

大数据测试分析教学大纲大数据测试分析教学大纲随着信息技术的迅猛发展,大数据已经成为当今社会中不可忽视的一部分。
大数据分析作为一门重要的学科,对于培养学生的数据分析能力和解决实际问题的能力具有重要意义。
为了更好地引导学生学习大数据测试分析,制定一份完善的教学大纲是必不可少的。
一、引言大数据测试分析作为一个新兴的学科,本节将对大数据测试分析的基本概念进行介绍,并阐述大数据测试分析在实际应用中的重要性和意义。
二、大数据测试分析的基本原理本节将详细介绍大数据测试分析的基本原理,包括数据收集、数据清洗、数据存储、数据分析和数据可视化等方面。
通过理论讲解和实例分析,使学生对大数据测试分析的基本流程和方法有一个清晰的认识。
三、大数据测试分析的工具和技术本节将介绍大数据测试分析中常用的工具和技术,包括Hadoop、Spark、Python等。
通过对这些工具和技术的学习和实践,学生可以掌握大数据测试分析的实际操作能力。
四、大数据测试分析的实际应用本节将以实际案例为基础,介绍大数据测试分析在不同领域的应用。
通过对这些案例的分析和讨论,学生可以了解大数据测试分析在解决实际问题中的作用和效果。
五、大数据测试分析的挑战与发展本节将对大数据测试分析面临的挑战进行分析,并展望大数据测试分析的未来发展趋势。
通过对这些问题的思考和讨论,学生可以加深对大数据测试分析的理解,并为未来的学习和研究提供思路和方向。
六、大数据测试分析的实践项目本节将设计一系列的实践项目,要求学生运用所学的大数据测试分析知识和技术,解决实际问题。
通过实践项目的完成,学生可以巩固所学知识,提升实际操作能力,并培养解决问题的能力和团队合作精神。
七、大数据测试分析的评估与考核本节将介绍大数据测试分析的评估与考核方式,包括平时成绩、实践项目成绩、期末考试等。
通过科学合理的评估与考核,可以全面客观地评价学生的学习成果和能力水平。
八、总结与展望本节将对整个教学过程进行总结,并展望大数据测试分析教学的未来发展。
大数据教学大纲

大数据教学大纲随着科技的快速发展和互联网的普及,大数据已经成为当今社会中一个重要的领域。
大数据的涌现对企业、政府和个人都带来了许多机遇和挑战。
为了适应这个时代变化的需求,大数据教育应该成为教育体系的一部分。
本文将就大数据教学大纲进行详细介绍,以期给相关教育机构提供一些建议和灵感。
第一部分:导论1.1 大数据的定义和概念- 介绍大数据的基本概念,包括数据类型、数据来源和数据特征等。
1.2 大数据的应用领域- 介绍大数据在商业、医疗、金融等领域的应用案例。
1.3 大数据的价值和意义- 探讨大数据对决策制定、资源规划和业务发展的重要性。
第二部分:技术基础2.1 数据采集和处理技术- 介绍数据采集的方法,如传感器、网络爬虫和人工采集等,并讨论数据清洗和预处理的技术。
2.2 大数据存储与管理- 探讨分布式文件系统、NoSQL数据库和云存储等技术,以及其在大数据存储与管理方面的应用。
2.3 大数据分析与挖掘- 介绍大数据分析的基本方法,如数据挖掘、机器学习和统计分析等,并重点讨论大数据分析的挑战和解决方案。
第三部分:应用案例3.1 商业智能- 分析大数据在市场营销、销售预测和客户关系管理等方面的应用案例。
3.2 医疗健康- 探讨大数据在疾病预测、个性化治疗和医疗资源分配等方面的应用案例。
3.3 城市规划- 介绍大数据在交通流量控制、垃圾处理和资源配置等方面的应用案例。
第四部分:教学方法与评估4.1 教学方法- 探讨大数据教学的教学方法,如案例研究、实践项目和小组合作等,以培养学生的实际应用能力。
4.2 评估方法- 提出大数据教学评估的准则和标准,包括理论考试、实验报告和项目评估等。
第五部分:资源支持5.1 教材和参考书籍- 推荐一些经典的大数据教材和参考书籍,以供教师和学生备用。
5.2 实验室和设备支持- 提供一些必要的实验室设备和软件工具,以支持学生的大数据实践操作。
结语通过本大纲,希望大数据教学能够引导学生了解大数据的基本概念、技术和应用。
《大数据分析与挖掘》课程教学大纲.doc

《大数据分析与挖掘》课程教学大纲一、课程基本信息课程编号:课程名称:大数据分析与挖掘英文名称:课程学时: 48课程学分:3开课单位:计算机科学与技术学院授课对象:计算机科学与技术专业,计算机大类专业开课学期:先修课程:二、课程目标数据挖掘是一门新兴的交叉性学科,涵盖了数据库、机器学习、统计学、模式识别、人工智能以及高性能计算等技术。
开设本课程的目的,是使学生全面而深入地掌握数据挖掘的基本概念和原理,掌握常用的数据挖掘算法,了解数据挖掘的最新发展、前沿的数据挖掘研究领域、以及数据挖掘技术在不同学科中的应用。
课程具体目标如下:课程目标1:能够设计并实现大数据平台下的数据挖掘系统。
了解由工程问题,到建模、再到数据挖掘算法设计的问题求解思维模式。
具有将数据挖掘算法应用于具体工程的能力;课程目标2:掌握大数据预处理、关联规则、分类以及聚类技术,并能够在主流大数据平台上实现;课程目标3:具备较强的学习最新数据挖掘领域研究成果的能力;能够分析和评价现有研究成果的问题与不足,并能够提出自己独立见解的能力;课程目标4:能够撰写系统设计方案和阶段性技术报告,能够组织和协调项目组的工作,与成员进行交流与沟通。
三、课程目标与毕业要求对应关系四、课程目标与课程内容对应关系实验大纲:五、课程教学方法本课程教学将结合大班讲授、小班项目研讨、项目开发以及交流与答辩的形式。
大班讲授主要培养学生对各种核心技术的掌握。
小班项目研讨用来训练学生们沟通与交流的能力,同时提高对系统进行评价的能力。
通过指导学生实现课堂上讲授的算法,学会比较各个算法的性能差异,激发学生的研究和创新兴趣。
六、课程考核方法七、主要教材与参考书(黑体、小四、加粗、行距20磅)1.《大数据分析与挖掘》纲撰写人:石胜飞。
大数据分析(A)教学大纲

清华大学大数据方向硕士学位公共必修课课程数据分析学(I)Data Analytics (I)开课单位:数据分析学(I)课程组授课教师: 黎波、张楠、郑路、庞珣、苏毓淞、罗昊、王程韡(暂定)教学目的:本课是针对社会科学和管理类研究学开设的数据分析基本课程。
通过本课的学习,学生将对(大)数据分析的价值、意义和基本原理建立清晰和比较全面的认识,掌握有关数据发掘、处理、建模和解释的基本原理和方法,了解和熟悉数据分析在社会科学研究、商业分析和公共管理等领域的实际案例。
Data Analytics (I) is a graduate level course mainly designed for students with social sciences and management background. The objective of the course to give students a broad overview of the basic principles and applications of data analytics. Students will also be familiar with the various aspects of data analytics such as exploring, managing, modeling and interpreting data. Students’ learning will also be enhanced by their exposure to real life applications of data analytics in social science research, business analysis and public management.主要教材:<Data Mining and Business Analytics with R> by Johannes Ledolter, 2013, Wiley<An Introduction to Statistical Learning: with Applications in R> by Gareth James et al, 2013, Springer<Analyzing Social Networks> by Stephen Borgatti et al, 2013, SAGE<Multilevel and Longitudinal Modeling using Stata> by Sophia Rabe-Hesketh and Anders Skrondal, 2008, Stata教学软件:R, Stata, UCINET教学内容:一、统计分析1.数据分析简介2.概率论基础3.数理统计基础4.R软件简介,使用R进行探索性数据分析5.线性回归模型6.多层次、纵贯性数据分析(Multilevel and Longitudinal Modeling)7.非参数回归二、机器学习8.正则化监督学习(Supervised learning with regularization)9.在抽样统计学(Resampling methods)10.树状模型方法、支持向量机(Tree-based methods, Support vector machines)11.非监督学习:聚类、降维(Unsupervised learning: clustering, dimension reduction)三、综合应用12.文本挖掘和情感分析(Text Mining and Sentiment Analysis)13.社会网络分析(Social Network Analysis)14.政策信息学简介(Policy Informatics)成绩构成:平时作业20%期中考试20%期末考试30%学期论文30%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《大数据分析》课程教学大纲
【课程名称】大数据分析
【课程类型】专业必修课
【授课对象】大数据技术与应用、云计算技术与应用专业
【学时学分】周学时6,共72学时,3学分
【课程概况】
《大数据分析》课程是大数据技术与应用、云计算技术与应用专业必修课,是计算机基础理论与应用实践相结合的课程,也是大数据专业的高核心课程,它担负着系统、全面地理解大数据,提高大数据应用技能的重任。
本课程的先修课为《Python程序设计》、《大数据导论》、《数据库设计》和《计算机网络基础》课程,要求学生掌握计算机软件范围的算法结构设计和程序设计的方法,大数据体系结构和网络技术的基本使用方法。
【课程目标】
通过本课程的学习,让学生接触并了解大数据分析的工作原理和使用方法,使学生具有Python大数据分析、设计和可视化开发的能力,具备Kettle大数据清洗和存储的基本技能,并具有较强的分析问题和解决问题的能力,为将来从事大数据相关领域的工作打下坚实的基础。
【课程内容及学时分布】
【课程要求与成绩评定】
【使用教材及教学参考书】
使用教材:《大数据分析》,黄源等主编,清华大学出版社,2019年
大纲执笔人:大纲审定人:
年月日。